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Abstract: Energy storage systems are key to propelling the current renewable energy revolution.
Accurate State-of-Charge estimation of the lithium-ion battery energy storage systems is a critical
task to ensure their reliable operations. Multiple advanced battery model-based SOC estimation
algorithms have been developed to pursue this objective. Nevertheless, these battery model-based
algorithms are sensitive to measurement noises since the measurement noises affect the accuracy
of battery model identification, thus leading to inaccurate battery SOC estimation consequently
due to modeling error. The Butterworth low-pass filter has proven effectiveness in measurement
noise filtering for accurate parameter identification, while the cutoff frequency design relies on prior
knowledge of lithium-ion batteries, making its capability limited to general cases. To overcome
this issue, this paper proposes an adaptive cutoff frequency design algorithm for the Butterworth
low-pass filter. Simulation results show that the low-pass filter functions properly in the presence of
multiple scales of measurement noises adopting the proposed work. Consequently, the parameters of
the battery model and the SOC of the battery are both identified and estimated accurately, respectively.
In detail, the parameters: R0, R1, C1, and the time constant τ are all identified accurately with low
relative identification errors of 0.028%, 11.12%, 6.21%, and 5.94%, respectively, in an extreme case.
Furthermore, the SOC of the battery can thus be estimated accurately, leaving a low of 0.081%,
0.97%, and 0.14% in the mean and maximum absolute SOC estimation error and the standard
deviation, respectively.

Keywords: adaptive cutoff frequency design; Butterworth low-pass filter; least square regression;
battery energy storage system; parameter identification

1. Introduction

Energy storage systems crucially contribute to the success of current energy revolutions
from fossil fuels to clean energies, which aims at reducing greenhouse emissions [1]. Energy
storage systems are developed in power grids to improve the reliability of utilizing renew-
able energies by mitigating their intermittency in energy generation. Also, energy storage
systems are capable of storing surplus energy generation and fulfilling excess energy de-
mand, thus optimizing operations in power grids. Energy storage systems are also adopted
in electric vehicles serving as an alternate energy supply from fossil fuels. Among energy
storage systems available on the market, lithium-ion battery storage systems are appealing
due to their modular capability for various power and energy needs; meanwhile, they are
known for swift power demand response, high energy density, and low degradation rate [2].
To safely and reliably employ lithium-ion battery energy storage systems in power grids and
electric vehicles is a critical task for energy storage management systems, which depends on
accurate real-time battery State-of-Charge (SOC) estimation.

Real-time battery SOC estimation algorithms are roughly categorized as (1) model-free
algorithms, (2) data-driven algorithms, and (3) model-based algorithms [3]. The model-
free SOC estimation algorithm, i.e., the Coulomb counting approach and the voltage-based
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approach, estimate the SOC of the battery using the direct measurements of the battery,
i.e., current and voltage [4]. The light computation demands allow both algorithms to be
applied in real-time estimation. However, their estimation accuracy relies on predetermined
variables such as accurate initial SOC value, battery capacity, or the SOC to open-circuit
voltage profile [5]. Data-driven algorithms, e.g., to name a few, fuzzy networks, neural
networks, and machine learning algorithms, are also gaining attention in real-time estimation.
These algorithms estimate the SOC of batteries using pre-trained models. The parameters
of the pre-trained models are learned from the battery current and voltage data. However,
a huge battery dataset is necessary to avoid biased parameter learning and the computation
effort of training is proportional to the model complexity [6].

Model-based SOC estimation algorithms are also appealing in battery SOC estimations.
The battery model, i.e., the battery electrochemical model and the battery electric circuit
model, are developed based on the battery dynamics, meaning that the battery models are
developed with physical meanings. SOC estimation algorithms using the electrochemical
model are accurate since the battery dynamics are described in partial differential equa-
tions [7]. However, detailed battery modeling is computationally demanding, making their
real-time estimation a concern. In comparison, model-based battery SOC estimation algo-
rithms using the electric circuit model are appealing in real-time battery SOC estimation [8].
The battery electric circuit model formulates battery dynamics by constructing an electric
circuit with multiple electric components. This linear model is known for its simplicity in
equation formulation. The light computation effort allows it to be implemented for real-time
battery SOC estimation thus ensuring reliable and safe lithium-ion battery energy storage
operation. Along with the ease of implementation, this battery model renders decent battery
SOC estimation accuracy, fulfilling most industrial requirements in SOC estimation accu-
racy [9]. The key to achieving the goal of accurate SOC estimation in various operating cases
using the battery SOC estimation algorithms is to model the battery nonlinear dynamics.
To do so, parameter identification approaches are adopted along with the SOC estimation
algorithms to identify and update the highly nonlinear battery dynamics [10].

