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Abstract: Among the current battery technologies, lithium-ion batteries (LIBs) are essential in shaping
future energy landscapes in stationary storage and e-mobility. Among all components, choosing
active cathode material (CAM) limits a cell’s available energy density (Wh kg−1), and the CAM
selection becomes critical. Layered Lithium transition metal oxides, primarily, LiNixMnyCozO2

(NMC) (x + y + z = 1), represent a prominent class of cathode materials for LIBs due to their high
energy density and capacity. The battery performance metrics of NMC cathodes vary according to
the different ratios of transition metals in the CAM. The non-electrode factors and their effect on
the cathode performance of a lithium-ion battery are as significant in a commercial sense. These
factors can affect the capacity, cycle lifetime, thermal safety, and rate performance of the NMC
battery. Additionally, polycrystalline NMC comprises secondary clusters of primary crystalline
particles prone to pulverization along the grain boundaries, which leads to microcrack formation and
unwanted side reactions with the electrolyte. Single-crystal NMC (SC-NMC) morphology tackles
the cycling stability issue for improved performance but falls short in enhancing capacity and rate
capability. The compatibility of different combinations of electrolytes and additives for SC-NMC is
discussed, considering the commercial aspects of NMC in electric vehicles. The review has targeted
the recent development of non-aqueous electrolyte systems with various additives and aqueous
and non-aqueous binders for NMC-based LIBs to stress their importance in the battery chemistry
of NMC.

Keywords: NMC cathode; electrolyte; electrolyte additive; binder; single crystal; commercial
Li-ion batteries

1. Introduction

Fossil fuels are continuously being replaced by greener, sustainable forms of energy
with energy storage devices to account for intermittency and efficiency. Rechargeable sec-
ondary batteries are suitable for this purpose, and lithium-ion batteries are popular among
all reported batteries due to their unique advantages: high energy density, specific capacity,
life span, and safety [1,2]. The performance metrics of these batteries are gradually improv-
ing to meet the increasing energy demand worldwide. Choosing cathode-active materials
(CAMs) is crucial to improving energy density. LIBs use various cathode chemistries with
merits and demerits concerning energy density, life span, safety, cost, and other parameters.
The most widely researched CAMs broadly belong to three categories: (a) layered oxides;
(b) spinel oxides; (c) polyanionic compounds [3]. Polyanionic cathodes such as LiFePO4
(LFP) show good thermal stability due to the strong covalent bond between oxygen and
phosphorus. The intrinsic poor electronic conductivity of phosphates is improved by car-
bon coating [4,5]. Spinel oxides, such as LiMn2O4 (LMO) and LiNi0.5Mn1.5O4 (LNMO),
are less expensive due to the absence of costly Co elements and are high-voltage cathodes
operating at ~4.7 V vs. Li/Li+. The lack of high-voltage electrolytes, capacity fading, and
low specific capacity of spinels have limited their use as commercial cathodes compared
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to layered oxides [6,7]. Among the ternary layered oxides, LiNixMnyCozO2 (NMC) and
LiNixCoyAlzO2 (NCA) are the most common high-energy-density commercial cathode
materials for LIBs, especially for e-transportation. NMC is superior to NCA for cost and
mechanical and thermal stability. NMC offers a better cycle life compared to polyanionic
and spinel cathodes.

Extensive reports on novel synthesis methods of NMC to control morphological and
compositional modifications are available in the literature [8–10]. The commercialization
of NMC as a cathode is at a mature stage, led by Panasonic, Toshiba, and LG Chem.
The theoretical capacity of stoichiometric NMC materials is around 275 mAh g−1, but its
accessible capacity depends on the material’s transition-metal ions ratio. In the layered
transition metal oxide class LiNi1/3Co1/3Mn1/3O2, the Ni-rich cathodes (NMC 811) show
higher capacity and operational voltage as Ni is the main active redox species (Ni2+ � Ni4+).
The Ni-rich compounds show poor thermal stability. The role of Mn is to maintain the
battery’s excellent cycle life and safety. Co is responsible for the increased electronic
conductivity, leading to better rate capability. In a commercial sense, (NMC111 or NMC333)
are at a more mature stage as they inculcate all the advantages of the transition metals
in the material. For Ni-rich NMC materials, the accessible capacity is much higher than
NMC111 but suffers from various degradation processes [11], such as cation mixing [12],
surface reconstruction to rock salt [13], phase transformation [14], particle cracking [15,16],
transition metal dissolution [17], and parasitic reaction with electrolyte [18].

Another critical factor for excellent battery performance at high voltages is the choice
of electrolyte. At higher potentials, i.e., >4.4 V, the electrolyte tends to oxidize, leading
to the loss of oxygen from the cathode, increased surface reactivity in the de-lithiated
phase, and the dissolution of transition metal from structural instabilities. Among the
various strategies, one way to tackle this problem is using electrolyte additives to improve
the capacity retention of NMC cathodes. Additives are sacrificial/non-sacrificial species
that increase the cathode–electrolyte interface’s stability, reduce interfacial resistance, and
control the transition metal dissolution under high operating voltages through protective
layer formation at the cathode. Binders are electrochemically inert materials that bind
the components of the electrode materials to the current collectors in a coated electrode.
The choice of which will impact the performance, cost, and environmental benignness
of LIBs. NMC cathode material processing predominantly uses a polyvinylidene difluo-
ride (PVDF) binder with a carcinogenic organic solvent, N-methyl-2-pyrrolidone (NMP).
Many efforts have endeavored to replace the expensive, toxic polyvinylidene difluoride
(PVDF)–N-methyl-2-pyrrolidone (NMP) binder–solvent combination with more nature-
friendly water-based binders (linear polymers, co-polymers, and ion-conducting polymers)
to simultaneously improve the electrochemical performances and reduce the manufactur-
ing costs of the aqueous processing of LIBs. The review article focuses on the impact of
non-electrode components on NMC cathode to develop and optimize novel functional
electrolyte additive systems and polymer binders for commercialization.

2. Electrolytes

Electrolytes are vital in transferring Li+ ions from one electrode to another within a
battery. In general, the electrolyte must follow specific characteristic properties, such as:

(1) The viscosity of electrolytes, which influences ionic mobility, should be low (<2 cP);
(2) The high dielectric constant (>20) of solvents helps to dissociate salt;
(3) Ionic conductivity should be high enough with a value greater than 1 mS cm−1;
(4) A wide electrochemical stability window (0.01–5 V vs. Li/Li+) of operation;
(5) Chemical and thermal stability in a wide range of voltage and temperatures;
(6) Inert behavior towards other battery components such as separator, current collector,

and packaging materials [19,20];
(7) Environment friendliness, cost-effectiveness, and safety in operating conditions.

Liquid electrolytes are (i) carbonate-based, (ii) ether-based, (iii) ionic liquids and com-
mon solid-state electrolytes, (i) inorganic solid-state, (ii) gel polymer, and (iii) solid polymer.
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2.1. Non-Aqueous Solvents
2.1.1. Carbonate Solvents

Commercial batteries mainly use carbonate-based solvents as electrolytes. The physi-
cal properties of different carbonate solvents are given in Table 1. Carbonate esters can be
divided structurally into cyclic carbonates (Propylene Carbonate (PC), Ethylene Carbonate
(EC)) and linear carbonate (Dimethyl Carbonate (DMC), Ethyl methyl Carbonate (EMC)).
A mixture of electrolytes optimizing the viscosity, salt-dissociation, solvation/de-solvation
energies, and salt conductivity is the current norm in LIBs. EC: DMC mixture synergis-
tically combines the high anodic stability of EC, a high dielectric constant of EC, and
low viscosity of DMC. DMC can be substituted by other linear carbonates solvents such
as Diethyl Carbonate (DEC) and Ethyl Methyl Carbonate (EMC). EMC can undergo a
transesterification reaction and lead to the formation of DEC and DMC, whereas EC gives
oligo-carbonates [21–23]. Fluorinated carbonates such as Fluoroethylene Carbonate (FEC)
and 4,5-Difluoro-1,3-dioxolan-2-one (DFEC) [24,25] are effective SEI-forming additives or
co-solvents. These fluorinated compounds face various types of challenges, such as high
melting points and viscosity.

Table 1. Physical properties of carbonate solvents [26–29].

Solvent Dielectric Constant Viscosity (cP) (25 ◦C) Ionic Conductivity
(mS cm−1) (1 M LiPF6) Melting Point (◦C) Oxidation Potential

(V vs. Li/Li+)

EC 89.78@40 ◦C 1.93@40 ◦C 8.3 36.4 5.5

PC 64.95 2.51 5.6 −54.5 5.2

DMC 3.107 0.59 6.0 4.6 5.5

DEC 2.820@20 ◦C 0.748 4.2 −43 5.2

EMC 2.958 0.65 3.5 −53 6.1 #

FEC 110 4.1 5.0 18 6.6

# glassy carbon is used as a working electrode instead of platinum.

2.1.2. Ether Solvents

In the 1980s, ethers were chosen as possible alternative solvents because of their low
viscosity, high ionic conductivity, and stability during cycling. Some of the well-known
ethers are tetrahydrofuran (THF), 2-Methyltetrahydrofuran (2-Me-THF), 1,2-dimethoxyethane
(DME), Polymethoxy ethers, dimethoxy propane, and diethyl ether [19,30]. Ether-based
solvents have oxidation stability < 4 V but provide excellent stability with Li metal elec-
trodes. It oxidizes when the CAMs are high-voltage cathode materials (LixMO2, M = Mn,
Ni, or Co). Despite such demerits of ether solvent, a high-concentration ether-based elec-
trolyte (LiFSI/DME) performs well in an NMC/Li-metal full cell with a capacity retention
of 92% after 500 cycles at 4.3 V [31]. Ren et al. reported a localized high-concentration
electrolyte (LHCE), creating an effective protective interface layer upon Ni-rich cathode
material [32,33]. Again, adding some carbonate-based additive (EC or FEC) helps improve
battery performance [34]. A new class of fluorinated ethers with high ionic conductivity
and oxidative stability contributes electrochemical stability to Ni-rich NMC for around
100 cycles [35].

2.1.3. Other Solvents

Phosphorous-based organic solvents are used as non-flammable co-solvents to prevent
fire hazards, mainly due to the radical propagation mechanism. Recently, they have been
used to enhance the anodic stability of high-voltage cathodes by reducing flammability. The
high viscosity of solvents makes them unfavorable to use because they lead to low ionic
conductivity and wettability toward separators and electrodes. The phosphorus-based solvents,
in combination with carbonates or ethers, can cope with high-viscosity problems [36–40].

Alkyl sulfones are another suitable option as a solvent because of their low flamma-
bility and excellent anodic stability. High melting points and high viscosity can be an
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issue that hinders them in commercial applications. They are suitable for high-voltage and
high-energy-density Li-ion batteries [41–44].

