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Abstract: Real-time monitoring of the mechanical behavior of cathode materials during the electro-
chemical cycle can help obtain an in-depth understanding of the working mechanism of lithium-ion
batteries. The LiMn2O4 composite electrode is employed as the working electrode in this artificial cell,
which is conceived and produced along with a chemo-mechanical coupling measurement system.
The multi-layer beam composite electrode made of LiMn2O4 is monitored in real time using a CCD
camera to track its curvature deformation. Experiments show that the curvature of the LiMn2O4

electrode decreases with the extraction of lithium ions and increases during the lithiation process.
In the meantime, a theoretical framework was developed to examine the connection between cur-
vature change and mechanical characteristics. Thus, the elastic modulus, strain, and stress of the
LiMn2O4 composite electrode were extracted by combining the bending deformation and theoretical
model. The results show that the elastic modulus of the LiMn2O4 composite electrode decreases
from 59.61 MPa to 12.01 MPa with the extraction of lithium ions during the third cycle. Meanwhile,
the stress decreases from 0.46 MPa to 0.001 MPa, and the strain reduces from 0.43 to 0. Its changes
reverse during the lithiation process. Those findings could have made a further understanding of the
mechanical properties in lithium-ion batteries.
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1. Introduction

Lithium batteries are essential for the rapid development of clean energy worldwide
due to its high energy density and long cycle life [1]. Currently, it has been widely used for
the storage of intermittent and sustainable energy, such as wind power and hydropower [2].
Mechanical degradation of electrodes is widely recognized as a key contributor to the
decline in the performance of lithium-ion batteries over time. Therefore, research on the
mechanical degradation of electrodes has attracted much attention [3,4].

Usually, lattice changes appear in the electrode materials during the delithiation/lithiation
process, which causes volume change and stress evolution of the batteries [5–8]. Several
studies have found that the cycle performance and mechanical properties of cathode ma-
terials are closely related. In situ experiments on LiFePO4/FePO4 electrodes have shown
that there is a mismatch between the valence change of Fe ions and the transformation
from LiFePO4 to FePO4 during the delithiation process. The structural changes cause the
heterogeneous strain of LiFePO4 by adjusting the volume [9]. In the experiment, the lower
cycle performance of NCM811 is caused by significant cracks and irreversible structural
degradation [10]. The volume change, which is caused by delithiation and lithiation in
the ceramic oxide electrode (usually cathode) systems, is typically in the range of 0 to
10% [11,12]. However, due to the brittleness of the cathode material, even small volume
changes can have a great effect on the cycling performance of the battery electrodes [13,14].
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Dokko, K. et al. studied the morphological changes of LiNiO2 particles in the electrochemi-
cal cycle by an in situ observation technology. It was found that the structural instability
was due to the crystal stress caused by charge and discharge process [15]. Haifeng Wang
et al. used transmission electron microscopy (TEM) to analyze the micro-structure damage
of LiCoO2 electrodes during electrochemical cycling, including lattice strain, extended
defects, and micro-fracture [16]. Miller, D. J. et al. found that the physical separation and
isolation of Li(Ni0.8Co0.15Al0.05)O2 particles may lead to the performance degradation of
lithium-ion batteries [17]. The LiMn2O4 cathode has several advantages over other cathode
materials, including its low cost, non-toxicity, high working voltage, and excellent safety
performance [18,19]. In the LiMn2O4 battery electrode, the tetragonal phase structure has
better stability than the cubic one [20]. The cubic phase structure of LiMn2O4 electrodes is
changeable during the electrochemical cycles, and even obvious volume expansion will
occur [21]. Those factors could result in the low cyclic performance of LiMn2O4 electrodes,
which is a constraint on the extensive application of the LiMn2O4 cathode system [22,23].
Thus, the cycle performance degradation-inducing factors of LiMn2O4 electrodes has at-
tracted widespread attention [24,25]. Hao et al. noted the micro-fracture in the LMO
particle cycle in the experiment and believed that the capacity decay was related to me-
chanical failure [26]. Therefore, it is necessary to develop new theoretical and experimental
platforms to explore the mechanical degradation of the LiMn2O4 composite electrode.