Popular parameter identification approaches include the sliding window least-square
fitting method and the recursive least-square fitting method [11]. The sliding window least
square fitting method outputs the best-fitted battery’s input-to-output relationship with
the smallest sum of the squared residuals. To improve the computation efficiency, a sliding-
moving window approach is adopted. In detail, the battery parameters are identified using
a window of the latest battery data. The performance of this method, however, is limited
in the presence of measurement noises [12]. Although increasing the sliding window size
helps filter the measurement noises, the large window size can increase the computation
complexity in matrix arithmetic, burdening the battery management system with low
computation power. The recursive least square fitting method is another popular parameter
identification approach. It recursively adapts its identification and minimizes the weighted
linear least squares cost function. The performance of this method in general operating
conditions relies on carefully selecting the forgetting factor, which increases the algorithm
design complexity [13]. The robustness of both parameter identification approaches against
measurement noises is an overlooked issue that is worth investigating [14,15].

Improving the capability of the sliding window least-square fitting method against the
measurement noises is a key concern of in this paper. The sliding window least square fit-
ting method identifies the battery parameters erroneously in the presence of measurement
noises [16]. With the inaccurately identified battery model, the battery model-based SOC
estimation algorithm renders inaccurate estimations. Popular measurement filtering algo-
rithms suited to real-time estimation include the sliding average filter, the double sliding
average filter, the sliding median filter, and the low-pass filter [17]. The sliding average filter
and the sliding median filter smooth the battery data using the mean and median data from
a window of battery data, respectively. These filters are effective in smoothing the data,
so to achieve the goal of rejecting measurement noises [18]. The smoothing performance
can further improve by cascading filters, e.g., double sliding average filter [19]. However,
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designing the proper window size to filter the measurement noise without affecting the
battery dynamics for identification is an issue that requires careful design.

The low-pass filter is an alternative solution to reject measurement noises from battery
data. It is designed in the frequency domain attempting to filter high-frequency compound
measurement noises. Typical low-pass filters include the Butterworth filter, the Chebyshev I
and II filter, the Elliptic filter, and other advanced filters [20]. Among these filters, the Butter-
worth low-pass filter is well-known for its ease in filter design and no extra ripples in both
the passband and stopband. These features make it suit for measurement noise rejection
in battery applications. The variables to design this filter are the filter order and the cutoff
frequency. Low filter order is usually preferred due to the design simplicity [21]. The cutoff
frequency is another key determinant of the filtering performance which requires careful
design. The cutoff frequency of the Butterworth low-pass filter can be designed based on
the cutoff frequency of the battery system [22]. However, the corner frequency of the battery
system is unknown in most cases and can be falsely determined due to the presence of
measurement noises, especially for complicated energy storage systems.

To overcome the research issue mentioned above, this paper proposes an adaptive
cutoff frequency design. The proposed work made the following contributions.

• The proposed algorithm adapts the cutoff frequency of the Butterworth low-pass filter
along with the lithium-ion battery operations thus ensures parameter identification
accuracy in various operating conditions.

• The proposed algorithm provides an initial cutoff frequency value for the Butterworth
low-pass filter through the cutoff frequency screening procedure, thus fastening the
convergence of the cutoff frequency adaption.

• The algorithm proposed in this paper effectively improves the parameter identifica-
tion outcome in cases with commonly observed measurement noises. The reduced
modeling error helps ensure SOC estimation accuracy using model-based algorithms.

The organization of this paper is structured as follows. Section 2 formulates the cut-
off frequency issue in this paper. Section 3 proposes an adaptive cutoff frequency design
algorithm. The design procedure is explained and summarized. Section 4 examines the per-
formance of the proposed algorithm in various scales of measurement noises. The proposed
work is finally concluded in Section 5.

2. Problem Formulation

This Section formulates the cutoff frequency issue of interest. To help formulate the
problem, the electric circuit model commonly adopted to model the lithium-ion battery is
first formulated. With the transfer function of the battery electric circuit model, the least
square regression method is then introduced. The least square regression model is a practi-
cal method for parameter identification. However, its parameter identification accuracy can
be affected by measurement noises. To reject the measurement noise, the high-frequency
compound, specifically the Butterworth low-pass filter, is discussed and its problem deter-
mining the cutoff frequency is pinpointed and thoroughly explained.

2.1. Battery Electric Circuit Model

The battery electric circuit model is widely adopted to describe the dynamics of the
terminal voltage VT of the battery in response to the load current iL injected into the lithium-
ion battery, as shown in Figure 1. This model with one RC pair is popular for real-time
battery state estimation due to its simplicity and decent modeling accuracy [23–26]. With the
help of the simple model structure, the computation efforts for parameter identification and
state observer are greatly reduced, making it preferred for battery management systems
performing real-time battery state estimations. To be specific, the battery electric circuit
model describes the terminal voltage of the battery as a summation of the open-circuit



Batteries 2023, 9, 198 4 of 15

voltage of the battery VOC, the voltage Ohmic drop/rise VR0 , and the exponential voltage
dynamic VR1C1 . The terminal voltage formulation can be written as the following equation.

