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Abstract: Metal-oxygen batteries (especially Li-O2 battery) with ultrahigh theoretical energy density
are of great promise for long-range vehicle electrification. However, the limited enduring stability and
low-rate property further restricted the large-scale commercial application of metal-oxygen batteries.
We firstly report the fabrication of a TiOX@Ti3C2TX with multilayer structure and its utilization as
cathode for Li-O2 batteries. The TiOX protective layer was fabricated in situ to directly optimize
surface properties of Ti3C2TX, as well as to strengthen surface active functional groups. The initial
discharge capacity of as-prepared TiOX@Ti3C2TX cathode reaches 7100 mAh g−1 at 2500 mA g−1,
as well as delivers impressive cycling stability (>100 cycles) at 2500 mA g−1. Experimental analysis
reveals that the in situ TiOX protective layer enhanced active functional-groups and the improved
complete decomposition of discharge products Li2O2 are three critical factors for promoting the
electrochemical performance of LOBs. This work exhibits a new insight into the design of MXene
electrocatalysts for metal-oxygen batteries.

Keywords: Ti3C2TX; TiOX protective layer; active functional-groups; bifunctional electrocatalysts;
Li-O2 battery

1. Introduction

Under the threat of serious environmental pollution and energy crisis, energy storage
and conversion technologies have attracted extensive worldwide attention [1–3]. Due to the
ultra-high theoretical energy density, lithium-oxygen batteries (LOBs) have been considered
as a competitive candidate for next generation electrochemical energy storage devices [4,5].
Major obstacles to the practical application of LOBs are the limited enduring stability, large
polarization, and low-rate capability, which could be ascribed to the sluggish dynamics of
oxygen reduction reaction and oxygen evolution reactions (ORR and OER) [6,7]. To this
end, great efforts have been devoted to solve the above-mentioned challenges in recent
years, mainly including the synthesis of high-efficiency dual-functional catalysts [8,9], the
exploration of stable electrolytes [10,11], Li-anode modification engineering [12,13], and
the fabrication of selective membrane [14,15]. It is noted that efficient bifunctional catalyst
with high stability is of paramount significance to promote the sluggish kinetics of ORR
and OER both occurring on the cathode [16,17].

Recently, carbonaceous materials, noble metals, metal oxides, metal sulfides, and
compound matrices have already been intensively investigated as promising catalysts for
LOBs [18,19]. Nevertheless, noble metals deliver high capacity and low overpotential,
but are hindered by high cost and low reserves [20,21]. Carbonaceous materials are char-
acterized by high conductivity, large surface area, and easy chemical functionalization,
which are widely applied practically in electrochemical energy storage [22,23]. Carbon
tends to be easily oxidized at high potentials and oxygen-rich organic environment, result-
ing in poor cycling lifespan and high voltage polarization [24]. Besides, the indistinctive
electrochemical property and poor adjustability of metal oxides needs to be addressed
urgently [25,26].
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Impressively, featured by superior physical/chemical stability, tunable structure/properties,
and excellent conductivity (~9880 S cm−1), Ti3C2Tx MXene (where Tx represents various
surface terminations) are already widely applied in nitrogen reduction, hydrogen evolution,
carbon dioxide reduction, and batteries [27–29]. With unique flexible layered structure and
high tensile strength, Ti3C2Tx can act as a conductive matrix, which could significantly
reduce ion diffusion barrier and tolerate a large volume change derived from the deposition
of Li2O2 in LOBs [30,31]. The abundant active functional groups (-O, -F, -OH, etc.) on the
surface of Ti3C2Tx can be served as fine catalytic active sites to promote the adsorption
and desorption ability of discharge products, thus optimizing the kinetics [32]. Song et al.
introduced lithium ions into the layered structure of Ti3C2Tx by electrostatic interaction
and successfully optimized the O termination groups [33]. Furthermore, the synergistic
effect between uniform O-terminal surface and abundant intercalated Li+ could provide
remarkable stable catalytic sites (=O, Li+) and enhanced structural stability for Ti3C2Tx,
leading to high electrochemical performance. Il-Kwon Oh and co-worker also synthesized
Ti3C2Tx MXene with carboxylic acid graft, which showed superior electrocatalytic proper-
ties for ORR and OER due to the formation of metalloporphyrin structure and unpaired
electrons [34]. Interestingly, Long et al. prepared in situ vacancy-rich TiO2 nanoparticles
on Ti3C2Tx nanosheets by applied thermodynamic metastable Ti atoms as nucleation sites,
achieving good rate capability and cycle stability in LOBs [35]. However, Ti3C2Tx MXene is
extremely unstable in oxygen-rich environments (especially O2−, O− in LOBs) and grad-
ually transforms into an undesired passivation layer (TiO2) on the surface. As a result,
Ti3C2Tx MXene always suffer due to weakened electrocatalytic activity [36,37]. Therefore,
how to design active Ti3C2Tx with high-durability remains a great challenge.