The In situ experimental platform can better explore the evolution of the mechanical
properties of battery electrodes. To better explore the mechanical behavior of electrode ma-
terials during charge and discharge processes, various in situ experimental platforms have
been developed such as nanoindentation, atomic force microscopy (AFM), multiple-beam
optical stress sensing (MOSS), and so on [27–29]. The combination of various in situ experi-
mental platforms and microscopic characterizations can obtain the mechanical properties
and microscopic morphology of the electrode in multiple directions and analyze the degra-
dation of the electrode’s active layer [30,31]. Amani et al. obtained the elastic modulus and
hardness data of the LiMn2O4 electrode in the electrochemical cycle by a selective statistical
nanoindentation experiment. The mechanical degradation of the LiMn2O4 electrodes can
greatly affect the cycling performance of the batteries [27]. Yang et al. applied bimodal
atomic force microscopy to investigate the surface morphology of LiMn2O4 electrodes and
the variation in elastic modulus. Additionally, the deterioration of mechanical proper-
ties and the relationship between surface morphology and the elastic modulus variation
were analyzed [28]. Jay Sheth et al. explored the stress evolution throughout the charge–
discharge cycle of LMO electrodes during the real-time measurements using the MOSS
experimental platform and the Stoney equation [29]. Previous studies have found that the
capacity decay of the LiMn2O4 electrode is closely related to mechanical failure. Most of the
empirical literature focused on the mechanical evolution of the LiMn2O4 films. In this work,
the commercially used electrode with a porous structure was used as the experimental
electrode. During the electrochemical cycling, the mechanical properties of the electrode
material change due to structural changes during the delithiation/lithiation process. The
mechanical degradation of the LiMn2O4 composite electrode has been explored.

In this work, the chemo-mechanical response of the LiMn2O4 composite electrode was
explored. In the experiment, the macroscopic curvature change of the double-layer beam
electrode was measured by the CCD optical in situ test system. At the same time, according
to the volume deformation of the LiMn2O4 electrode in the process of delithiation/lithiation,
a mechanical model was constructed to explore the development of the mechanical degrada-
tion of the LiMn2O4 composite electrode during the electrochemical cycle. The mechanical
degradation of the LiMn2O4 composite electrode in the electrochemical cycle is closely
related to changes in the elastic modulus, strain, and stress. The study mainly explores
the mechanical behavior of LiMn2O4 composite electrodes during electrochemical cycling
and obtains a basic mechanical parameter. Through chemo-mechanical testing and me-
chanical parameter analysis, it is revealed that the mechanical degradation of the LiMn2O4
composite electrode will cause the deterioration of the electrochemical performance.
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2. Experiment and Method
2.1. Electrode Preparation

LiMn2O4 active particles (size:1.9~9.9 µm, MTI), conductive carbon black (Super P,
MTI), and polyvinylidene fluoride (PVDF, MTI) were mixed at a mass ratio of 90:5:5. Here,
PVDF was used as the binder and helped enhance the physical connection between the
component, while carbon black was used to improve the conductivity. Firstly, LiMn2O4
active particles and a conductive agent powder were mixed and stirred in a horizontal
planetary ball mill (MSK-SFM-13S, MTI). PVDF was completely dissolved in N-methyl-
2-pyrrolidone (NMP, 99.9%, MTI) solvent and stirred by water bath heating. Then, the
PVDF/NMP solution was added to the LiMn2O4 active particles/conductive agent mixture
for wet mixing and then placed in the planetary ball mill for stirring to obtain a uniformly
dispersed electrode slurry. Then, the electrode slurry was coated using the auto thick film
coater (MSK-AFA-II-VC, MTI). The coating rate is 60 cm/min, and the thickness of the
current collector aluminum foil is 16 µm. After the coating was completed, the electrode
was dried in a vacuum drying at 90 ◦C for 12 h. The thickness of the active layer of the
LiMn2O4 composite electrode was about 64 µm. The mass loading and porosity of the
experimental electrode are 14.18 mg/cm2 and 29.7%, respectively. Figure 1 shows the
microscopic morphology of the surface of the original LiMn2O4 oxide composite electrode.
It can be seen from Figure 1a that the electrode surface is in a very dense active particle, and
there is no obvious crack. Figure 1b is the local enlarged graph of Figure 1a, and it can be
seen that there are dense gaps and holes between the active particles. This porous structure
improves the utilization of the active material area. It allows the double conduction of Li+

and electrons which also alleviates the structural strain and volume change of the active
layer [32].
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Figure 1. Surface microstructure of a pristine LiMn2O4 composite electrode (a) and (b) at differ-
ent magnifications.