VT = VOC + VR0 + VR1C1 . (1)

Figure 1. Battery electric circuit model.

The open-circuit voltage VOC is a nonlinear function with respect to the battery SOC.
In order to formulate the nonlinear relationship using a linear battery electric circuit
model, a piecewise linearization is adopted using the Taylor series with high-order terms
ignored [10].

VOC = f (SOC) = b0,i + b1,iSOCi, (2)

where b0,i and b1,i are the intercept and the slope of the ith piecewise linear function.
The voltage Ohmic drop/rise VR0 describes the immediate voltage drop/rise in re-

sponse to the load current change. The voltage drop or rise is determined by the direction
of the load current. In the electric circuit model, this VR0 formulates the voltage across the
internal resistance R0.

VR0 = R0iL, (3)

and the exponential voltage dynamic VR1C1 describes the long-term exponential dynamic
after the immediate voltage drop/rise. This VR1C1 formulates the voltage across the R1 −
C1 pair.

VR1C1 = R1iR1 = R1
(
iL − iC1

)
= R1

(
iL − C1V̇R1C1

)
. (4)

Derived from Equations (1) to (4), the dynamics of the VT in response to the iL can be
formulated as a second-order transfer function.

VT(s)
iL(s)

=
R0s2 +

(
R0

R1C1
+ b1,m

Q + 1
C1

)
s + b1,m

R1C1Q

s
(

s + 1
R1C1

) , (5)

where Q is the battery capacity and R0, R1, and C1 are variables constructing the electric cir-
cuit model, as depicted in Figure 1, and they are variables to be identified. It is worth noting
that the multiplication of R1 and C1 is the same as the time constant τ of the exponential
voltage dynamic VR1C1 , as the dynamic described using the R1-C1 pair.

It is worth noting that the above-mentioned load current to terminal voltage dynamic,
as written in Equation (5), is derived in the continuous-time domain (s-domain). Consid-
ering that the load current and the terminal voltage of the battery are sampled at a given
sampling rate ts, Equation (5) has to be discretized in practice for parameter identification.
The discretization can be achieved using the bilinear transformation. The identified dis-
crete transfer function has to convert back into the continuous t-domain to complete the
parameter identification and acquire the variables in the battery circuit model.

2.2. Least Square Regression Method

Least square regression method is an effective approach adopted to fit the input-to-
output relationship of the battery model, i.e., the relationship between the load current iL
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and the terminal voltage VT of the lithium-ion battery. The best input-to-output relationship
fitting is defined with the lowest sum of the squared residuals. To improve the least
square regression method with the real-time calculation feature, only a moving window
lengthening l containing the latest data is used in fitting.

To identify the input-to-output relationship of the battery circuit model, the terminal
voltage at the k time stamp can be formulated as a summation of a window of previous
terminal voltage values from the k− l to the k− 1 time stamp and the load current values
in the window from the k− l to the k time stamp.

VT(k) =
k−1

∑
t=k−l

−atVT(t) +
k

∑
t=k−l

ctiL(t). (6)

Formulating the terminal voltage VT(k) and the load current iL(k) as a regression
matrix ψ(k) and their coefficients −am and cm as a coefficient matrix θ(k), the Equation (6)
can be rewritten as:

VT(k) = ψT(k)θ(k), (7)

where the coefficient matrix θ(k) is the coefficients of the battery model in identification. After a
window of regression matrix ψ(k) is collected, the least square solution θ̂(k) of Equation (7)
can be calculated using the least square regression method written in Equation (8):

θ̂(k) =
(

ψT(k)ψ(k)
)−1

ψ(k)VT(k). (8)

2.3. Luenberger SOC Observer

Luenberger SOC observer is a typical state observer which estimates the states of the
battery based on the measured current iL and voltage VT . The Luenberger SOC observer
can be formulated in Equation (9).{

˙̂x = Ax̂ + BiL + L(VT − V̂T),
V̂T = Cx̂ + DiL,

(9)

where L is the observer gain and x represents the states of the battery: [VOC, VR1 C1].
To estimate the SOC of the battery, one of the states: VOC has to be mapped to SOC using
the predetermined SOC-VOC profile as explained in Equation (2).

The A, B, C, and D matrices are the state, input, output, and feedforward matrix,
respectively. Considering that the lithium-ion battery is a nonlinear system but the Lu-
enberger SOC observer is a linear observer, the observer A, B, C, and D matrices have to
be continuously updated. The A, B, C, and D matrices are formulated as follows and the
variables in these matrices are identified using the least square regression method which
had been introduced.