Herein, we reported a facile in situ surface engineering to form a TiOX protective layer
on Ti3C2TX by one-step hydrothermal reaction for the first time. The TiOX protective layer
was adopted to directly optimize surface properties of Ti3C2TX, as well as to strengthen
surface active functional groups, thus improving the electrochemical activity and stability
of Ti3C2TX. The LOBs based on TiOX-Ti3C2TX cathode exhibit superior specific capability
(7169 mAh g−1) and endurable stability at ultra-high rate (2500 mA g−1). Further analysis
indicates that TiOX@Ti3C2TX could promote fast charge transfer kinetics and the decompo-
sition of insoluble discharge products. This work provides a new and easy way to improve
the stability and electrochemical activity of MXene catalysts for LOBs.

2. Materials and Methods
2.1. Synthesis of TiOX-Ti3C2TX

One gram of lithium fluoride was dissolved in 20 mL hydrogen chloride (9 M) solution
with magnetic stirring for 30 min. Then, 1 g Ti3AlC2 powder was slowly dropped into the
above solution under vigorous stirring for 30 min. The mixture was sealed in a 50 mL PTFE-
lined stainless-steel autoclave and heated at 90 ◦C for 24 h. The resultant was centrifuged
with deionized water and ethanol at 10,000 rpm for 5–6 times until the pH value was
adjusted to ~6. Finally, the collected precipitate was dried at 60 ◦C and was calcined at
300 ◦C for 2.5 h.

2.2. Electrochemical Measurement

The as-prepared sample was evenly sprayed onto the carbon paper (φ = 13 mm)
with mass loading of 0.6 ± 0.1 mg cm−2 to mark it as the cathode. Furthermore, 1 M
lithium bis (trifluoromethane sulfonamide, LiTFSI) was dissolved in dimethyl sulfoxide,
the resulting solution acted as an electrolyte. The lithium metal foil with diameter of 16 mm
was chosen as the anode. The LOBs were prepared and assembled in a glove box filled with
Ar. The assembled LOBs were measured by LAND CT 3001A to test the electrochemical
performance. The electrochemical impedance spectroscopy was carried out by CHI 1600E.
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3. Results

The preparation of TiOX-Ti3C2TX is illustrated in Figure 1a. Briefly, TiOX-Ti3C2TX
could be successfully obtained by one-step hydrothermal treatment acting as a simple
acid etching. SEM analysis was performed to characterize the morphologic changes of the
sample in Figures 1b and S1. After acid etching activation, MAX was successfully stripped
into a multilayer sheet structure to provide greater contact area and expose more active
sites. The XRD patterns of as-prepared samples are shown in Figure 1c. The peaks of the
MAX are identical to the Ti3AlC2, which is consistent with a previous report. After etching,
the peak located at 39◦ attributed to the typical Ti3AlC2 (104) plane disappears, indicating
that the Al layer has been selectively removed. The FTIR spectra of MXene (TiOX-Ti3C2TX)
and MAX (Ti3AlC2) are shown in Figure 1d. The sharp peaks at 669, 1630, and 3480
cm−1 are consistent with the functional groups’ stretching vibrations (C-O, -COOH, -OH).
Impressively, the intensity of these functional groups is significantly enhanced, and a new
peak representing the Ti-O bond (559 cm−1) appears after the hydrothermal modification,
indicating that a new layer of titanium oxide and a variety of active functional groups are
fabricated on the surface of Ti3C2TX.
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Figure 1. (a) Schematic description of the preparation of TiOX-Ti3C2TX; (b) SEM image of TiOX-
Ti3C2TX; XRD patterns (c) and FTIR curve (d) of as-prepared samples.

The TEM image (Figure 2a,b) shows TiOX-Ti3C2TX with a uniform multilayer sheet
structure. The corresponding SAED pattern (Figure 2b inset) obviously exhibits the co-
existence of (002), (110) planes of Ti3C2TX. The HRTEM image (Figure 2c,d) clearly demon-
strates interplanar spacing of 0.253 nm and 0.234nm, related to (110) plane of Ti3C2TX and
(004) plane of TiO2, respectively [38,39]. Interestingly, there are also considerable amor-
phous structures near the TiO2 crystalline phase. This phenomenon could be ascribed to the
fact that the TiO2 layer is of hybrid amorphous/crystalline structure. The corresponding
EDS mappings (Figure 2e) show that Ti, O, and C elements are evenly distributed across
the surface of TiOX-Ti3C2TX. Besides, as shown in Figure S2 and Table S1, there is obviously
no Al element present on the surface of TiOX-Ti3C2TX, indicating that the Al has been
selectively removed.
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Figure 2. (a) TEM image, (b) SAED pattern, (c,d) HR-TEM image, and (e) EDS mapping images of
TiOX-Ti3C2TX.