2.2. Chemo-Mechanical Measurement System

Figure 2 shows the schematic diagram of the chemical–mechanical measurement
system in this work. The chemical–mechanical test system is mainly composed of artificial
cells, an image acquisition system, and a data analysis system. Among them, Computer1 is
responsible for collecting the experimental electrode bending deformation pictures taken
by the CCD camera in real-time and linking the data processing system to collect the
curvature data in different pictures. Computer2 is mainly used for electrochemical testing
of artificial cells.

The artificial cell mainly consists of a lower positioning seat, a battery compartment,
a sealing gasket, a sealing cover, a top positioning cover, and attached bolts, as shown in
Figure 1. In this work, the LiMn2O4 composite electrode was designed as the working
electrode and the commercial graphite electrode (theoretical capacity of 330 mAh/g) was
treated as the anode in the artificial cell. The sealing cover is a highly transparent quartz
material which allows the CCD video camera (JAI, CM200GE) to monitor the deformation
in real-time. A microporous polypropylene film (thickness of 21 µm, Celgard) is used to
separate the graphite electrodes from the LiMn2O4 composite electrode. Then, enough elec-
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trolyte was added into the cell to fully immerse the electrode. The battery was assembled
and tested in the electrochemical glove box (O2 < 0.01 ppm, H2O < 0.01 ppm, MIKROUNA)
filled with argon.
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Figure 2. Schematics of the chemo-mechanical measurement system and the artificial cell (cross-section).

2.3. The Electrochemical Test

After the assembly of the cell, it rested for 12 h which makes sure that the LiMn2O4
composite electrode is fully wetted by the electrolyte. Then, the artificial cell was cycled by
the battery test system (NEWARE) at room temperature. The theoretical specific capacity
of the LiMn2O4 electrode was 148 mAh/g and the charging/discharging rate was set as
C/10. Accordingly, the current density was calculated to be 188.9 µA/cm2. The voltage
was set in the range of 2 to 4.3 V.

The artificial cell underwent a 9 h cycle followed by a 3 min open-circuit potential
relaxation. During the charge–discharge cycle, the experimental data acquisition system
was applied to capture the process of bending deformation to LiMn2O4 composite electrode
in real-time. The data acquisition system automatically captures the images of experimental
electrode deformation at a rate of every two minutes.

2.4. Mechanical Mode of LiMn2O4 Composite Electrode

A mathematical model was established to explore the bending deformation mechanism
of the LiMn2O4 composite electrode. As shown in Figure 3a, the active layer is attached to
the current collector to form a cantilever beam model. Herein, the thicknesses of the active
layer and current collector are indicated by the letters h1 and hC, respectively. During the
delithiation/lithiation process, the extraction/insertion of the lithium ions in the LiMn2O4
particles could cause contraction/expansion of the active layer.
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The electrode bends to generate a larger (smaller) curvature as a result of the current
collector’s constraint, as depicted in Figure 3b. The thickness was aligned along the z-
axis, with the interface located in the x–y plane. Here, the in-plane normal strain can
be depicted as [33]: ε = ε0 + κz, where ε0 is considered as contraction strain at z = 0,
which indicates the contraction of the electrode, and κ is the curvature. The active layer
of the LiMn2O4 electrode and the current collector are assumed to be tightly combined
during the electrochemical cycling. Therefore, they have the same curvature during the
deformation process.

Typically, composite electrodes have a complex structure consisting of active particles,
binders, conductive agents, and internal pores. In this work, the LiMn2O4 composite
electrodes are assumed to have macroscopic elasticity and uniformity. Furthermore, the
LiMn2O4 electrode was cycled at a considerably lower charge rate (equal to 0.1 C-rate);
thus, the lithium ions concentration was assumed to be a constant. The following is a
representation of the constitutive equation for the active layer and current collector [33]:{

σ1 = E1(ε0 + κz)− 1
3 E1Ωc

σc = Ec(ε0 + κz)
(1)

Here, E1 represents the elastic modulus of the LiMn2O4 electrode layer, and Ω
represents the partial molar volume and was defined as a function of concentration.
Concentration-related items −1/3 E1Ωc represents the diffusion-induced stress of the
active layer. The stress and toque balances require:∫ h1

−hc
σxdz = 0

∫ h1

−hc
σxzdz = 0 (2)

By substituting Equation (1) into Equation (2), the elastic modulus and contraction
strain are obtained as follows.