A =

[
0 0

0 −1
R1C1

]
, B =

[
b1
Q

1
C1

]
, C = [1, 1], D = R0. (10)

3. Adaptive Butterworth Low-Pass Filter Design

This Section proposes an adaptive cutoff frequency design algorithm for the Butter-
worth low-pass filter. The objective of this algorithm is to determine the cutoff frequency of
the Butterworth low-pass filter using “noisy” load current and terminal voltage data with
measurement noises that existed. This proposed algorithm contains two critical phases:
firstly, to determine the initial cutoff frequency fc without the prior knowledge of the time
constant τ of the lithium-ion battery; secondly, to adapt the cutoff frequency fc of the
Butterworth low-pass filter along with the operation of the battery.
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3.1. Butterworth Low-Pass Filter

Butterworth low-pass filter is famous for its flat filtering performance in both the
passband and the stopband with no ripples. The Butterworth low-pass filter also appeals to
real implementation due to its simplicity in filter design. In detail, two variables related to
the Butterworth low-pass filter that is to be determined, i.e., filter order and cutoff frequency
fc. Other variables related to the typical low-pass filters do not have to be designed,
e.g., transition band, passband and stopband frequency, passband ripple, and stopband
attenuation. With these features, the Butterworth low-pass filter is ideal to reject the
measurement noises of the lithium-ion battery for accurate parameter identification.

The frequency response of the nth Butterworth low-pass filter is formulated as follows.∣∣∣∣yout

yin

∣∣∣∣2 =
1

1 + ( f/ fc)
2n , (11)

where n, f , and fc are the order, the operating frequency, and the cutoff frequency of the
Butterworth low-pass filter, respectively, and yin and yout are the input and the output
data of the Butterworth filter, respectively. The low-pass filter with higher order has a
smaller transition band and thus has better filtering performance; however, it will increase
the difficulty in hardware implementation. Considering the potential of implementation,
a second-order Butterworth low-pass filter is selected in this paper.

The cutoff frequency fc of the Butterworth low-pass filter is critical to parameter identi-
fication by rejecting the high-frequency measurement noises and avoiding inaccurate R−C
pair identification [22]. To achieve this objective, the cutoff frequency fc was suggested
to be set greater than half of the time constant τ of the lithium-ion battery, i.e., the time
constant of the exponential voltage dynamic as described as the voltage VR1C1 across the
R1-C1 pair in the battery electric circuit model.

fc =
1

ωc
≤ fc,batt. (12)

where ωc and ωc,batt are the angular cutoff frequency of the Butterworth low-pass filter and
the battery, respectively and fc,batt is the corner frequency of the lithium-ion battery:

fc,batt =
1

ωc,batt
= f (τ) =

1
2πτ

=
1

2πR1C1
, (13)

Though the cutoff frequency of the Butterworth low-pass filter can be properly defined
based on the time constant τ of a specific battery, the time constant τ of this battery is un-
known and hard to be determined due to the existence of the measurement noise; therefore,
determining a proper cutoff frequency of the filter is the research focus of this paper.

3.2. Initial Cutoff Frequency Screening

A proper cutoff frequency fc design is critical to the success of the measurement
noise rejection. The design setting the cutoff frequency fc of the filter based on the time
constant τ of the battery can effectively prevent one of the poles in the transfer function:
−1/R1C1 from being wrongly identified. However, the time constant τ of the lithium-ion
battery is unknown in the Butterworth low-pass filter design process. Also, the existence
of high-frequency measurement noise can affect the filter design. To overcome this issue,
an adaptive cutoff frequency design algorithm is proposed to filter the measurement noises.

The first phase of designing the cut-off frequency of the Butterworth low-pass filter is
to determine the initial cutoff frequency fc,init. In detail, a fixed window size (from k− l
to k) of load current and terminal voltage is used. It is noted that this set of data contains
measurement noises since they are measured by sensors. The next step is to filter this set of
data by adopting the Butterworth low-pass filter with cutoff frequency screening. After the
filtering, the filtered data ĩL and ṼT is then used to identify the coefficients of the transfer
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function of the battery electric circuit model, and the fitting performance is analyzed by
comparing their mean square error εMSE.

εMSE =
1
l
‖V̂T − VT‖2, (14)

where l is the number of the data samples used in the least square regression method, VT is
the measured terminal voltage containing measurement noise in the time stamps ranging
from k− l to k, and V̂T is the fitted terminal voltage data in the same time window.