2.2. Lithium Salts

LiPF6 is indispensable as Li salt because of its well-balanced properties in all the
commercialized LIB electrolyte systems [45]. The improvement of the salt is taken into
account at the expense of anodic stability as it gets easily oxidized on the charged surface
of cathode materials below 4.0 V vs. Li/Li+. Most salts can fulfill the solubility requirement
by using a complex anion formed by stabilizing the anion core with a Lewis acid agent.
In LiPF6, F− ion is stabilized by Lewis acid PF5. The anionic charge is well distributed by
an electron-withdrawing Lewis acid ligand, and the salts have a low melting point and
are readily soluble in low dielectric media. Milder Lewis acid-based salts such as LiClO4
and LiMXn (M = B or As, P, and Sb and X = F or O and n = 4 or 6) are frequently used at
lab-scale levels. The physical properties of lithium salts are tabulated in Table 2.

Table 2. Physical properties of different Lithium salts.

Salt Mol. Wt. Melting Point (Tm)(◦C) Tdecomposition (◦C) in Solution Al Collector Corrosion

LiPF6 151.9 200 ~80 (EC/DMC) N

LiBF4 93.9 293 >100 N

LiAsF6 195.9 340 >100 N

LiClO4 106.4 236 >100 N

LiTFSI 286.9 234 >100 Y

LiPF6 is very sensitive to both moistures, even at low ppm levels, and decomposes
at ~70 ◦C, which restricts its applications and causes safety issues. The proposed reaction
scheme [46,47] of LiPF6, with residual moisture is

LiPF6 → LiF + PF5 (1)

PF5 + H2O→ 2HF + POF3 (2)

The interaction of PF5 with organic carbonate solvents can accelerate the formation
of HF. HF can easily react with the delicate NMC surface, leading to the loss of active
Li+ and even accelerating the dissolution of transition metal ions (TMs). To an extent,
insulator coatings, such as SiO2, can limit HF from reacting with the electrode material. The
schematic (Figure 1) shows HF formation and SiO2 protection with LiPF6 salt. To substitute
LiPF6, other chemically stable salts, such as LiBOB [48], lithium bis(fluorosulfonyl)imide
(LiFSI) [49], lithium 4,5-dicyano-2-(trifluoromethyl) imidazolide (LiTDI) [50], and lithium
difluoro(oxalato)borate (LiDFOB) [51,52], have been reported.

2.3. Dual-Salt-Based Electrolytes

Dual-salt electrolytes were extensively researched to replace LiPF6-containing elec-
trolytes for high-voltage cathodes. The conventional LiPF6 carbonate-based electrolyte
results in a poor SEI layer formation, consisting of many resistive decomposition products
of LiF and Li2CO3 and other inorganic and organic by-products. Dual-salt electrolytes
can replace LiPF6-containing electrolytes with no highly resistive LiF in the SEI layer. A
dual-salt electrolyte of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium
bis(oxalato)borate (LiBOB) in a carbonate solvent mixture (Figure 2b) [53,54] or using
LiPF6 as an additive [55] in electrolytes results in the improved performance of full cells
with NMC as the cathode and Li metal as the anode. High-voltage cathodes with Li
metal as the anode in these electrolytes showed an areal capacity of 1.75 mAh cm−2 after
450–500 cycles at a current density of 1.75 mA cm−2 [54,55]. There are other dual salts
reported in the literature, such as LiTFSI-LiDFOB(lithium difluoro(xalate)borate), LiFSI
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(lithium bis(fluorosulfonyl)imide)-LiDFOB, and LiFSI-LiDFOB. The cycling stability of the
Li metal batteries with these electrolytes grades in the following order: LiTFSI-LiBOB >
LiTFSI-LiDFOB > LiFSI-LiDFOB > LiPF6 > LiFSI-LiBOB, which is in good accordance with
the density functional theory (DFT) calculation results (Figure 2a) [54].
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Recently, Zheng et al. confirmed 300 cycles of stable cycling of Li/NMC with an areal
capacity of 0.9–4.1 mAh cm−2 with the limitation of discharge current 2 mA cm−2 and a
charge current density of around 1 mA cm−2 in a LiPF6-assisted LiTFSI-LiBOB dual-salt
EC-based electrolyte [56]. Dual-salt is also reported in ether electrolyte solvent through
ether oxidizing easily by highly catalytic cathode surface at lower potentials (<4 V). The
concentrated ether-based electrolyte containing 2 M LiTFSI and 2 M LiDFOB in DME
increases the oxidation stability of ether molecules. This dual salt also passivates the
NMC cathode surface at high voltage and forms a better SEI layer on the Li metal anode,
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resulting in a long Li/NMC full cell lifetime. It shows more than 90% capacity retention
after 300 cycles and ~80% after 500 cycles with an upper cut-off voltage of 4.3 V [57].

2.4. Additives

Additives without an effect on the skeletal composition of the electrolyte result in specifi-
cally targeted properties in a very efficient and economical way. The electrolyte’s bulk properties
persist as the additive forms only <5 wt% of the electrolyte. Additives are sacrificial and form a
protective layer during the initial activation cycles. Usually, a solid electrolyte interface (SEI)
layer-forming additive is crucial for Li metal or graphite anodes. Vinylene carbonate (VC) or
1,3-Dioxol-2-one is one of them, with a strained cyclic alky carbonate with a polymerizable
double bond improving the cycle life and thermal stability of different Li-ion systems [58].
Recently, it has also shown beneficial effects on the positive electrode. Burns et al. studied the
role of VC in varieties of Li-ion cells by changing the content of the additives [59]. 1–2% of VC
can improve battery life and reduce cell impedance. Another group studied the effect of VC in
the cycling stability of LiNi0.5Mn0.3Co0.2O2 (NMC532)/graphite cell at a high temperature. The
addition of 1% VC suppresses the formation of undesirable decomposed products [60].

LIBs have used Fluoroethylene carbonate (FEC) as an additive to improve the battery
metrics. An FEC-induced SEI layer is more stable and conductive. It regulates the uniform
Li stripping and platting and enhances the cycle performance of Li/NMC cells. FEC
leads to the formation of LiF-containing components on Li metal anodes. This LiF-rich
SEI is efficient and effective in subduing dendrite formation on Li metal. Zhang et al.
presented a stable cycling of Li/NMC532 cells with an areal capacity of 1.9 mAh cm−2

at a current density of 2.16 mA cm−2 for about 100 cycles with 5% FEC in EC-based
electrolyte solution [61]. Aurbach group demonstrated the performance of Li/NMC622
in different current densities of 0.5–2 mA cm−2 with 33 µL cm−2 FEC-based electrolyte,
and at 1.5 mA cm−2, the cell shows an areal capacity of about 2 mAh cm−2 after more
than 600 galvanostatic cycles [62]. Im et al. demonstrated a fluorinated electrolyte (1 M
LiPF6 fluoroethylene carbonate (FEC) and methyl (2,2,2-trifluoroethyl) carbonate (FEMC)
(FEC/FEMC = 1/9, v/v)) for LiNi0.5Mn0.3Co0.2O2/graphite system at 4.5 V [63]. FEC
can be used with other co-additives LiPO2F2 to suppress electrolyte decomposition and
transition metal dissolution during cycling [46]. Both produce a stable cathode–electrolyte
interface (CEI) layer on the cathode. (Figure 3).

Tris (trimethylsilyl) phosphite (TMSPi), which tends to decompose and form the CEI
layer at the cathode–electrolyte interface, is another exciting additive used in NMC chem-
istry. This layer prevents excessive electrolyte decomposition, transition metal dissolution,
and other parasitic side reactions. Mai et al. demonstrated that TMSPi was responsible for
improving the cycling performance and rate capability of an NMC electrode by forming a
stable and less resistive surface film due to oxidation on the cathode surface [64]. The combi-
nation of TMSPi and VC improves the long-term cycling performance of NMC111/graphite
cells [65,66]. Adding 1% TMSPi and 1% VC in a standard electrolyte consisting of 1 M
LiPF6 in EC: DMC (1:1 vol.) increases the capacity retention of NMC811/graphite full cell
to 91% after 200 cycles at C/3 [67]. Peebles et al. compared the capability of TMSPi with
structurally analogous electrolyte Triethyl Phosphite (TEPi) in NMC532/graphite full cell
and proposed a mechanism for oxide film formation on the surface (Figure 4) [68].

Sulfur-containing additives are also very popular for enhancing the battery lifetime,
regulating impedance growth, and suppressing gas production, especially when combined
with other additives. Better coulombic efficiency with lower impedance and reduced
voltage drop can be obtained using 1,3,2-dioxathiolane-2,2-dioxide (DTD) and tetram-
ethylsulfone (TMS) additives [69]. During the formation cycles, DTD and TMS generate
gases but suppress gas generation in combination with VC. Prop-1-ene-1,3-Sultone (PES)
also improves the performance of NMC111/graphite in the presence of VC with less gas
production and an increase in cell impedance [70,71]. A ternary mixture of PES, 1, 5, 2,
4-dioxadithiane-2, 2, 4, 4-tetraoxide (MMDS), and TMSPi or VC, MMDS, and TMSPi can
yield improved battery life and excellent safety [65,72,73].
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The main boron-containing additives reported for NMC cathode is lithium bis(oxalate)borate
(LiBOB) [48,74]. LiBOB leads to the formation of a stable SEI on graphite, resists the unfa-
vorable reactions of the electrolyte with high-voltage positive electrodes and also improves
capacity retention. The cell impedance increase issue faced by LiBOB can be limited by
adding triphenylamine (Ph3N) or 1,4-benzodiozane-6,7-diol (BDOD). The low oxidation po-
tential of LiBOB and BDOD can protect the cathode surface by producing stable conducting
polymer through the radial polymerization process [75]. Lithium difluoro(oxalato) borate
(LiDFOB) is also used with LiBOB to improve cell performance by passivating the electrode
surface against electrolyte decomposition and transition metal dissolution [76]. LiDFOB in
a carbonate-based electrolyte (with fluorinated ether as diluent) showed capacity retention
of 84% of LiNi1/3Mn1/3Co1/3/Li cell after 100 cycles [77].