The full XPS spectra of TiOX-Ti3C2TX are shown in Figure 3a, there are obvious Ti,
O, F, and C peaks in the TiOX-Ti3C2TX curve, which indicates that after hydrothermal
treatment, the unwanted Al-based impurities on the surface of MXene are completely
removed and oxide passivation layers are successfully formed in situ. The Ti 2p spectra of
TiOX-Ti3C2TX (Figure 3b) could be well fitted into seven peaks. The peaks’ centra at 455.3
and 462.6 eV are indexed to Ti-C and C-Ti-Fx bonding. The typical peak at 459.3 eV could
be indexed to Ti-O, indicating the presence of a TiO2 protective layer. Moreover, The C
1s spectra of TiOX-Ti3C2TX (Figure 3c) show three peaks at 286.10, 284.80, and 282.70 eV,
which correspond to C-O, C-C, and C-Ti, respectively. Besides, the characteristic peaks at
289.49 and 282.32 eV can be ascribed to COO/C-F and C-Ti-Tx bond in TiOX-Ti3C2TX [40].
The O 1s spectra in Figure 3d can be well deconvoluted into two characteristic peaks.
The obvious peaks located at 530.10 and 530.80 eV are related to the existence of lattice
oxygen and O vacancy. Notably, the peak located at 532.28 eV could be ascribed to O-H.
Besides, the intensity of the O-H peak is significantly larger than those of lattice oxygen
peak and O vacancy peak, suggesting an enhanced functional-group coupling on the
surface of Ti3C2, which is consistent with the previous FTIR data analysis. In general,
after hydrothermal treatment, the surface of Ti3C2 formed a TiOX protective layer with
rich O vacancy and functional-groups with high activity, leading to higher electrochemical
performance and stability.
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The electrocatalytic activity of TiOX-Ti3C2TX was examined as cathode in 2032-coin
type LOBs. As shown in Figure 4a, the operating principle of Li-O2 battery could be
summarized as follows: O2 (coming from the positive pole) can react with Li+ (coming
from the negative pole) to generate discharge product Li2O2 on the surface of the cathode
in discharge, which could be fully decomposed after charging. As shown in Figure S3, the
cyclic voltammetry (CV) curves of TiOX-Ti3C2TX-based cathode delivers a relatively high
ORR onset potential (2.83 V) and a low OER onset potential (3.41 V), indicating a promising
bifunctional oxygen catalytic performance. The initial full discharge/charge profiles of
the LOBs assembled with TiOX-Ti3C2TX at 2500 mA g−1 can be observed in Figure 4b.
TiOX-Ti3C2TX delivers a significantly remarkable discharge capacity of 7169 mAh g−1. Es-
pecially, TiOX-Ti3C2TX shows a low charge voltage platform, which is less than 4V during
the limited specific capacity of 1000 mAh g−1, which is favorable for improving the cycle
efficiency, as well as extenuating the decomposition of the organic electrolyte. To explore
the potential of TiOX-Ti3C2TX-based LOBs towards practical application, the full charge
and discharge specific capacity of catalyst-based LOBs, normalized by the weight of actual
electrodes (carbon paper + active materials), are presented in Figure S4. The LOBs based
on TiOX-Ti3C2TX in this work demonstrate a competitive specific capacity (639 mAh g−1).
Figure 4c shows the rate performance of TiOX-Ti3C2TX-based LOBs under different cur-
rent densities. TiOX-Ti3C2TX demonstrates a negligible difference in the discharge/charge
curves when the applied current densities from 100 up to 2500 mA g−1 and then back to
100 mA g−1. Notably, the LOB with TiOX-Ti3C2TX shows relatively lower discharge–charge
voltage gap even after high-rate charging and discharging. In detail, TiOX-Ti3C2TX main-
tained a stable discharge–charge voltage gap from ~1.16 V at 100 mA g−1 to ~1.64 V at
2500 mA g−1. Furthermore, TiOX-Ti3C2TX shows little difference in the voltage curve
after 50 cycling at 2500 mA g−1, and delivering a stable voltage gap of ~1.72 V. Impres-
sively, TiOX-Ti3C2TX even sustained for almost 400 h and delivers low over-potential
(~1.72 V) upon returning to low current density (100 mA g−1). Circulation durability of
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the as-prepared LOBs was measured at 2500 mA g−1 with a cut-off limited capacity of
1000 mAh g−1. In Figure 4d, the TiOX-Ti3C2TX-based cathode can continuously sustain
for 100 h (over 100 cycles) without distinct attenuation at ultra-high rate of 2500 mA g−1,
which is better than that of the Ti3C2TX-based cathode. These indicate that the loading of
TiOX protective layer and active functional-groups could significantly improve the electro-
chemical activity and stability of Ti3C2 MXene. The comparisons between recent reports
and our work are listed in Table S2, regarding some key parameters such as first discharge
capacity, cycling current density, and cycle stability. By comparison, the performance of the
TiOX-Ti3C2TX-based cathode in this work is pretty good in LOBs.
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based LOBs at 2500 mA g−1; (c) rate performances of TiOX-Ti3C2TX-based LOBs; (d) cycling stability
of as-prepared catalyst-based LOBs at 2500 mA g−1.