To determine the proper initial cutoff frequency for the Butterworth low-pass filter,
the mean square error εMSE after cutoff frequency screening is compared and the Elbow
point is pinpointed. The small cutoff frequency used may filter the battery system dynamics,
leaving distorted signals dominated by low frequencies, e.g., DC bias. As a result, the mean
square error εMSE of the least square method increases. In contrast, the large cutoff fre-
quency used cannot effectively filter the high-frequency measurement noises, resulting in a
small mean square error εMSE of the least square method but the identification is wrong.
Therefore, the Elbow point is an approach to determining the proper initial cutoff frequency
for the Butterworth low-pass filter. The Elbow point can be found by calculating the sum
of the squared Euclidean distances L to the centroid µk, as formulated following.

L =
N

∑
j=1
|εMSE − µk|2, (15)

3.3. Adaptive Cutoff Frequency Method

The next phase of the proposed design is to adapt the cutoff frequency fc along with
the battery operation. The cutoff frequency fc(k) of the Butterworth low-pass filter starts
from the initial cutoff frequency fc,init determined in phase I. Then the cutoff frequency fc(k)
of the filter is adapted every iteration, and the amount of the adaptation is calculated based
on the variation of the latest time constant τ̂ of the lithium-ion battery identified using
the least square regression method. This adaptive cutoff frequency method is designed
following Equation (12). This equation explains that the cutoff frequency fc(k) is closely
related to the time constant τ of the lithium-ion battery; therefore, following this equation,
the cut-off frequency fc(k) of the Butterworth low-pass filter adapts based on the identified
time constant τ̂ of the lithium-ion battery.

fc(k) =
1

ωc(k)
=

1
ωc(k− 1) + λδτ̂(k− 1)

, (16)

where λ is the correction gain set to adapt the angular cutoff frequency ωc of the Butterworth
low-pass filter and δτ̂ is the adaptation factor in the angular cutoff frequency ωc(k). This
adaptation factor is calculated based on the variation in the identified time constant τ̂ of
the lithium-ion battery, as shown in the following equation.

δτ̂(k) = τ̂(k)− ∑k
t=k−n τ̂(t)

n
. (17)

To prevent the adaption from being dominated by the outliers of the identification, the mean
of the previous identification in the time constant τ̂ of the battery is used to calculate the
adaptation factor in the angular cutoff frequency ωc(k).

It is worth noting that the adaptive cutoff frequency method is designed considering
the time constant τ of the battery remains almost constant with respect to the SOC of the
battery and the time constant changes slightly as the operating condition changes [27].
Therefore, the adaptive cutoff frequency method can be designed based on the variation in
the time constant τ of the battery. Table 1 summarizes the detailed step-by-step procedure
of the proposed algorithm, and the block diagram illustrating the procedure of the proposed
algorithm is shown in Figure 2.
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Figure 2. Block diagram of the proposed adaptive cutoff frequency design for Butterworth low-pass
filter.

Table 1. Step-by-step procedure of the proposed adaptive cutoff frequency design algorithm for the
Butterworth low-pass filter.

Step 1: Initialization.
Phase I: Initial cutoff frequency screening.
Step 2: Initial setup.

Set ψ(k);
Set fc = fcl ;

Step 3: Cutoff frequency screening.
for j = 1:N

Acquire ĩL and ṼT using Butterworth low-pass filter;
θ̂(k) =

(
ψT(k)ψ(k)

)−1
ψ(k)ṼT(k);

εMSE(j) = ‖V̂T−VT‖2/l;
fc = fc + δ fc ;

end for
Step 4: Determine the initial cutoff frequency fc,init.

L = ∑N
j=1 |εMSE − µk|2;

Phase II: Adaptive cutoff frequency method.
Step 5: Update cutoff frequency fc.

fc(k) = 1/ωc(k) = 1/ωc(k−1)+λδτ̂(k−1);
Step 6: Acquire ĩL and ṼT using Butterworth low-pass filter.
Step 7: Least square fitting method.

Update ψ(k);
θ̂(k) =

(
ψT(k)ψ(k)

)−1
ψ(k)VT(k);

Step 8: Update δτ̂(k).
δτ̂(k) = τ̂(k)− ∑k

t=k−n τ̂(t)/n;
Step 9: Continue

Set k = k + 1;
Go to Step 5.

4. Simulation Result

This section explains the design procedure of the proposed algorithm step-by-step,
providing an in-depth insight into the algorithm. To showcase the performance of the cutoff
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frequency adaptation performance, a case is also studied given a randomly assigned initial
cutoff frequency. This section also validates the performance of the proposed algorithm in
various operating conditions with different measurement noise presences.