E1 = 2κh1γh
4Ec

−(4κh1γh+6κh1γh
2+4κh1γh

3−2Ωcγh−2Ωcγh
2)+

√
(4κh1γh+6κh1γh

2+4κh1γh
3−2Ωcγh−2Ωcγh

2)
2−4κ2h1γh

4h1 (3)

ε0 =
κ
(

1
2 E1h2

1 −
1
2 Ech2

c

)
− 1

3 E1Ωch1

(Echc + E1h1)
(4)

In Equation (3), γh is used to represent the thickness ratio and γh = hc/h1. By substitut-
ing Equation (3) and Equation (4) into Equation (1) and Equation (2), the analytical formula
is obtained for the relationship between stress, strain, and curvature. The curvature defor-
mation of the LiMn2O4 composite electrode during electrochemical cycling was detected
using a CCD camera. According to the above equation, the elastic modulus, strain, and
stress of the LiMn2O4 composite electrode were measured in real-time during cycling.

3. Results and Discussion

The voltage and curvature change with the insertion and extraction of the lithium ions,
as shown in Figure 4. It shows the voltage change diagram of the six cycles of LiMn2O4.
It can be found that the voltage platform is low and unstable in the first cycle, and the
voltage platform is stable at 2–4.3 V in the second cycle. When lithium ions are continuously
removed from the LiMn2O4 composite electrode, the active layer of the composite electrode
will shrink, meanwhile, the current collector restricts its shrinkage. With the extraction of
lithium ions, the curvature of the electrode gradually decreases, and the insertion process is
reversed. As shown in Figure 4b, it can be seen that the curvature change of the LiMn2O4
composite electrode in the first cycle is quite different from other cycles. This is mainly due
to the formation of a solid electrolyte interface phase (SEI) during the initial cycle, which
leads to the large consumption of lithium ions.
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As shown in Figure 4c, the LiMn2O4 composite electrode is in the initial state of the
third cycle. Figure 4d shows the electrode began to shrink and deform with the extraction of
lithium ions. Figure 4e shows that the experimental electrode has a more obvious shrinkage
deformation in the SOC60%. As shown in Figure 4f, at the end of the lithium removal stage,
the shrinkage deformation of the experimental electrode stops. It can be found that the
extraction of lithium ions from the active layer will cause an obvious bending deformation
of the LiMn2O4 composite electrode. During the insertion process, the volume deformation
of the LiMn2O4 composite electrode increases, which is opposite to the delithiation process.

During the delithiation process, the lithium ions are continuously extracted from the
active layer. The mismatch could cause the bending deformation of the bilayer electrode.
With more lithium ions removed from the active material, the curvature decreases, which
results in a round shape of the entire electrode. The deformation with the extraction of
lithium ions is opposite to the insertion process. Figure 5a shows the charging curvature
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change of the LiMn2O4 composite electrode for six cycles in the experiment. During the
cycling process, the curvature changes gradually stabilized from the second cycle. There is
a significant difference between the curvature evolution of the first cycle and other cycles.
The formation of unstable SEI on LiMn2O4 particles cannot effectively protect the electrode
surface from side reactions with proton electrolytes, which affects the lithium intercala-
tion/deintercalation of the LiMn2O4 composite electrode [34]. Due to the inconsistency in
the electrochemical performance of the first cycle LiMn2O4 battery, there is a considerable
difference in the curvature change to other cycles. Through Figure 5a, we can conclude that
the curvature change of the experimental electrode tends to be stable during the third cycle.
Therefore, the curvature data in the third cycle are used to analyze the chemo-mechanical
response of the LiMn2O4 composite electrode. Subsequently, the mechanical properties of
the third cycle charging and discharging process were characterized according to Equation
(1), Equation (3), and Equation (4). As shown in Figure 5b, the curvature coincidence degree
of the LiMn2O4 electrode is higher in the third cycle. Experiment (2) is a control experiment,
which also proves the stable and reversible bending deformation of the LiMn2O4 electrode
in the third cycle.
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As shown in Figure 5c, the curvature of the LiMn2O4 electrode in the six experimental
cycles gradually decreases. The curvature was 59.09 m−1 after the first cycle of lithium
insertion and decreases to 49.88 m−1 in the sixth cycle, while the charging capacity of
the LiMn2O4 battery also decreases from 0.76 mAh in the first cycle to 0.47 mAh in the
sixth cycle. As shown in Figure 5d, the voltage and curvature change of the LiMn2O4
composite electrode in the third cycle are characterized. With the extraction of lithium
ions, the curvature begins to decrease from 50.65 m−1 to 0.41 m−1. During the insertion
process, the curvature of the experimental electrode begins to increase gradually and stops
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growing at 12.8 h, and the curvature was 48.87 m−1. It can be seen that at the end of the
third cycle, the curvature is less than at the beginning of the cycle. It indicates that the
composite electrode has slight mechanical degradation during the electrochemical cycle.