Lithium Difluorophosphate (LiDFP) became a good additive for high-voltage NMC
cathodes [78]. It is one of the decomposition products of LiPF6. Wang et al. demonstrated
using 1 wt% of this additive in conventional carbonate-based electrolytes for a high-voltage
LiNi1/3Mn1/3Co1/3O2/graphite pouch cell at 4.5 V [79]. The capacity retention of the
cell increased notably to 92.6% after 100 cycles and 78.2% after 200 cycles. A full cell— a
LiNi0.5Co0.2Mn0.3O2/graphite pouch cell—at 4.5 V showed capacity retention of 93.8% after
100 cycles, and its discharge capacity obtained around 118.9 mAh g−1 at 5 C [80]. The Yang
group also conducted a low-temperature evaluation of LiDFP on NMC532/graphite [81].
The additive improves initial capacity by 71.9% at−20 ◦C and 57.93% at−30 ◦C, improving
capacity retention by 16.8% at 0.5 C after 100 cycles at 0 ◦C. Recently, another electrolyte
additive, Tripropargyl Phosphate (TPP), was reported in the literature, which produces a
protective interface layer upon both positive and negative electrodes [82].
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2.5. Ionic Liquid Electrolytes

Ionic liquid electrolytes were chosen as an alternative to conventional carbonate
electrolytes for their superior properties, such as wide electrochemical windows, low
volatility, and non-flammability [83,84]. They are low-temperature molten salts com-
prised of cations and anions without any molecular species. Two types of ionic liquid
(IL) based electrolytes are often identified as (i) purely ionic electrolytes (mixture of an IL
and a lithium salt) and (ii) IL-organic solvent(s) blends (mixtures of an IL, a lithium
salt, and co-solvent(s)). The cyclic or linear carbonate co-solvent improves the solu-
tion’s transport properties (viscosity and ionic conductivity). Chaudoy et al. demon-
strated the use of room-temperature ionic liquid (RTIL)-based electrolytes in improving
Li/NMC full cell compared to conventional electrolytes. RTILs mentioned in their litera-
ture are N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl)amide(P14FSI) and N- propyl-
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N- methylpyrrolidinium bis(fluorosulfonyl)amide(P13FSI), and LiTFSi was the salt. A
reversible capacity of about 145 mAh gm−1 at C/10 and 110 mAh gm−1 at C with ap-
proximately 100% coulombic efficiency for these electrolytes in Li/NMC full cell [85].
Matsui et al. reported the ionic liquid-based electrolyte (mixture of EMIMFSI and LiTFSI),
which gave a reversible capacity of 163 mAh gm−1 in a full cell with an NMC cathode [86].
Passerini et al. showed the improvement of cycling behavior for Li/NMC half-cells at
different temperatures (Figure 5a).
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Figure 5. (a) Capacity retention of a Li/NMC half−cell in both ionic liquid and organic electrolyte at
23 ◦C and 40 ◦C. Reprinted with permission from reference [87]. Copyright 2016, Elsevier. (b) Effect
on rate performance due to the addition of an organic solvent. Reprinted with permission from
reference [88]. Copyright 2014, Elsevier.

The effect of organic solvents on the aluminum dissolution and rate performance of
an NMC cathode to improve the electrochemistry were analyzed. The electrolytes used are
based on a blend of P13FSI and 1.2 mol·L−1 LiFSI or P13FSI, 10 vol% (or 50 vol%) EC: EMC
(1:2 wt.) and 1.2 mol·L−1 LiFSI (Figure 5b) [88]. Reiter et al. also reported using PP13TFSI
and LiFSI or LiTFSI as electrolytes for graphite anode and NMC cathode. They also showed
that graphite could produce a discharge capacity of 340–345 mAh·g−1 at a C/10 rate with
a coulombic efficiency of 97–98%, and NMC cathode material can produce a discharge
capacity of 160 mAh·g−1 with coulombic efficiency above 99% [49].

2.6. Solid-State Electrolytes

Conventional liquid electrolyte-based battery brings safety issues due to perennial prob-
lems such as dendrite formation on the lithium anode, electrolyte leakage, fire, and explosions [89].
Solid-state electrolytes are critical in limiting the usage of volatile organic electrolytes.

2.6.1. Inorganic Solid-State Electrolytes

Kato et al. reported the oxide-based solid electrolyte (Ox-SSB) Li/LLZ/NMC-LATP
composite film shows good capacity retention of about 99.97% after 90 cycles at a C/10 rate
at 100 ◦C [90,91]. There is an aerosol deposition technique to synthesize the composite films
and a thick composite of crystalline NMC and amorphous solid electrolyte Li-Nb-O at room
temperature. Another method to infuse solid electrolytes on electrodes is an atomic layer
deposition coating of Li3PO4, a solid electrolyte, on Ni-rich NMC to reduce the capacity
and voltage fading mechanisms [92]. Alexander et al. reported surface-modified garnet
structured solid electrolyte Li6.28Al0.24La3Zr2O12 (LLZA), which leads to an initial capacity
of 162 mAh g−1 at 50 µA cm−2 [93]. Philip et al. introduce lithium phosphorus oxynitride
(LiPON) electrolyte, which reduces the degradation of the NMC622/LiPON interface and
helps in stable cycle performance [94]. Figure 6a,b show a better specific capacity for LiPON
than the conventional electrolyte.
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Figure 6. Charge–discharge curves for NMC622/Li with (a) liquid electrolyte and (b) solid electrolyte
(LiPON) at two different current densities: 5 mA g−1 and 17 mA g−1. Reprinted with permission
from reference [94]. Copyright 2020 American Chemical Society. (c) Electrochemical performance of
Li/PEO−SN−LiTFSI/PAN−LATP−LiTFSI/NCM (811) cell at a C/5 rate. Reprinted with permission
from reference [95]. Copyright 2020 American Chemical Society.

2.6.2. Gel Polymer Electrolyte

Gupta et al. reported a polymer electrolyte that contains polyethylene oxide (PEO),
LiTFSI, and IL (ionic liquid). The cell containing this electrolyte and NMC622 as a cathode
gives a specific discharge capacity of 137 mAh g−1 [96]. Goodenough and his members
investigate the reason behind the degradation of PEO-based electrolytes with the help of
an in situ scanning electron microscope [97]. Kobayashi et al. explained the decomposition
of polymer electrolytes and the utilization of a CMC binder to suppress such degradation,
leading to better performance [98].

2.6.3. Solid Polymer Electrolyte

The inorganic solid electrolyte has high Li+ ion conductivity and a wide electrochem-
ical stability window but with a poor and unstable interface of a Li anode or different
electrodes, whereas a polymer electrolyte offers a stable interface. Goodenough et al. re-
ported NASICON/polymer electrolyte, which gives good cycle stability (100 cycles) of
Li/NMC811 at 40 ◦C [99]. Manthiram et al. designed a dual polymer/polymer–ceramic
composite electrolyte (LDPPCCE) with an ionic conductivity of 1.31× 10−4 S cm−1 at room
temperature (Figure 6c) [95].

3. Binder

The choice of binder in LIBs is critical because of its ability to control the density,
porosity, and thickness of the coated cathode slurry, and it should (1) have a wide elec-
trochemical window (0–5 V), (2) be nonreactive with other cell components, and (3) be
easily soluble in appropriate aqueous and non-aqueous solvents. Polyvinylidene fluoride
(PVDF) is one of the most widely used binders that dissolves in an organic solvent such as
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N-methyl-2-pyrrolidone (NMP) [100,101]. NMP solvent is expensive, toxic, and not eco-
friendly. Carboxy Methyl Cellulose (CMC) is a well-known binder in an aqueous solvent
that is less expensive and eco-friendly [102]. In recent binder progress, another cheap and
natural binder is reported, which is known as alginate, extracted from brown algae [103].
J. Xu et al. thoroughly investigated the effect of all three different binders in the case of
NMC111. Figure 7 illustrates that CMC mixed with NMC shows higher cyclic performance
than PVDF and alginate [104]. Aqueous binder CMC in an NMC/graphite full cell offers a
coulombic efficiency of 99.96% and capacity retention of 70% after 2000 cycles [105]. CMC
binder was also used with an NMC442 cathode, producing better stability than PVDF [106].
Another water-soluble binder, polyacrylic latex (LA132), exhibited higher capacity, im-
proved cycle stability, and better rate performance than CMC and PVDF [107]. One issue
with using a water-based binder for NMC is that it increases the pH value to 11 and leads
to corrosion to the Aluminum (Al) substrate. Adding components (γ-Al2O3 or SiO2) or
acids (phosphoric acid or formic acid) that increase the pH of the suspension can rectify
the problem to a more considerable extent [108–110]. M. Wood et al. explored nickel-rich
NMC in aqueous slurry preparation for electrodes and showed structural stability with
comparable capacity retention (70% after 1000 cycles) [111]. Without adding any additive
to the aqueous slurry, Poly(acrylic acid) (PAA) can act as a successful binder for NMC811
without any corrosion of the Al current collector and can produce an initial capacity of
189.2 mAh g−1 at a 0.2 C rate [112]. Brilloni et al. introduced a new biodegradable polymer
known as pullulan, which helps in the easy recovery of cathode material after its use [113].
Apart from conventional PVDF and a water-soluble binder such as CMC, a new family
of ionic conductive polymers, such as poly (ionic liquids) (PIL), was introduced in the
world of binders. One of the popular PIL binders is poly(diallyldimethylammonium)
(PDADMA) with various types of anionic species of ionic liquid attached to it. Vauthier
et al. studied PIL on high-voltage NMC532 and produced improved capacity with fluo-
rinated PDADMA [114]. The physical properties of popular NMC binders.are tabulated
in Table 3.
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4. Anodes for NMC-Based Battery

A compatible anode is also a vital factor for NMC cathode-based LIBs. Commercially,
graphite is the most desirable anode due to its considerable specific capacity (372 mAh g−1),
low cost, low operational potential (0.1 V vs. Li/Li+), high electronic conductivity, uniform
SEI formation, and long cycle life [115]. Another negative electrode that shows a high
theoretical capacity of 3860 mAh g−1 is the lithium metal anode. The perennial dendrite
formation on a lithium metal anode and its safety issues restrict its use in commercial
LIBs [116]. The SEI layer formation on the anode was avoided with a higher lithium
intercalation potential anode such as Li4Ti5O12 (LTO) [117]. It shows a low theoretical
capacity (175 mAh g−1) compared to graphite and lithium metal and a lower energy
density due to the lower operating voltage in a full cell. Björklund et al. reported the
impact of the different anodes on the electrochemical performance of NMC111 [118]. Li
metal-based full-cell capacity fading is more significant than graphite and LTO-based anode
cells. Fang et al. also studied the effect of the anode on the cathode interface layer [119].
The studies indicate that NMC/graphite and NMC/LTO give us better cycle stability than
NMC/Li. The higher operational potential of LTO (1.55 vs. Li/Li+) compromises the energy
density of the full cell compared to graphite. Figure 8 shows the energy density of NMC
full cells in combination with the different anodes.
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5. NMC Compositions

LiNixMnyCozO2 (x + y + z = 1) (NMC) are very popular as transition metal oxide
cathodes. The percentage of elements present in the composition can vary in physical
and chemical properties. The content of Ni governs the specific capacity of the material,
i.e., the higher the percentage of Ni, the higher the capacity will be. Figure 9a presents the
ternary diagram of different compositions of NMC with specific advantages of each element.
Figure 9b represents the gravimetric and volumetric energy densities of different NMCs. Ni
can show redox reactions of Ni2+ ↔ Ni3+ ↔ Ni4+ during the charge/discharge process; the
capacity and safety are a tradeoff while designing the electrode composition. The content
of Mn can improve the safety factor, while Co enhances the kinetics of the material.
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5.1. LiNi1/3Mn1/3Co1/3O2 (NMC111)