4.1. Simulation Environment

A set of lithium-ion battery simulations are performed to evaluate the performance
of the proposed adaptive cutoff frequency design algorithm for the Butterworth low-pass
filter. To showcase the performance of the proposed work in improving the parameter
identification accuracy, the simulation is performed using MATLAB 2021b and the reference
values of the parameters are predefined considering the actual lithium-ion battery dynam-
ics [28–30]. The simulation cycles the lithium-ion battery using the urban dynamometer
driving schedule (UDDS) profile. This profile is a standard testing protocol simulating
real-world battery operations in electric vehicles. To showcase the performance of the
proposed algorithm in cases of various measurement noises, the battery load current and
terminal voltage data are injected with different measurement noises leveling from 0.1% F.S.
measurement noise up to 0.5% F.S. measurement noise. The 0.1% F.S. measurement noise
and 0.2% F.S. measurement noise are the typical scales of measurement noises as limited by
the sensor hardware setup. To investigate the performance of the proposed work, the scales
of measurement noises are increased to an extreme of 0.5% F.S. measurement noise. It is
noted that the white Gaussian measurement noise is selected as the measurement noise
investigated in this work. The white Gaussian noise is a normally distributed noise with
uniform power across the frequency band, making it suitable for simulating the random
noise measured in actual operating conditions.

4.2. Performance of the Proposed Algorithm in Parameter Identification

The proposed algorithm adapts the cutoff frequency of the Butterworth low-pass filter
aiming at rejecting the high-frequency measurement noises. The first phase of the proposed
algorithm is to search for a proper initial cutoff frequency through a screening approach.
As illustrated in Figure 3, the mean square error of the least square regression method
is compared and the initial cutoff frequency is determined by finding the Elbow point.
If a large cutoff frequency is assigned, the fitting may be inaccurate due to the existence
of the measurement noises. The fitting error can be reduced by decreasing the value of
the assigned cutoff frequency. Although assigning a very small cutoff frequency can help
acquire better-fitting results, some of the battery dynamics may be lost; the result will be
poorer parameter identifications and SOC estimations. To avoid this issue and determine a
proper initial cutoff frequency for adaption, the Elbow point is adopted as pinpointed in
Figure 3.

Figure 3. Phase I: Determine the initial cutoff frequency fc through cutoff frequency screening.

The second phase of the proposed algorithm adapts the cutoff frequency of the Butter-
worth low-pass filter as the battery is operated, as shown in Figure 4. The cutoff frequency
is adapted based on the time constant τ identified using the least square regression method.
The identification of the time constant τ can be easily affected by the high-frequency
measurement noises. In other words, if the cutoff frequency is not assigned properly,
the high-frequency measurement noises are not filtered well, resulting in inaccurate time
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constant τ identification. Therefore, the cutoff frequency adapts based on the time con-
stant τ identification. It is worth noting that the adaptation starts from the initial cutoff
frequency determined in phase I; however, adaptation still functions well if the initial cutoff
frequency is given improperly. As illustrated in Figure 5, the cutoff frequency is deliber-
ately assigned with a high initial cutoff frequency value, which renders poor parameter
identification results. The cutoff frequency adapts and finally converges to the best-suited
cutoff frequency.

Figure 4. Phase II: Adapt the cutoff frequency fc with an initial cutoff frequency given.

Figure 5. Adapt the cutoff frequency fc in the case giving an improper value.

To examine the performance of the algorithm proposed, the parameter identification
results are analyzed, and the identification result is compared by adopting cutoff frequency
using different cutoff frequencies, as illustrated in Figure 6. The black line is the reference
value, the blue line is the parameter identification result without adopting the Butterworth
low-pass filter, and the red and orange lines are the results adopting the cutoff frequency
0.02 Hz and 0.04 Hz, respectively. In comparison, the result acquired from the proposed
work is shown in purple. In the presence of measurement noises, the parameters are
identified erroneously without adopting the filter, leaving only the internal resistance R0
identified okay. This result shows that the least square regression method will erroneously
identify the battery dynamics, i.e., the poles of the transfer function. With the help of
the Butterworth low-pass filter, the parameters of the battery model can be identified
accurately. The identification accuracy is improved as the cutoff frequency is set smaller.
The comparison indicates that the parameters are identified as most accurately adopting
the proposed algorithm.

The detailed parameter identification performance using multiple cutoff frequency
design is further investigated in cases of various scales of measurement noises injected,
as summarized in Table 2. The four sub-tables listed in Table 2 compare the relative identifi-
cation error of R0, R1, C1, and time constant τ to their reference values, respectively. The
result shows that without the help of the Butterworth low-pass filter, the parameters of the
battery model are identified inaccurately, especially the RC dynamics. In detail, the battery
is identified as a pure resistance when the measurement noise exists, and as a result, the RC
dynamics cannot be identified accurately. This is because of the nature of the least square
regression method.



Batteries 2023, 9, 198 11 of 15

Figure 6. Parameter identification result comparison.