To further analyze the catalytic mechanism of TiOX-Ti3C2TX, battery impedance af-
ter assembly, first discharge, and charge process have been tested by electrochemical
impedance spectra (EIS) as shown in Figure 5. The as-prepared TiOX-Ti3C2TX cathode
delivers relevant ohmic resistance (Ro, 5.74 Ω) either after assembly or after the first cycle,
but distinctly different charge transfer resistance (Rct). Typically, TiOX-Ti3C2TX-based
LOBs showed higher Rct of 285.10 Ω after assembly than that of other stages. In detail, the
TiOX-Ti3C2TX cathode delivered Rct of 186.59 Ω after the first discharge and Rct of 91.40 Ω
after the first discharge. The equivalent circuit shows that a new interface is formed on the
surface of the cathode after discharge, which can be attributed to the formation of insoluble
discharge products. By comparison, TiOX-Ti3C2TX exhibited lower charge Rct values than
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that of discharge, indicating that the TiOX-Ti3C2TX could efficiently promote fast charge
transfer kinetics and the decomposition of insoluble discharge products. Besides, the high-
est Rct values after assembly elucidated that the first electrochemical cycle reaction can
effectively remove the impurities on the surface of TiOX-Ti3C2TX, which leads to reduced
interface impedance and promotes the transmission of electrons.
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Figure 5. EIS of TiOX-Ti3C2TX-based LOBs after the 1st discharge-charge and their corresponding
analog circuit diagram.

Although TiOX-Ti3C2TX exhibits excellent electrochemical performance in LOBs, its
stability still needs further optimization. Tailoring the surface functional groups could ef-
fectively improve the catalytic activity of Ti3C2TX, which could also optimize the electronic
properties. However, Ti3C2TX MXene is composed of mixed surface functional groups,
which causes great disparity with the theoretical study. Therefore, theoretical analysis on
mixed-functional groups of Ti3C2TX will be the next main research to clarify their effects in
altering the electrochemical properties of Ti3C2TX.

4. Conclusions

In conclusion, we creatively fabricated an in situ TiOX protective layer on the surface
of Ti3C2TX by a facile hydrothermal reaction. A TiOX protective layer was adopted to
directly optimize surface properties of Ti3C2TX. The LOBs based on TiOX-Ti3C2TX cathode
exhibit superior specific capability (7169 mAh g−1) and endurable stability at ultra-high
rate (2500 mA g−1). Such enhanced rate performances could be attributed to the three key
aspects: (1) TiOX behaves as in situ protective layer to optimize the structural stability of
Ti3C2TX, accompanied with enhancing the intensity of active functional-groups; (2) the
uniformly-loaded active functional-groups (-F, -OH) could effectively optimize the catalytic
performance of TiOX@Ti3C2TX; and (3) TiOX@Ti3C2TX could promote fast charge transfer
kinetics and the decomposition of insoluble discharge products. This work provides an
efficient way to improve the stability and electrochemical activity of MXene catalysts
for LOBs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/batteries9040205/s1, Figure S1: SEM image of TiOX-Ti3C2TX;
Figure S2: EDS mapping images of Al element for TiOX-Ti3C2TX; Figure S3: Cyclic voltammetry (CV)
curves of TiOX-Ti3C2TX; Figure S4: Initial full discharge/charge curves of TiOX-Ti3C2TX based LOBs
at 2500 mA g−1 (The specific capacities are normalized by the weight of actual whole electrodes);
Table S1: EDS elemental analysis of TiOX-Ti3C2TX; Table S2: Comparison of battery performance of
TiOX-Ti3C2TX based electrode with other reported electrodes [39,41–44].
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