Depending on Equation (3), the correlation between the change in curvature, thickness
ratio, and elastic modulus can be obtained. Among them, Ω represents the partial molar
volume and expresses the volume change when the active layer is completely lithiated.
For LiMn2O4, the volumetric strain (of unit cell volume) is about 7.5% [3]. The current
collector is an aluminum foil with the elastic modulus is 72 GPa. In this work, the elastic
modulus is defined as the average of the entire LiMn2O4 composite electrode, including
the effects of porosity, structural change, and fracture. As shown in Figure 6a, the elastic
modulus of the LiMn2O4 composite electrode declines sharply from 59.61 MPa to 12.01 MPa
during the third cycle with the extraction of lithium ions. During the insertion process,
the average elastic modulus of the active layer of the LiMn2O4 composite electrode rises
from 12.01 MPa to 56.75 MPa. The results reveal that the elastic modulus of the LiMn2O4
composite electrode suddenly decreased after SOC50%. The dissolution of manganese and
the onset of J-T distortion at higher potentials due to dynamic non-equilibrium conditions
during the cycling process will cause the capacity attenuation of LiMn2O4 in the 4 V
region [35]. After SOC50%, it is just the interval of the voltage in the 4 V region, and the
growth rate of the voltage in this interval also begins to increase. It can be concluded that
the extraction of lithium ions in this interval is unstable, resulting in a sudden decrease in
elastic modulus, which is also true during the insertion process.
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Figure 6b shows the elastic modulus and charging capacity change of the LiMn2O4
composite electrode at the end of each cycle. The elastic modulus at the end of the first cycle
is 77.66 MPa and reduces to 52.43 MPa at the end of the sixth cycle. The charging capacity of
the LiMn2O4 battery also decreases from 0.76 mAh to 0.47 mAh during the electrochemical
cycle. The data indicated that the Mn ions were the charge–transfer centers [20]. In the
delithiation/lithiation process, the LiMn2O4 composite electrode is continuously subjected
to the dissolution of Mn3+ as well as the loading and unloading of stress, which results
in a continuous decline in the average elastic modulus of the active layer of LiMn2O4
composite electrode [36]. Researchers have found that irreversible structural changes of the
electrode in the first cycle are common in lithium-ion batteries. Lithium-rich manganese
layered oxide XLi2MnO3.(1−X)LiMO2 (M = Ni, Co) loses oxygen during the first delithiation
process, resulting in a stable structural configuration at the end of the first decomposition,
supporting reversible delithiation/lithiation during subsequent cycles [37]. It can be found
that in the electrochemical experiment, compared with other adjacent cycles, the elastic
modulus and charging capacity decreased significantly from the first cycle to the second
cycle. It indicates that the LiMn2O4 composite electrode forms a relatively stable structure
from the second cycle.
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Substituting the calculation results of Equation (3) and curvature data into Equation (4),
the contraction strain can be obtained. Similarly, the stress can be obtained by substituting
the results of Equation (3), Equation (4), and curvature data into Equation (1). During
the electrochemical cycle, the reversible evolution of the ‘electrode strain’ of LiMn2O4
measured by the bending beam method (BBM) [38]. Figure 7a shows that the strain of the
LiMn2O4 composite electrode in the third experimental cycle has a certain reversibility
during the cycle. During the delithiation process, the active layer exhibits shrinkage and
deformation due to the migration of lithium ions, resulting in a gradual decrease in the
strain. The current collector prevents the volume expansion of the active material during
the lithiation process, resulting in a linear increase in the absolute value of the strain under
the insertion process. With the extraction of lithium ions, the strain reduces from 0.43 to
0. During the insertion process, the strain of the LiMn2O4 composite electrode showed an
increasing trend during further lithiation, and the strain increases linearly to 0.39.
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LiMn2O4 composite electrode at 0.1 C.