Adopting the Butterworth low-pass filter, the parameter identification accuracy is
significantly improved. It is noted that the parameter identification accuracy reduces as
the scale of the injected measurement error increases. It is also noted that if the selected
cutoff frequency is low, the high-frequency compound measurement noises are filtered
well, resulting in more accurate parameter identification using the least square regression
method, especially in the RC dynamic. However, selecting low cutoff frequencies does not
guarantee better parameter identification. Selecting a small cutoff frequency, i.e., 0.005 Hz
cutoff frequency, the R0 identification error is slightly higher than other cutoff frequencies
although the rest of the parameters are identified more accurately.

The results listed in Table 2 demonstrate that the parameters are identified more
accurately compared to the case with a medium cutoff frequency. Similar results are ac-
quired in cases of various scales of measurement noises injected. In detail, the relative
identification error in the R0, R1, C1, and the time constant τ are 0.028%, 4.16%, 2.73%,
and 2.27%, respectively, when 0.1% of full-scale (F.S.) measurement noise is presented,
and the relative identification error increases to 0.028%, 11.12%, 6.21%, and 5.94%, respec-
tively, when an extreme of 0.5% of full-scale (F.S.) measurement noise exists. The results
well-demonstrate that the proposed work adapts the cutoff frequency of the Butterworth
low-pass filter, rendering accurate parameter identification results in various scales of
measurement noise presence.
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Table 2. Parameter identification performance comparison in cases of various scales of measurement
noises using multiple cutoff frequency design.

(a) Relative error comparison in R0 identification (%).

0.1% FS Err 0.2% FS Err 0.3% FS Err 0.4% FS Err 0.5% FS Err

w/o LPF 0.3631 0.7088 1.0764 1.4415 1.7399

fc: 0.005 0.0290 0.0293 0.0292 0.0290 0.0289

fc: 0.008 0.0288 0.0292 0.0291 0.0287 0.0287

fc: 0.01 0.0287 0.0291 0.0291 0.0285 0.0286

fc: 0.02 0.0285 0.0290 0.0291 0.0281 0.0285

fc: 0.04 0.0284 0.0289 0.0296 0.0293 0.0310

Proposed work 0.0277 0.0278 0.0278 0.0277 0.0283

(b) Relative error comparison in R1 identification (%).

0.1% FS Err 0.2% FS Err 0.3% FS Err 0.4% FS Err 0.5% FS Err

w/o LPF 97.8109 96.3308 94.7591 93.1635 91.8081

fc: 0.005 6.2383 9.6232 9.4924 22.8026 17.8310

fc: 0.008 7.6918 14.5610 13.1924 18.4599 20.3951

fc: 0.01 8.2013 17.8276 18.9900 22.4220 29.9168

fc: 0.02 14.7488 30.3814 30.9641 38.1945 41.8999

fc: 0.04 27.2008 40.5450 45.7326 56.8590 93.5543

Proposed work 4.1586 5.7953 7.6012 9.1014 11.1184

(c) Relative error comparison in C1 identification (%).

0.1% FS Err 0.2% FS Err 0.3% FS Err 0.4% FS Err 0.5% FS Err

w/o LPF 85.7923 94.1096 96.3975 97.5404 98.1453

fc: 0.005 2.8139 3.7624 4.3725 5.7075 6.2806

fc: 0.008 2.9071 4.0633 5.2528 6.6520 7.6656

fc: 0.01 3.2083 5.0398 7.0169 9.1529 10.2712

fc: 0.02 5.6237 14.2129 17.4227 24.3334 28.9110

fc: 0.04 20.1026 51.0733 75.2241 121.7612 143.2402

Proposed work 2.7345 3.4003 4.3583 4.9830 6.2139

(d) Relative error comparison in τ identification (%).

0.1% FS Err 0.2% FS Err 0.3% FS Err 0.4% FS Err 0.5% FS Err

w/o LPF 99.7798 99.9093 99.9326 99.9418 99.9456

fc: 0.005 2.7780 3.9958 4.5224 6.8197 7.1770

fc: 0.008 3.0288 4.6438 5.6325 7.3551 8.4165

fc: 0.01 3.3471 5.2640 6.8196 8.6125 10.0852

fc: 0.02 5.4082 9.3229 12.3126 16.0832 18.4873

fc: 0.04 11.0318 19.8994 27.7479 35.2922 42.6940

Proposed work 2.2733 3.1285 4.0848 4.8368 5.9391

4.3. Performance of the Proposed Algorithm in SOC Estimation

The performance of the proposed work is evaluated one step further in the sense of
SOC estimation accuracy. This is because the accuracy of the battery SOC estimation highly
relies on accurately identified battery parameters. The battery SOC estimation performance
comparison using multiple cutoff frequency design in cases of various scale measurement
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noises is summarized in Table 3. The typical Luenberger SOC observer is selected in battery
SOC estimation due to its simplicity for algorithm validation. The results demonstrate
the estimation inaccuracy has a strong relationship with the existence of the measurement
noises, leaving about 1.35% mean absolute SOC estimation error in different scales of
measurement noises. Although the mean absolute error seems promising, the maximum
absolute SOC estimation error is a high of 14.47%, and the standard deviation is close to
1.85%, meaning that the SOC estimation is inaccurate and deviated.