NMC111 is considered the most commonly used commercial cathode with a theoretical
capacity of 278 mAh g−1 with an operating voltage of 4.3 V. Table 4 summarizes all
the electrolyte and additive combinations for NMC111. Ohzuku et al. first reported
the solid-state synthesis of this material and obtained 150 mAh gm−1 of capacity with
1 M LiPF6 in EC: DMC (3:7, v/v) within a voltage range of 2.5–4.2 V [120]. Moreover,
0.5 wt% of Tris(trimethylsilyl) phosphite (TMSPi) as an additive can push the upper cut-
off voltage to 4.5 V [64]. Other linear carbonate electrolytes, such as DEC and EMC,
are also used along with EC to reduce viscosity. For example, 1 M LiPF6 in EC: EMC
(3:7, w/w) (commonly known as LP57) is most commonly used by prominent research
groups. Gasteiger et al. used LP57 to study the effect of upper cut-off voltage (UCV) on
NMC111/graphite [14]. The highest specific capacity of 183.4 mAh g−1 was achieved at
4.6 V but with poor capacity retention, whereas, at 4.4 V, the capacity was well maintained
for 295 cycles at 1 C. Adding different electrolyte additives such as VC, PES, MMDS,
DTD, TTSPi, and TTSP with a control electrolyte improves the cycling performance of an
NMC/graphite pouch cell at various temperature ranges [65,72,121]. Ternary electrolyte
solvent systems along with additives such as 3,3′-(ethylenedioxy)dipropiononitrile (EDPN),
3,3′-(sulfonyl)dipropionitrile (SDPN) and di(methylsulfonyl) methane (DMSM) at UCV of
4.6 V show higher cathode voltage performances [122–124]. Boron-based additive trimethyl
boroxine (TMB) with 1 M LiPF6 in EC, DEC, and DMC enhances the cycle stability from
40% to 99% after 300 cycles at a 1 C rate [125]. Apart from carbonate electrolytes, thermally
stable cyano-ester solvents with 1 M LiTFSI salt and 3 wt% FEC perform well in the full
cell [126].
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Table 4. Battery metrics for NMC111 full cells with various anodes, electrolytes, and additives.

Electrodes Electrolytes Additives Voltage Range
Sp. Capacity
(mAh g−1)
(C-Rate)

Capacity Retention, %
(Cycles, C-Rate)

NMC111/graphite [14] 1 M LiPF6 in EC: EMC (3:7, w/w)
3–4.2 V
3–4.4 V
3–4.6 V

140.2 (1 C)
162.8(1 C)
183.4(1 C)

93% (295, 1 C)
94% (295, 1 C)
42% (295, 1 C)

NMC111/graphite [79] 1 M LiPF6 in EC: DEC (1:3, w/w) 1 wt% LiDFP 3–4.5 V 92.6% (100, 1 C)

NMC111/graphite [127] 1 M LiPF6 in EC: EMC (3:7, w/w) 0.1 wt% MUI 2.8–4.6 V 197.3 (0.1 C) 63% (200, 0.3 C)

NMC111/graphite [65] 1 M LiPF6 in EC: EMC (3:7, w/w)

2 wt% VC
2 wt% VC + 1 wt% MMDS
2 wt% VC + 1 wt% DTD
2 wt% VC + 1 wt% MMDS + 1 wt% TTSPi
2 wt% VC + 1 wt% DTD + 1 wt% TTSPi
3 wt% PES
2 wt% PES + 1 wt% MMDS
2 wt% PES + 1 wt% DTD
2 wt% PES + 1 wt% TTSPi
2 wt% PES + 1 wt% MMDS + 1 wt% TTSPi
2 wt%PES + 1 wt%DTD + 1 wt%TTSPi

2.8–4.2 V

84% (500, 0.4 C)
87% (500, 0.4 C)
86% (500, 0.4 C)
88% (500, 0.4 C)
90% (500, 0.4 C)
87% (500, 0.4 C)
80% (500, 0.4 C)
89% (500, 0.4 C)
84% (500, 0.4 C)
89% (500, 0.4 C)
91% (500, 0.4 C)

NMC111/graphite [72] 1 M LiPF6 in EC: EMC (3:7, w/w) 2 wt% PES + 1 wt% MMDS + 1 wt% TTSPi 2.8–4.2 V
(55 ◦C) >80% (900, 0.4 C)

NMC111/graphite [121] 1 M LiPF6 in EC: EMC (3:7, w/w) 2 wt% VC + 1 wt% DTD + 0.5 wt% TTSP +
0.5 wt% TTSPi

2.8–4.2 V
(40 ◦C) 97% (500, C/2.2)

NMC111/graphite [126]
1 M LiTFSI in MCP
1 M LiPF6 in MCP
1 M LiPF6 in PC

3 wt% FEC 2.8–4.2 V
94.4% (195, 1 C)
87.6% (195, 1 C)
92.3% (195, 1 C)

NMC111/graphite [122] 1 M LiPF6 in EC: DEC (1:3, w/w) 0.5 wt% EDPN 3–4.5 V
3–4.2 V 156.2 (1 C) 83.9% (100, 1 C)

91% (100, 1 C)

NMC111/graphite [123] 1 M LiPF6 in EC: DMC: EMC (1:1:1,
w/w) 0.2 wt% SDPN 3–4.6 V 77.3% (100, 0.2 C)

NMC111/graphite [124] 1 M LiPF6 in EC: DMC: EMC (1:1:1,
w/w) 0.1 wt% DMSM 3–4.6 V 175.1 (0.2 C) 80.1% (100, 0.2 C)

NMC111/graphite [128] 1 M LiPF6 in EC: DMC: EMC (1:1:1,
w/w)

0.2 wt% TFPM
0.5 wt% TFPE 3–4.6 V 75.4% (100, 0.2 C)

76.1% (100, 0.2 C)

NMC111/Li [12] 1 M LiPF6 in EC: DEC (1:1, v/v) 3–4.3 V (55 ◦C) 163 (0.1 C) 92.4% (100, 0.5 C)
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Table 4. Cont.

Electrodes Electrolytes Additives Voltage Range
Sp. Capacity
(mAh g−1)
(C-Rate)

Capacity Retention, %
(Cycles, C-Rate)

NMC111/Li [120] 1 M LiPF6 in EC: DMC (3:7, v/v) 3.5–4.2 V 150 (0.17 mA/cm2)

NMC111/Li [129] 1.2 M LiPF6 in EC: PC: DMC
(1:1:3, w/w) 2.9–4.6 V 200 (0.1 mA/cm2)

NMC111/Li [130] 1 M LiPF6 in EC: EMC (3:7, w/w)
2 vol% VC
2 vol% FEC
2 vol% ES

2.5–4.2 V
121 (0.1 C)
121 (0.1 C)
108 (0.1 C)

65% (150, 1 C)
95% (150, 1 C)
56% (150, 1 C)

NMC111/Li [64] 1 M LiPF6 in EC: DMC (1:2, v/v) 0.5 wt% TMSPI 3–4.5 V 91.2% (100, 0.5 C)

NMC111/Li [46] 1 M LiPF6 in EC: DMC: EMC
(1:1:1 w/w)

1 wt% LiDFP
1 wt% LiDFP + 10 wt% FEC 2.8–4.3 V 67% (400, 1 C)

86.2% (400, 1 C)

NMC111/Li [131] 1 M LiPF6 in EC: DEC (1:1 v/v) 2 wt% LiTDI 3–4.2 V (55 ◦C) 80% (830, 1 C)

NMC111/Li [132] 1 M LiPF6 in EC: EMC: DEC
(1:1:1, v/v/v)

0.5 wt% LiBOB
0.2 wt% LiDFOB 3–4.6 V 191 (0.6 C)

187.2 (0.6 C)
91.8% (60, 0.6 C)
88.2% (60, 0.6 C)

NMC111/Li [125] 1 M LiPF6 in EC: DEC: DMC
(3:5:2, w/w) 3 wt% TMB 3–4.5 V 154 (0.5 C) 99% (300, 1 C)

NMC111/Li [133] 1 M LiPF6 in EC: EMC (3:7, w/w) 1 vol% VC 3–4.2 V 137 (0.1 C) 55% (200, 1 C)

NMC111/MCMB [133] 1 M LiPF6 in EC: EMC (3:7, w/w) 1 vol% VC 3–4.2 V 132.5 (0.1 C) 97% (200, 1 C)

The respective C-rates and specific capacities are in parentheses.
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5.2. LiNi0.4Mn0.4Co0.2O2 (NMC442)

Ni-rich NMC cathodes (NMC442) are cheaper by reducing the compound’s cobalt
amount, allowing for a charge potential of 4.7 V without any structural changes. The
conventional electrolyte starts to degrade over the positive electrode above 4.3 V. All
the electrolyte–additive combinations for NMC442 are tabulated in Table 5. Aiken et al.
performed NMC442/graphite pouch cells at higher voltage (>4.2 V) in different temperature
conditions and observed less gaseous product formation with 2 wt% PES additive in
baseline electrolytes [134,135]. Nelson et al. studied the impedance growth of full cells
after long-term cycling and reduced them with appropriate electrolyte additives [136]. The
ternary mixture of additives such as PES211 is beneficial in mitigating impedance growth
and retains its capacity up to 85% after 500 cycles at 4.4 V under 45 ◦C [72,137]. Petibon
et al. tried to develop a new electrolyte combination free of EC that works better in all
required electrochemical aspects [138]. Fluorinated electrolytes and 1 wt% PES showed
better cycle stability of about 80% than binary and ternary additives-based EC: EMC (3:7,
v/v) electrolytes [139]. As a high-voltage electrolyte, EC co-solvent can be replaced by
sulfolane (SL), which has high anodic stability [140]. Rong and his co-workers have studied
ternary electrolyte combinations and Tris (trimethylsilyl) phosphate (TMSP) as an additive
for an NMC422 full cell, and it exhibited better rate performance [141].



Batteries 2023, 9, 193 18 of 41

Table 5. Battery metrics for NMC442 full cells with various anodes, electrolytes, and additives.

Electrodes Electrolytes Additives Voltage Range
Sp. Capacity
(mAh g−1)
(C-Rate)

Capacity Retention, %
(Cycles, C-Rate)

NMC442/graphite [72,137] 1 M LiPF6 in EC: EMC (3:7, w/w) 2 wt%PES + 1 wt%MMDS + 1 wt%TTSPi 3–4.4 V (45 ◦C) 85% (500, C/2.5)

NMC442/graphite [138] 1 M LiPF6 in EMC:VC (98:2, w/w) 1% TAP or 1% PPF 2.8–4.4 (55 ◦C) 80% (350, C/2.5)

NMC442/graphite [139] 1 M LiPF6 in FEC: TFEC (1:1, w/w) 1 wt% PES 2.8–4.5 (40 ◦C) ~80% (800, C/2.4)

NMC442/graphite [140] 1 M LiPF6 in SL: EMC (3:7, w/w) 2 wt% VC + 2 wt% TAP 2.8–4.4 (40 ◦C) 80% (500, C/2.4)

NMC442/graphite [141] 1 M LiPF6 in EC: DMC: EMC (1:1:1, v/v) 1 wt% TMSP 2.75–4.35 V 164.6(1 C) 90.8%(70, 1 C)

The respective C-rates and specific capacities are in parentheses.