As shown in Figure 7b, with the extraction of lithium ions, the stress reduces to
0.001 MPa. During the insertion process, with the continuous process of lithium intercala-
tion, the stress increases linearly at 12.8 h to 0.40 MPa. It has different orders of magnitude
from the stress evolution results of the LiMn2O4 electrode reported by MOSS [29]. The
experimental electrode in the MOSS system is a thin film electrode, and the magnitude of
stress is small in this paper is a composite electrode with a microscopic porous structure.
The lattice parameters of lithium manganate will change greatly in a low voltage range,
which makes it difficult to maintain the integrity of the crystal structure during the cycle. It
has a better performance in a higher voltage range [39]. It shows that the strain and stress
unloading rates are relatively fast in the LiMn2O4 composite electrode from 0 to 0.83 h in
the lower voltage range. From 0.83 h to 6.63 h, the strain and stress unloading rates are
relatively slow at higher voltage platforms.

During the electrochemical cycle, the electrode undergoes obvious bending defor-
mation. The surface morphology of the electrode in the third electrochemical cycle was
examined by scanning electron microscopy (SEM) at different magnifications. It can be seen
from Figure 8 that the active layer of the LiMn2O4 composite electrode did not produce
obvious cracks significantly during the third cycle. It shows that the active layer of the
LiMn2O4 composite electrode has good integrity during the cycle. As shown in Figure 8c,
the characterization results at a large magnification show that the active particles of the
LiMn2O4 composite electrode present a rich porous structure. It shows that more pores
grow on the surface of the active layer at the end of the delithiation process. As shown in
Figure 8d, due to the occurrence of expansion strain, the pores between the active particles
are reduced during the lithiation process. It can be concluded that more pores appear
during the delithiation process due to structural strain and lithium ions extraction. During
the insertion process, the pores decrease, and the active layer maintains marvelous integrity
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in the electrochemical cycle. It is shown that the structure of the LiMn2O4 composite
electrode has a relatively stable reversible change during the electrochemical cycle.
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4. Conclusions

In this work, a chemo-mechanical measurement system was developed to test the
elastic modulus, strain, and stress evolution of commercial cathode materials during
the electrochemical cycles. The curvature of the LiMn2O4 composite electrode decreases
linearly during the delithiation process and reverses during the lithiation process. Based on
the curvature change of the experimental electrode, the model of the mechanical properties
of the composite electrode was established. In summary, the change of the elastic modulus
during the third cycle and the evolution of the elastic modulus at the end of each cycle
were obtained. During the electrochemical cycles, the elastic modulus decreases from
77.66 MPa at the onset of the first cycle to 52.43 MPa at the end of the sixth cycle. In the
third cycling, it decreases from 59.61 MPa to 12.01 MPa with the extraction of lithium
ions and increases from 12.01 MPa to 56.75 MPa during the insertion process. The strain
decreases from 0.43 to 0, and the stress reduces to 0.001 MPa. It can be found that the
strain and stress of the LiMn2O4 composite electrode decrease with the decrease in lithium-
ion concentration. Within the insertion process, the strain increases from 0 to 0.39, and
stress increases linearly to 0.40 MPa. It shows that the strain and stress generated by the
electrochemical reaction increase with further lithiation. In addition, it can be found that
in the delithiation process, the unloading rate of strain and stress changes faster at lower
potentials. The chemo-mechanical coupling test system in this paper can obtain basic
mechanical properties in a single measurement. It can analyze the mechanical behavior of
the electrode at different voltage platforms. These mechanical performance data help to
develop battery models. In addition, the chemo-mechanical experimental method can also
describe the components’ influence on the mechanical properties of the composite electrode,
which provides a direction for developing the electrode with stable cycle performance.
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