Table 3. SOC estimation performance comparison in cases of various scale measurement noises using
multiple cutoff frequency design.

(a) Mean absolute SOC estimation error comparison (%).

0.1% FS Err 0.2% FS Err 0.3% FS Err 0.4% FS Err 0.5% FS Err

w/o LPF 1.3546 1.3469 1.3340 1.3297 1.3197

fc: 0.005 0.0858 0.0880 0.0922 0.1025 0.1046

fc: 0.008 0.0870 0.0908 0.0962 0.1088 0.1179

fc: 0.01 0.0881 0.0934 0.0998 0.1194 0.1405

fc: 0.02 0.1026 0.1282 0.1586 0.1977 0.2453

fc: 0.04 0.1920 0.3356 0.5089 0.6104 0.6937

Proposed work 0.0743 0.0780 0.0817 0.0759 0.0816

(b) Maximum absolute SOC estimation error comparison (%).

0.1% FS Err 0.2% FS Err 0.3% FS Err 0.4% FS Err 0.5% FS Err

w/o LPF 14.4078 14.3899 14.4083 14.4285 14.4726

fc: 0.005 2.2714 2.9673 2.3447 3.0326 2.9548

fc: 0.008 1.4810 2.2576 1.5952 3.2773 2.5081

fc: 0.01 1.4746 2.1077 1.4396 3.3533 5.5545

fc: 0.02 1.3688 1.8853 5.0135 4.6871 5.9418

fc: 0.04 5.1221 5.9928 6.1944 6.3333 6.5496

Proposed work 1.0776 0.9370 1.1211 0.9563 0.9728

(c) Standard deviation comparison (%).

0.1% FS Err 0.2% FS Err 0.3% FS Err 0.4% FS Err 0.5% FS Err

w/o LPF 1.8462 1.8388 1.8416 1.8374 1.8281

fc: 0.005 0.1409 0.1646 0.1655 0.2264 0.1947

fc: 0.008 0.1312 0.1565 0.1649 0.2203 0.2193

fc: 0.01 0.1342 0.1592 0.1738 0.2417 0.3329

fc: 0.02 0.1494 0.1922 0.3005 0.3833 0.4840

fc: 0.04 0.3308 0.4771 0.7415 0.8034 0.8769

Proposed work 0.1275 0.1262 0.1561 0.1373 0.1392

With the help of the Butterworth low-pass filter in high-frequency measurement
noise filtering, the SOC estimation error is reduced and converged. In detail, the mean
absolute SOC estimation error is roughly 0.12% if the cutoff frequency is selected carefully,
the maximum absolute SOC estimation error is less than 2.51%, and the standard deviation
is about 0.22%, meaning the SOC estimation accuracy is significantly improved due to
the adoption of the low-pass filter. In comparison, the proposed work renders the best
battery SOC estimation performance. The result is acquired since the parameters are
identified more accurately in adopting the proposed work, leaving a smaller modeling
error. The result shows that the proposed work renders a mean absolute SOC estimation
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error less than 0.081% in an extreme case of 0.5% full-scale measurement noises existed.
In this case, the proposed work renders a 0.97% maximum absolute SOC estimation error
with a 0.14% standard deviation. The SOC estimation result demonstrates the effectiveness
of the proposed work in filtering measurement noises.

5. Conclusions

Measurement noises on the battery data are a critical but usually overlooked issue
that needs to be solved. The measurement noises affect the estimation accuracy of electric
circuit model-based SOC estimation algorithms. Specifically, the presence of the measure-
ment noises results in battery modeling errors in inaccurate identifications of the battery
parameters. The modeling errors lead to inaccurate battery SOC estimation using model-
based estimation algorithms. To overcome this issue, this paper proposes an adaptive
cutoff frequency design algorithm. The proposed algorithm first applies a cutoff frequency
screening procedure to determine the initial cutoff frequency for the Butterworth low-pass
filter. The proposed algorithm then adapts the cutoff frequency along with the battery
operations based on the initial value which had been determined.

The performance of the proposed work is examined through simulation results using
a standard testing protocol. The results demonstrate that the low-pass filter functions prop-
erly due to the adaption of the cutoff frequency. The least square regression method renders
a relative error of 0.028%, 11.12%, 6.21%, and 5.94% in the R0, R1, C1, and the time constant
τ identifications, respectively, in an extreme case. The low modeling error then helps the
battery SOC estimation accuracy, rendering a 0.081% mean absolute SOC estimation error,
a 0.97% maximum absolute estimation error, and a 0.14% standard deviation, which has
significantly improved the SOC estimation accuracy compared with other cases studied.
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