Batteries 2023, 9, 193 19 of 41

5.3. LiNi0.5Mn0.3Co0.2O2 (NMC532)

Liu et al. applied one of the most popular additive VCs in an NMC532/graphite
full cell and tested it at an elevated temperature. VC-containing electrolyte cells produce
fewer decomposition products than free ones [60]. A fluorinated additive such as FEC
was studied in a Li metal battery and performed excellently [61]. Table 6 summarizes all
the electrolyte additive combinations with NMC532. Phosphorus-containing electrolyte
additive tris(trimethylsilyl)phosphite (TMSPi) and triethyl phosphite (TEPi) produce a
protective surface film on the cathode side [68]. Salt-type additives such as lithium difluoro
phosphate (LiDFP) are quite popular in Ni-rich cathode-based full cells with graphite as
an anode at various temperatures [80,142]. Zuo et al. exhibited lower impedance due to
interfacial modification by adding only 1 wt% of LiBF4 in the baseline electrolyte [143]. A
novel electrolyte additive, N, O-bis(trimethylsilyl)-trifluoroacetamide (NOB), is a nitrogen
and silicon-containing compound that acts as an HF scavenger sacrificial additive [144].
Dimethyl sulfite (DMS) is a sulfur-containing electrolyte additive that performs under low
temperatures of −10 ◦C and outperforms commercially available additives [145]. Zuo et al.
retained about 92.3% of initial capacity by adding 0.5 wt% of tris(trimethylsilyl)borate
(TMSB) due to forming a thinner film on the surface [146]. Adding 1,10-sulfonyldiimidazole
(SDM) can improve the electrochemical performance at high voltages [147]. The modified
version of DTD, namely [4,4′-bi(1,3,2-dioxathiolane)] 2,2′-dioxide (BDTD), is also developed
as a cathode additive, which improved the cycle retention up to 91.6% [148]. Shi and his
co-workers used the synergistic effect of lithium sulfide (Li2S) salt and acetonitrile (AN)
solvent additive and developed a stable cathode–electrolyte interface (CEI) layer, which
reduced the electrolyte decomposition [149].
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Table 6. Battery metrics for NMC532 full cells with various anodes, electrolytes, and additives.

Electrodes Electrolytes Additives Voltage Range
Sp. Capacity
(mAh g−1)
(C-Rate)

Capacity Retention, %
(Cycles, C-Rate)

NMC532/graphite [60] 1 M LiPF6 in EC: DEC (1:1 v/v) 1 wt% VC 2.5–4.2 V (60 ◦C) 159 (75 mA gm−1) 79% (100, 75 mA gm−1)

NMC532/graphite [68] 1.2 M LiPF6 in EC: EMC (3:7 w/w) 1 wt% TMSPi
1 wt% TEPi 3–4.4 V 190 (0.1 C)

194.5 (0.1 C)
88.8% (119, 0.3 C)
81.7% (119, 0.3 C)

NMC532/graphite [80] 1 M LiPF6 in EC: DEC (1:3 w/w) 1 wt% LiDFP 3–4.5 V 152.8 (0.1 C) 93.8% (100, 1 C)

NMC532/graphite [142] 1 M LiPF6 in EC: EMC (1:2 w/w) 2 wt% LiDFP
2.75–4.4 V (25 ◦C)
2.75–4.4 V (45 ◦C)
2.75–4.2 V (−10 ◦C)

93% (150, 1 C)
86% (150, 1 C)
92.7% (100, 0.3 C)

NMC532/graphite [143] 1 M LiPF6 in EC: EMC (1:2 w/w) 1 wt% LiBF4 3–4.5 V 178.1 (1 C) 90.1% (100, 1 C)

NMC532/graphite [144] 1 M LiPF6 in EC: EMC: DEC (3:5:2 w/w) 1 wt% NOB 2.75–4.5 V (25 ◦C) 73% (100, 1 C)

NMC532/graphite [145] 1 M LiPF6 in EC: EMC (1:2 w/w)

0.5 wt% DMS

0.5 wt% DTD

2.75–4.2 V (−10 ◦C)
2.75–4.2 V (25 ◦C)
2.75–4.2 V (45 ◦C)
2.75–4.2 V (−10 ◦C)

98.84% (50, 0.2 C)
89.04% (350, 1 C)
95.3% (100, 1 C)
81.14% (50, 0.2 C)

NMC532/graphite [146] 1 M LiPF6 in EC: EMC (1:2 w/w) 0.5 wt% TMSB 2.5–4.4 V
3–4.4 V

181 (0.2 C)
167.9 (1 C) 92.3% (150, 1 C)

NMC532/graphite [147] 1 M LiPF6 in EC: DEC: EMC (3:2:5, w/w) 0.25 wt% SDM 2.75–4.5 V 96.9% (50, 0.2 C)

NMC532/Li [150] 1 M LiPF6 in EC: DMC (1:1 v/v) 3–4.3 V 150 (0.4 C) 95% (50, 0.4 C)

NMC532/Li [151] 1 M LiPF6 in EC: DEC (1:1 v/v) 3–4.4 V 179.6 (0.2 C) 94.8% (80, 0.2 C)

NMC532/Li [61] 1 M LiPF6 in EC: DEC (1:1 v/v) 5 vol% FEC 3–4.3 V 154 (1 C) 65% (100, 1 C)

NMC532/Li [152] 1 M LiPF6 in EC: EMC (3:7 v/v) 2 wt% DTD 2.75–4.5 V 84% (100, 0.5 C)

NMC532/Li [148] 1 M LiPF6 in EC: EMC (3:7 v/v) 2 wt% BDTD 3–4.6 V 189 (0.5 C) 91.6% (100, 0.5 C)

NMC532/Li [153] 1 M LiPF6 in EC: DMC: DEC (1:1:1 v/v)
1 M LiBF4 in FEC:SN (1:4 w/w)

3–4.5 V
3–4.7 V
3–4.5 V
3–4.7 V

56.3% (100, 0.5 C)
35.5% (100, 0.5 C)
81.6% (100, 0.5 C)
73.6% (100, 0.5 C)

NMC532/Li [149]
NMC532/graphite 1 M LiPF6 in EC: DMC (3:7 v/v) 0.01 mg ml−1 Li2S + 0.5 vol% AN

3–4.5 V
2.8–4.5 V

80.74% (200, 1 C)
81% (180, 0.5 C)

The respective C-rates and specific capacities are in parentheses.
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5.4. LiNi0.6Mn0.2Co0.2O2 (NMC622)

NMC622 is a more recent material than other matured NMC cathodes, and com-
mercialization needs further modification. The advantage of increased energy density
with Ni content attracts commercialization and reduces battery pack costs. Electrolyte
additives or solvents that are stable at the upper cut-off voltage need to be developed
to utilize the full potential of NMC662. The electrolyte optimization in a combination
of solvents and additives for NMC622 is detailed in Table 7. Gasteiger et al. performed
testing of NMC622/graphite full cells with different upper cut-off potential and tem-
perature conditions to observe oxygen release due to electrolyte decomposition [154].
Small amounts of 1,4-phenylene diisocyanate (PPDI) acted as HF and H2O scavengers
and film-forming additives over the NMC622 cathode surface in pouch cells and ex-
hibited long-term cyclability at a 1 C rate [155]. Liao et al. introduced a new kind of
additive, namely 1-(2-cyanoethyl) pyrrole (CEP), which suppresses HF formation from
cycling at high voltages [156]. Hexamethylene diisocyanate (HDI) [157] and 4-propyl-
[1–3]dioxathiolane-2,2-dioxide (PDTD) [158] in 1 M LiPF6 in EC: EMC (1:2, w/w) can
reduce the interfacial impedance and increase cycling performance. Functional additives
such as (3-(N, N-dimethylamino) diethoxypropyl) pentamethyldisiloxane (DSON) [159], p-
toluenesulfonyl fluoride (pTSF) [160], triisopropyl borate (TIB) [161], diphenyldimethoxysi-
lane (DPDMS) [162], 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetra- siloxane (ViD4) [163],
3-hexylthiophene (3HT) [164], and tris(hexafluoroisopropyl)phosphate (THFP) [165] are
assigned with different roles, such as film-forming ability, HF scavenger, gas-suppressing
agent, and thermal safety.
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Table 7. Battery metrics for NMC622 full cells with various anodes, electrolytes, and additives.

Electrodes Electrolytes Additives Voltage Range
Sp. Capacity
(mAh g−1)

(C-Rate)

Capacity Retention, %
(Cycles, C-Rate)

NMC622/graphite [154] 1 M LiPF6 in EC: EMC (3:7 w/w)
3–4.4 V (25 ◦C)
3–4.4 V (40 ◦C)
3–4.4 V (50 ◦C)

174 (1 C)
184 (1 C)
190 (1 C)

84% (308, 1 C)
85% (308, 1 C)
73% (308, 1 C)

NMC622/graphite [166] 2.3 mol kg−1 LiTFSI in EC: DME (1:2 v/v) 2.75–4.2 V 169.3 (0.5 C) 98.7% (50, 0.5 C)

NMC622/graphite [155] 1 M LiPF6 in EC: EMC (1:2, w/w) 0.5 wt% PPDI 3–4.2 V (rt)
3–4.2 V (45 ◦C) 84.9% (600, 1 C) 81.3% (300,1 C)

NMC622/graphite [156] 1 M LiPF6 in EC: EMC (1:2, w/w) 1 wt% CEP 3–4.5 V 81.5% (50, 1 C)

NMC622/graphite [157] 1 M LiPF6 in EC: EMC (1:2, w/w) 0.1 wt% HDI 3–4.2 V 82.9% (600, 1 C)

NMC622/graphite [158] 1 M LiPF6 in EC: EMC (1:2, w/w) 1 wt% PDTD 3–4.2 V 83.7% (500, 1 C)

NMC622/Li [159]
NMC622/graphite 1 M LiPF6 in EC: EMC: DMC (1:1:1, v/v) 0.25 wt% DSON 3–4.3 V

3–4.2 V (55 ◦C)
84.7% (100, 1 C)
66.8% (50, 0.5 C)

NMC622/graphite [160]
NMC622/Li 1 M LiPF6 in EC: DEC: EMC (3:2:5, w/w) 1 wt% pTSF

3–4.35 V (25 ◦C)

3–4.35 V (55 ◦C)

88% (600, 1 C)
75% (300, 1 C)
89% (100, 1 C)

NMC622/Li [167] 1.2 M LiPF6 in DFEC: EMC (3:7 v/v) 3–4.4 V 189.9 (0.1 C) 83% (400, C/3)

NMC622/Li [168] 1.15 M LiPF6 in EC: EMC (3:7, v/v) 2 wt% VC 3–4.3 V (60 ◦C) 180.9 (C/5) 91.2% (60, 1 C)

NMC622/Li [169] 1 M LiPF6 in EC: EMC: DEC (1:1:1, v/v/v) 10 wt% FEC 2.8–4.6 V 196.3 (1 C) 87.3% (100, 1 C)

NMC622/Li [161] 1 M LiPF6 in EC: EMC: DEC (1:1:1, w/w/w) 1 wt% TIB 3–4.5 V 183.4 (1 C) 82.7% (300, 1 C)

NMC622/Li [162] 1 M LiPF6 in EC: EMC: DMC (1:1:1, v/v/v) 1 wt% DPDMS 2.8–4.3 V 168.2 (1 C, 25 ◦C) 93.3% (200, 2 C, 55 ◦C)

NMC622/Li [163] 1 M LiPF6 in EC: EMC: DMC (1:1:1, v/v/v)
0.5 wt% ViD4
0.5 wt% D4
0.5 wt% OMCTS

3–4.5 V
187.2 (0.2 C)
187.7 (0.2 C)
187 (0.2 C)

83.6% (150, 1 C)
81.3% (150, 1 C)
81.9% (150, 1 C)

NMC622/Li [164] 1 M LiPF6 in EC: EMC (3:7, w/w) 0.5 wt% LiDFOB
0.25 wt% 3HT 2.8–4.5 V 91.6% (50, 0.1 C)

93.5% (50, 0.1 C)

NMC622/Li [165] 1 M LiPF6 in PC: EMC: TEP (42.5:42.5:15, v/v) 2 wt% THFP 2.8–4.3 V 160 (100 mA g−1) 82% (200, 100 mA g−1)

The respective C-rates and specific capacities are in parentheses.
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5.5. LiNi0.8Mn0.1Co0.1O2 (NMC811)

Another Ni-rich NMC, NMC811, is also quite popular in battery research labs due to
its high specific capacity of 200 mAh gm−1 at 4.3 V and low cost (less cobalt). However,
its low cycling stability at high voltages and inferior safety issue makes it a poor choice
for a commercial approach. An optimized combination of electrolytes with its additives
enhances the performance of NMC811 with both graphite and lithium metal anodes. The
battery metrics of NMC811 with various electrolyte–additive combinations are tabulated in
Table 8. Gasteiger et al. studied oxygen release and cycle stability in NMC811/graphite full
cells at different end-of-charge potentials [14]. A combination of VC and TMSPi additives
in 1 M LiPF6 in EC: DMC (1:1, v/v) enhances the capacity retention and achieves 91% after
200 cycles [67]. The addition of triphenylphosphine oxide (TPPO) to the baseline electrolyte
improves the cell’s first coulombic efficiency and specific capacity [170]. Lan et al. proposed
a new additive, phenyl trans-styryl sulfone (PTSS), which builds a stable interfacial film on
the surface during the charge–discharge process [171]. The multifunctional film-forming
additive, 4-fluorobenzene sulfonate (PFBS), constructs a stable interface layer on both
positive and negative electrodes and protects the electrolyte solvent from decomposition
and structural degradation [172]. Adiponitrile (ADN) is a nitrile group that contains
additives favorable for high-voltage performance and low flammability [173].

3,3-diethylene di-sulfite (DES) forms a stable protection layer on the cathode sur-
face and assists in the Li+ ion extraction/insertion process [174]. Cheng et al. proposed
binary additives, which are comprised of lithium difluoro(oxalato)borate (LiDFOB) and
tris(trimethylsilyl)phosphate (TMSP), and checked their capability in both half-cell and full-
cell and even in the commercial pouch cell at different conditions. The synergistic effect of
both additives produces B-, Si-, and F-rich interface layers, which protect electrolyte decom-
position, gas formation, and the cathode from structural degradation [175]. Film-forming
additives such as tris(trimethylsilyl)borate (TMSB) [176], triphenyl phosphate (TPPa) [177],
phenyl vinyl sulfone (PVS) [178], and 2,4,6-triphenyl boroxine (TPBX) [179] are also re-
ported in NMC811-cathode-based Li-metal batteries. Multifunctional organic electrolyte
additives such as ethoxy(pentafluoro) cyclotriphosphazene (PFN) [180] and trimethylsilyl
trifluoroacetate (TMSTFA) [181] act as both the HF/H2O scavenger and the stable CEI layer-
forming agent. Hu et al. reported a functional electrolyte additive, cyclopropane sulphonic
amide (CPSA), combined with ether electrolyte to improve electrochemical properties [182].
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Table 8. Battery metrics for NMC811 full cells with various anodes, electrolytes, and additives.

Electrodes Electrolytes Additives Voltage Range
Sp. Capacity
(mAh g−1)
(C-Rate)

Capacity Retention, %
(Cycles, C-Rate)

NMC811/graphite [14] 1 M LiPF6 in EC: EMC (3:7 w/w)
3–4.0 V
3–4.1 V
3–4.2 V

131.9 (1 C)
149.3 (1 C)
172.5 (1 C)

90% (296, 1 C)
77% (296, 1 C)
66% (296, 1 C)

NMC811/graphite [67] 1 M LiPF6 in EC: DMC (1:1, v/v) 1 vol% VC+ 1 vol% TMSPi 2.75–4.2 V 91% (200, C/3)

NMC811/graphite [170] 1 M LiPF6 in EC: EMC (3:7, w/w) 0.5 wt% TPPO 2.8–4.3 V 198 (0.1 C) 92% (97, 0.5 C)

NMC811/graphite [171] 1 M LiPF6 in EC: DMC (3:7, w/w) 1 wt% PTSS 3–4.35 V 117 (0.2 C) 62.7% (100, 1 C)

NMC811/graphite [172] 1 M LiPF6 in EMC:EC: DMC (5:3:2, w/w) 1 w% PFBS 3–4.2 V (25 ◦C)
3–4.2 V (45 ◦C)

89.9% (400, 1 C)
89.01% (400, 1 C)

NMC811/graphite [173] 1 M LiPF6 in EC: EMC (3:7, v/v) 0.5 wt%ADN 2.7–4.3 V 85.60% (200, 0.3 C)

NMC811/graphite [174] 1 M LiPF6 in EC: EMC (1:2, w/w) 0.25 wt% DES
1 wt% DES

2.75–4.3 V
2.75–4.5 V

77.25% (300, 1 C)
82.53% (150, 1 C)

NMC811/Li [175]

NMC811/graphite
NMC811/Li Pouch

1.1 M LiPF6 in EC: DEC (1:1, v/v) 0.1 M LiDFOB + 2 wt% TMSP

2.7–4.5 V
2.7–4.7 V
2.7–4.3 V (45 ◦C)
2.7–4.5 V (45 ◦C)
2.7–4.5 V
2.7–4.5 V

74.5% (800, 1 C)
76.3% (500, 1 C)
85% (500, 1 C)
90% (400, 1 C)
82.8% (500, 1 C)
94% (200, 1 C)

NMC811/Li [176] 1 M LiPF6 in EC: DEC (1:1, v/v) 0.5 wt% TMSB 2.7–4.3 V 165.8 (0.2 C)

NMC811/Li [177] 1 M LiPF6 in EC: EMC (1:2, v/v) 2 wt% TPPa 3–4.3 V (55 ◦C) 210.5 (0.1 C) 63.5% (100, 1 C)

NMC811/Li [178] 1 M LiPF6 and 0.1 M LiDFOB in EC: FEC: EMC: DEC
(2:1:5:2 w/w) 1 wt% PVS 3–4.3 V 80.8% (400, 0.5 C)

80.0% (400, 1 C)

NMC811/Li [179] 1 M LiPF6 in EC: EMC: DEC (5:3:2, w/w/w) 5 wt% TPBX 3–4.35 V 192.1 (1 C) 78% (100, 1 C)

NMC811/Li [180] 1 M LiPF6 in FEC: DMC (1:1, v/v) 3 wt% PFN
3 wt%PFN + 2 wt% LiDFOB 2.7–4.4 V 92.5% (50, 0.5 C)

84.2% (100, 0.5 C)

NMC811/Li [181] 1 M LiPF6 in EC: DMC: EMC (1:1:1, v/v) 0.2 wt% TMSTFA 3–4.3 V 149 (1 C) 80% (200, 1 C)

NMC811/Li [182] 1 M LiFSI in DOL: DME (1:1, w/w) 1 wt% CPSA 3–4.3 V 157.08 (0.5 C) 82.39% (180, 0.5 C)

The respective C-rates and specific capacities are in parenthese.
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6. Single-Crystal NMC

Commercially available NMC cathodes are poly-crystalline. Polycrystals are secondary
particles with many nano-sized primary particles. Significant challenges experienced
by polycrystal cathodes are cathode–electrolyte interface (CEI) layer formation, cation
disordering, micro-cracks formation, and evolution of gaseous product during continuous
cycling [183,184]. Single-crystal NMC (SC-NMC) synthesis can be a cutting-edge approach
to mitigate all of these problems. The advantages of single-crystal NMCs compared to
polycrystals (PCs) are a longer cycle life, high-voltage stability, higher volumetric energy
density, less stress crack formation, less unwanted interfacial reaction, controllable crystal
facet orientation, a low amount of gas formation, and higher mechanical and thermal
stability [185,186]. The absence of intergranular stress micro-cracks originating from the
phase change helps improve cyclic performance. The packing density is higher for SC-NMC
due to the excellent distribution of primary particles, facilitating higher volumetric energy
density. However, there are similarities in synthesis methods for polycrystals and single
crystals due to the matching crystal growth process with SC-NMC requiring more synthetic
control for particle morphology, size, and dispersion. The sintering process involves
conventional solid-state and molten salt methods. For SC-NMC, the solid-state method is
more widely accepted commercially for SCs and requires higher sintering temperatures
and excess lithium sources than PCs with a secondary sintering process in the case of the
agglomeration of the particles. The molten salt method generates uniform crystal growth
at relatively low temperatures in a molten salt medium. The method has the following
challenges for large-scale production: (i) volatilization of molten salt, (ii) cost of the salt,
(iii) post-washing, and (iv) post-heat treatment. The need for an excess lithium salt source
and tedious heat treatment is another common problem for both SCs synthesis methods
and affects the production cost for industrial applications.

Dahn’s group has extensively studied single-crystal NMC532 by optimizing it with
different electrolytes and other testing conditions to obtain stable cycles (5000) for pouch
cells [187,188]. Dahn et al. reported cathodes with nickel-rich content (Ni ≥ 0.6) to increase
energy output [189–191]. NMC6.5:2.5:1 is an optimized composition due to higher capacity
retention above 4.2 V, favorable specific capacity, and less reactivity with electrolytes at
temperatures ~40 ◦C [192]. The demerits associated with SC-NMC are kinetic limitation
of lithium diffusion, cation disordering during high-temperature sintering, intragranular
micro-cracks formation, and unwanted parasitic reactions at the cathode–electrolyte in-
terface at a high voltage or temperature [189,193–197]. Different modification strategies
such as surface coating, elemental doping, morphology regulation, and electrolyte system
optimization with additives are applied to mitigate all problems that directly or indirectly
affect their electrochemical performances.

PVDF binder with NMP solvent is the most commonly reported binder for single-
crystal cathode materials. Electrolytes with different functional additives help build pro-
tective layers on cathode surfaces. Table 9 summarizes all the data of SC-NMC with
varying types of electrolyte systems and additives. Apart from the liquid electrolytes,
some researchers have also studied the capability of SC-NMC in solid-state lithium-ion
batteries [198–203]. Wang et al. obtained an almost 30 mAh g−1 higher capacity at a C/10
rate for SC-NMC532 compared to the polycrystalline one, and the capacity gain increases
with higher current densities. A higher lithium diffusion coefficient is also responsible for
better rate performance [204]. Crystal morphology and facet modifications can improve the
solid-state battery performance by providing better contact and a smooth 3D lithium-ion
diffusion pathway. The octahedral crystal morphology of NMC622 with exposed (012)
facets shows superior rate capability compared to other morphological counterparts [205].
A polymer-composite-based electrolyte is also used with LiNi0.6Mn0.1Co0.3O2 (NMC613)
to alleviate intergranular crack formation during cycling [206]. Further modification of the
Ni-rich cathode with a surface coating of Li1.4Al0.4Ti1.6(PO4)3 (LATP) decelerates structural
degradation and stabilizes cycling performances [207].
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Table 9. Electrochemical performance of single-crystal NMC in half cells and full cells with various electrolyte–additive compositions.

Electrodes Electrolytes Additives Voltage Range (V) Temperature (◦C)
Sp. Capacity
(mAh g−1)
(C-Rate)

Capacity Retention, %
(Cycles, C-Rate)

NMC111/Li [208] 1 M LiPF6 in EC: EMC (3:7 w/w) 2.8–4.3 V 163.9 (0.1 C) ~85% (300, 0.5 C)

NMC111/Li [209] 1 M LiPF6 in EC: DMC (3:7 v/v) 2.8–4.4 V 25 160 (0.1 C)

NMC111/Li [210] 1 M LiPF6 in EC: DMC (1:1 v/v) 2.5–4.4 V 25
55 171 (0.1 C) 97.2% (100, 0.1 C)

96.2% (80, 0.1 C)

NMC111/Li [211] 1 M LiPF6 in EC: DEC: EMC (1:1:1 v/v) 2.8–4.4 V 173.1 (0.1 C) 88.7% (50, 0.1 C)

LiNi0.5Co0.25Mn0.25O2/Li [212] 1 M LiClO4 in EC: EMC (3:7 w/w) 1 wt% LiPO2F2 3–4.3 V 25
55

154 (1 C)
156 (1 C)

95.3% (200, 1 C)
91.6% (100, 1 C)

NMC532/Li [213]

NMC532/graphite

1 M LiPF6 in EC: DEC (1:1 v/v)

2.75–4.4 V
2.75–4.6 V
2.75–4.4 V
2.75–4.4 V

25
25
55
45

177.5 (1 C)
187.4 (1 C)
175.9 (1 C)
172.6 (1 C)

90.6% (100, 1 C)
81% (100, 1 C)
92.6% (100, 1 C)
98.7% (500, 1 C)

NMC532/Li [214] 1 M LiPF6 in EC: EMC: DMC (3:2:5 v/v) 3–4.5 V 167.3 (1 C) 90.3% (100, 1 C)

NMC532/graphite [215] 1 M LiPF6 in EMC: DEC: DMC (1:1:1 v/v) 3–4.2 V 25 141.2 (1 C) 99% (1000, 1 C)

NMC532/graphite [216] 1 M LiPF6 in EC: EMC (3:7 w/w)
1 M LiPF6 in EMC

2 wt% PES + 1 wt% TTSPi +
1 wt% DTD
5 wt% FEC

3–4.4 V 40 ~97% (800, C/2)
~96% (800, C/2)

NMC532/graphite [217] 1 M LiPF6 in EC: EMC (3:7 w/w)

1 wt% DTD
2 wt% FEC
2 wt% VC
2 wt% FEC + 1 wt% DTD
2 wt% VC + 1 wt% DTD

3–4.2 V 40

96.8% (400, C/3)
96.4% (400, C/3)
95.8% (400, C/3)
97.6% (400, C/3)
97.3% (400, C/3)

NMC622/Li [218] 1 M LiPF6 in EC: DEC: DMC (1:1:1 v/v) 2.8–4.3 V 183.7 (0.2 C) 89.93% (100,0.2 C)

NMC622/Li [219]
NMC622/graphite 1 M LiPF6 in EC: DEC: DMC (1:1:1 v/v) 2.8–4.3 V

2.8–4.35 V
25
25

171.3 (0.1 C)
179.3 (0.1 C)

83.3% (200, 1 C)
85.24% (800, 1 C)

NMC622/Li [220] 1 M LiPF6 in EC: DMC: EMC (1:1:1 v/v) 2.8–4.5 V 190.4 (0.1 C) 96.5% (50, 1 C)

NMC622/Li [221] 1 M LiPF6 in EC: DMC (1:1 v/v) 2.8–4.3 V 175.5 (0.1 C) 84.4% (100, 1 C)

NMC622/Li [222] 1 M LiPF6 in EC: DMC (1:1 v/v) 2.8–4.5 V 190.1 (1 C) 96% (50, 1 C)

NMC622/Li [208] 1 M LiPF6 in EC: EMC (3:7 w/w) 2.8–4.3 V 176 (0.1 C) 87.1% (200, 0.5 C)
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Table 9. Cont.

Electrodes Electrolytes Additives Voltage Range (V) Temperature (◦C)
Sp. Capacity
(mAh g−1)
(C-Rate)

Capacity Retention, %
(Cycles, C-Rate)

NMC622/Li [223]

NMC622/graphite
1 M LiPF6 in EC: EMC (3:7 w/w) 2 wt% VC 2.8–4.3 V

30
55
30

183 (0.1 C)
~94% (300, 1 C)
~85% (300, 1 C)
80% (800, 1 C)

NMC622/Li [189] 1 M LiPF6 in EC: DEC (1:2 v/v) 2 wt% FEC + 1 wt% DTD 3–4.4 V 30 ~96% (50, C/5)

NMC811/Li [224] 1 M LiPF6 in EC: DMC (1:1 v/v) 2.7–4.3 V 25 206.3 (0.1 C) 93% (100, 0.1 C)

NMC811/Li [225] 1 M LiPF6 in EC: DMC (1:1 v/v) 3–4.3 V 203.4 (0.1 C) 95.5% (300, 1 C)

NMC811/Li [226] 1 M LiPF6 in EC: DMC (1:1 v/v) 2.8–4.3 V 226.9 (0.1 C) 95.1% (100, 1 C)

NMC811/Li [227] 1 M LiPF6 in EC: EMC (3:7 w/w) 2.8–4.5 V 199 (C/2)

NMC811/Li [228] 1 M LiPF6 in EC: DEC: FEC (3:6:1 v/v) 2.5–4.3 V 30 162 (C/20) 90% (90, C/5)

NMC811/Li [229] 1 M LiPF6 in EC: DMC: EMC (1:1:1 v/v) 2.8–4.5 V 221.2 (0.1 C) 91.6% (50, 1 C)

NMC811/Li [230] 1 M LiPF6 in EC: DMC: DEC (1:1:1 v/v) 3–4.3 V 206 (0.1 C) 92% (200, 0.5 C)

NMC811/Li [231] 1 M LiPF6 in EC: DMC: EMC (1:1:1 v/v) 2.8–4.3 V 196.7 (0.2 C) 95.2% (100, 1 C)

NMC811/Li [232] 1 M LiPF6 in EC: DMC: EMC (1:1:1 v/v) 3–4.4 V
25
55
25

216 (0.1 C)
209 (1 C)

81.8% (200, 1 C)
85.3% (100, 1 C)
85% (100, 4 C)

NMC811/Li [233] 1 M LiPF6 in EC: DMC: EMC (1:1:1 w/w) 2.8–4.3 V 198.9 (0.1 C) 96.2% (150, 1 C)

NMC811/Li [234] 1.15 M LiPF6 in EC: DMC: EMC (3:3:4 v/v) 3–4.45 V 176 (0.1 C)

NMC811/Li [190] 1.5 M LiPF6 in EC: EMC: DMC (25:5:70 v/v) 2 wt% FEC + 1 wt% LFO 3–4.2 V 55 ~85% (1000, C/3)

LiNi0.83Mn0.07Co0.10O2/Li [235]

LiNi0.83Mn0.07Co0.10O2/graphite
1 M LiPF6 in EC: DEC (3:7 w/w)

3–4.5 V
3–4.9 V
3–4.35 V

94.5% (30, 0.5 C)
93.3% (15, 0.1 C)
84.8% (400, 0.5 C)

LiNi0.83Mn0.05Co0.12O2/Li [236] 1 M LiPF6 in EC: DEC (1:1 v/v) 2.75–4.3 V 25 209.7 (0.1 C) 99.56% (100, 0.2 C)

LiNi0.83Mn0.05Co0.12O2/Li [237] 1.2 M LiPF6 in EC: EMC (3:7 v/v) 2 wt% VC 2.8–4.3 V 209 (0.1 C) 96.6% (100, 1 C)
93.1% (200, 1 C)

LiNi0.9Co0.055Mn0.045O2/Li [238] 1 M LiPF6 in EC: DMC: EMC (1:1:1 v/v) 2.8–4.3 V 27 220.6 (0.1 C) 93% (50, 1 C)

LiNi0.91Mn0.03Co0.06O2/Li [239] 1 M LiPF6 in EC: DMC: EMC (1:1:1 v/v) 3–4.3 V 203.8 (0.1) 80.8% (70, 0.5 C)

The respective C-rates and specific capacities are in parenthese.



Batteries 2023, 9, 193 28 of 41

7. Commercial Aspects of NMC

Over the past few decades, electric vehicles have boomed with lithium-ion batteries
that have high energy contents of 260 Wh kg−1 or 700 Wh L−1 at the cell level and higher
efficiencies (>99%) [240]. The cathode seems critical in achieving these energy densities with
high reversible specific capacities and discharge potentials vs. Li/Li+. Table 10 represents
cell chemistry present in different electric vehicles with their specifications. The battery
cost is another vital controlling factor before commercialization, looking for a pack cost of
USD 100–125 kWh−1 to compete with conventional combustion energy-driven vehicles.

Wentker et al. introduced a bottom-up approach model to calculate the cost and
performance of commercial cathode materials [241]. An estimate of the cost-to-performance
ratio (R) to evaluate their economic prospects is provided, as Tyagi et al. suggested [242].

R =
Cost

(
$

kWh

)
Energy density

(
Wh
kg

)
Figure 10a,b show the cost and energy density of different compositions of NMC with

calculated R-values for commercialization. The R-value decreases with the reduction in Co
content. Figure 10c,d show commercial electric vehicles’ energy density and R-values with
organic liquid electrolytes.
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Table 10. Energy output and driving range of commercialized NMC cathode from automobile manufacturers (2013–2021) [243–245].

Cell Chemistry (Cathode/ Anode)
Cell Specification Battery Packs

Electric Vehicle Model
Producer Type Capacity (Ah) Voltage(V) Specific Energy (Wh kg−1) Energy Density (Wh L−1) Energy (kWh) Range (km)

NMC/LTO Toshiba Prismatic 20 2.30 89 200 20 130 Honda Fit EV (2013)

NMC111/C Li-Tec Pouch 52 3.65 152 316 17 145 Smart Fortwo EV (2013)

NMC111/C Samsung SDI Prismatic 60 3.7 122 228 22 130 BMW i3 (2014)

NMC622/C SK Innovation Pouch 38 3.70 27 145 Kia Soul EV (2014)

NMC/C Panasonic Prismatic 25 3.70 130 215 24 190 VW e-Golf (2015)

NMC/C LG Chem Pouch 56 3.65 186 393 60 383 Chevrolet Bolt (2016)

NMC111/C Samsung SDI Prismatic 94 3.7 189 357 33 183 BMW i3 (2017)

NMC721/C LG Chem Pouch 59 3.70 241 466 41 400 Renault Zoe (2017)

NMC532/C AESC Pouch 56.3 3.65 130 205 39 240 Nissan Leaf (2018)

NMC622/C Samsung SDI Prismatic 120 3.7 42 246 BMW i3 (2019)

NMC721/C LG Chem Pouch 64.6 3.7 259 648 93.4 100 Porsche Taycan (2019)

NMC532/C LG Chem Pouch 78 292 Volvo XC40 (2019)

NMC721/C LG Chem Pouch 145 1.85 164 267 58 350–544 Volkswagen ID.3

NMC622/C LG Chem Pouch 55 3.75 151 228 65 417 Chevrolet Bolt (2020)

NMC622/C (Li-ion Polymer) SK Innovation Pouch 180 3.56 250 64 391 Kia Soul EV (2020)

NMC622/C LG Chem Laminated 56.3 151 62 364 Nissan Leaf E plus (2020)

NMC721/C LG Chem Pouch 64.6 3.65 263 648 85 392 Audi e-tron GT (2021)

NMC721/C LG Chem Pouch 78 3.65 156 77 305 Audi Q4 e-tron-SUV (2021)

NMC622/C LG Chem (Umicore) Pouch 60 142 164 64 484 Hyundai KONA Electric (2021)

NMC/C (Li-ion Polymer) LG Chem Pouch 77 488 Hyundai ioniq 5-LR AWD (2021)

NMC811/C (Li-ion Polymer) SK Innovation Pouch 180 3.56 250 64 370 Kia Niro (2021)

NMC811/C (Li-ion Polymer) LG Chem Pouch 11.2 163 230 78 303 Kia EV6-LR AWD (2021)
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8. Summary and Perspectives

LiNixMnyCozO2 (NMC) is the most successful cathode material due to its improved
energy density and the smaller amount of cobalt. NMC333, NMC442, and NMC532 are
state-of-the-art cathode materials in the LIB market. Ni-rich cathodes such as NMC622
and NMC811 are maturing cathodes for EVs with high specific capacities and lower
costs. Ni-rich NMC cathodes face challenges such as cation mixing, detrimental side
reactions, and phase transformations, leading to rapid capacity fading and poor battery
performance. Strategies and modifications/optimizations on structural stability, binder,
electrolyte, and electrolyte additives to extract maximum battery performance without
appreciable degradation on cycling are currently aplenty in the literature. In this review,
the effects of various binders and electrolytes/additives for NMC cathode-based half/full
cells were collated extensively from the literature and critically analyzed.

To extract the best characteristics of the NMC cathodes, a compatible binder and
electrolyte system has to be designed by optimizing the electrolyte–additives and binder
to enhance the cycling capability without any deterioration in the cathode crystal struc-
ture. The synthesis of novel additives with different functional groups (nitrile, amine,
fluorocarbon, ether, ester) and interfacial engineering for the electrode–electrolyte interface
can improve the structural integrity and stability of the SEI layer. Figure 11a,b show the
specific capacity and normalized capacity retention of NMC-based full-cell and half-cell
compositions, respectively. The best combinations of electrolyte systems with additives
(line marks) and without additives in the best voltage range of performance are graphically
summarized [68,127,132,141,148,156,169,170,179]. In full cells with graphite, NMC 111 and
NMC 811 have comparable specific capacities, but NMC 811 shows drastic improvement in
reversible capacity in an optimized additive/electrolyte combination (Figure 11a).

Single-crystal (SC) NMC cathodes can provide better structural integrity, cycling sta-
bility, and thermal safety than polycrystals. SC-NMC consists of micron-sized particles
with highly compacted and volumetric energy density. Novel optimized synthetic methods,
hetero-atom doping, and surface coating can further improve the SC-NMC cathodes. The
impact of non-electrode components on SC-NMC, which was missing until now, is pre-
sented in this review. Compared to polycrystals, SC-NMC (optimized for reversible capacity
and C-rate capabilities) shows better electrochemical performance with solid-state elec-
trolytes and can be favorable for the future commercial market. The literature is inconsistent
about the battery metrics of SC-NMC; the cycling retention improves, but the capacity and
rate capability of SC-NMC must be optimized for further commercialization of the cathodes.
The improvement in cyclic retention with the right choice of electrolyte–additive combina-
tions is shown in Figure 11. As evident from the figure, the half-cell performance of NMC
811 in the polycrystalline case (~190 mAh g−1) is improved upon in the single-crystalline
morphology (~225 mAh g−1) of NMC 811 in an optimized binder–electrolyte–additive
combination. Figure 11c shows the best combinations of electrolytes, additives, and binders
for single-crystal morphology of NMC [210,213,220,226,236,238].
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Figure 11. The specific capacity and normalized capacity retention of different NMC compositions
without additives and with additives (line marks) in (a) full cells and (b) half cells. (c) Electrochemical
performance of a NMC single-crystal cathode in a half cell.

The electrolyte–additive combinations with the best battery metric for each polycrys-
talline NMC composition are tabulated in Table 11.

Table 11. The electrolyte–additive combinations with the best battery metric for each polycrystalline
NMC composition [68,127,132,141,148,156,169,170,179].

Electrodes Electrolytes Additives Voltage Range Capacity Reported (mAh g−1) Cycle Stability

NMC111/graphite 1 M LiPF6 in EC: EMC
(3:7, w/w)

0.1 wt% MUI
without 2.8–4.6 V 197.3 (0.1 C)

197.5 (0.1 C)
63% (200, 0.3 C)
47% (200, 0.3 C)

NMC442/graphite 1 M LiPF6 in EC: DMC: EMC
(1:1:1, v/v)

1 wt% TMSP
without 2.75–4.35 V 164.6 (1 C) 90.8% (70, 1 C)

NMC532/graphite 1.2 M LiPF6 in EC: EMC
(3:7 w/w)

1 wt% TMSPi
without 3–4.4 V 190 (0.1 C)

191 (0.1 C)
88.8% (119, 0.3 C)
85.6% (119, 0.3 C)

NMC622/graphite 1 M LiPF6 in EC: EMC
(1:2, w/w)

1 wt% CEP
without 3–4.5 V 192

187
81.5% (50, 1 C)
27.4% (50, 1 C)

NMC811/graphite 1 M LiPF6 in EC: EMC
(3:7, w/w)

0.5 wt% TPPO
without 2.8–4.3 V 198 (0.1 C)

163 (0.1 C)
92% (97, 0.5 C)
86% (97, 0.5 C)

NMC111/Li 1 M LiPF6 in EC: EMC: DEC
(1:1:1, v/v/v)

0.5 wt% LiBOB
without 3–4.6 V 191 (0.6 C)

183.7 (0.6 C)
91.8% (60, 0.6 C)
78.8% (60, 0.6 C)

NMC532/Li 1 M LiPF6 in EC: EMC
(3:7 v/v)

2 wt% BDTD
without 3–4.6 V 189 (0.5 C)

192.9 (0.5 C)
91.6% (100, 0.5 C)
87.2% (100, 0.5 C)

NMC622/Li 1 M LiPF6 in EC: EMC: DEC
(1:1:1, v/v/v)

10 wt% FEC
without 2.8–4.6 V 196.3 (1 C)

187.8 (1 C)
87.3% (100, 1 C)
60.8% (100, 1 C)

NMC811/Li 1 M LiPF6 in EC: EMC: DEC
(5:3:2, w/w/w)

5 wt% TPBX
without 3–4.35 V 192.1 (1 C)

189.7 (1 C)
78% (100, 1 C)
57% (100, 1 C)

The electrolyte–additive combinations with the best battery metric for each SC-NMC
(single crystalline) composition are tabulated in Table 12.

Table 12. The electrolyte–additive combinations with the best battery metric for each SC-NMC (single
crystalline) composition [210,213,220,226,236,238].

Electrodes Electrolytes Voltage Range (V) Capacity Reported
(mAh g−1) Cycle Stability

NMC111/Li 1 M LiPF6 in EC: DMC (1:1 v/v) 2.5–4.4 V 171 (0.1 C) 97.2% (100, 0.1 C)

NMC532/Li 1 M LiPF6 in EC: DEC (1:1 v/v) 2.75–4.4 V 177.5 (1 C) 90.6% (100, 1 C)

NMC622/Li 1 M LiPF6 in EC: DMC: EMC (1:1:1 v/v) 2.8–4.5 V 190.4 (0.1 C) 96.5% (50, 1 C)

NMC811/Li 1 M LiPF6 in EC: DMC (1:1 v/v) 2.8–4.3 V 226.9 (0.1 C) 95.1% (100, 1 C)

LiNi0.83Mn0.05Co0.12O2/Li 1 M LiPF6 in EC: DEC (1:1 v/v) 2.75–4.3 V 209.7 (0.1 C) 99.56% (100, 0.2 C)

LiNi0.9Co0.055Mn0.045O2/Li 1M LiPF6 in EC: DMC: EMC (1:1:1 v/v) 2.8–4.3 V 220.6 (0.1 C) 93% (50, 1 C)
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