
Citation: Iqbal, M.; Benmouna, A.;

Becherif, M.; Mekhilef, S. Survey on

Battery Technologies and Modeling

Methods for Electric Vehicles.

Batteries 2023, 9, 185. https://

doi.org/10.3390/batteries9030185

Academic Editors: Pascal Venet,

Karim Zaghib and Seung-Wan Song

Received: 31 December 2022

Revised: 8 March 2023

Accepted: 13 March 2023

Published: 20 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

batteries

Review

Survey on Battery Technologies and Modeling Methods for
Electric Vehicles
Mehroze Iqbal 1,2 , Amel Benmouna 1,2,3, Mohamed Becherif 1,* and Saad Mekhilef 2,4

1 Femto-ST, Univ. Bourgogne Franche-Comte, UTBM, CNRS, 90000 Belfort, France
2 Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan Ikram-Uniten,

Kajang 43000, Selangor, Malaysia
3 ESTA, School of Business and Engineering, 90000 Belfort, France
4 School of Science, Computing and Engineering Technologies, Swinburne University of Technology,

Hawthorn, VIC 3122, Australia
* Correspondence: mohamed.becherif@utbm.fr

Abstract: The systematic transition of conventional automobiles to their electrified counterparts is an
imperative step toward successful decarbonization. Crucial advances in battery storage systems (BSS)
and related technologies will enable this transition to proceed smoothly. This requires equivalent de-
velopments in several interconnected areas, such as complete battery cycles and battery management
systems (BMS). In this context, this article critically examines state-of-the-art battery technologies
from the perspective of automakers, provides insightful discussions, and poses open questions with
possible answers. The generations of BSS (traditional, current, and futuristic) are first reviewed and
analyzed via two distinct qualitative factors (DQFs): key design markers and performance indicators.
Based on the introduced DQFs, major development trends and probable evolutions are forecasted.
Thereafter, recent modeling and state estimation methods are comprehensively reviewed in relation
to high-performance BMS. Accordingly, promising modeling methods are identified as futuristic
solutions, leading to an accurate and timely decision for reliable and safer user experience. This article
is concluded by presenting a techno-economic assessment of what to expect, as well as highlighting
future challenges and opportunities for industry, academia, and policy makers.
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1. Introduction

The transportation sector is responsible for a considerable portion of unwanted green-
house gas (GHG) emissions as well as global energy consumption, a fact evident from
Figure 1 [1]. Therefore, policy makers are advocating for appropriate revisions of conven-
tional automobiles to realize a sustainable and clean society [2]. Accordingly, the following
targets have been put in place: China will reduce their GHG emissions consecutively after
2030, about 50% of new vehicles will achieve zero emissions in the USA by 2030, and
almost all vehicles will achieve zero emissions in Europe by 2035 [3–5]. The electrification
of conventional automobiles is considered a promising solution that is already in the imple-
mentation phase, and is expected to ramp up even further, as indicated and endorsed by
policy makers, industry, and academia [6,7].

Electrification as a terminology essentially refers to the partial or complete replacement
of standard gasoline engines with their electrochemical counterparts, such as battery storage
systems (BSS), supercapacitors, and hydrogen-powered fuel cell systems [8,9]. The overall
objective is to attain the same power/energy density as conventional gasoline engines.
As illustrated in Figure 2, fuel cells and supercapacitors are present at the two polar
ends, independently providing the competitive specific power/energy, while batteries can
potentially provide the best of both [10,11]. Batteries have, therefore, been a subject of
intensive research over the past decade, as they can be designed to achieve an appropriate
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power/energy balance [12,13]. This is evident from the recent prominence of battery electric
vehicles (BEVs), effectively coupling a BSS with an electric motor as the only source of
propulsion [14].
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Nevertheless, various well-proportioned combinations of electrochemical sources
from Figure 3 (Part A) have already provided well-accepted and commonly available
commercial products: gasoline hybrid electric vehicles (GHEV), range-extender hybrid
electric vehicles (r-HEV), battery electric vehicles (BEV), and fuel cell hybrid electric vehicle
(FCHEV) [15–18]. These products are identified by distinct merits in terms of commercial
penetration, acceptance, and maturity, though the latter two (BEV and FCHEV) are the
only true successors regarding complete electrification. It is worth mentioning here that the
topologies presented in Figure 3 (Part A) do not correspond to an exhaustive list, but rather
several possibilities can be viable both economically and performance-wise, as evident in
the literature and elaborated comprehensively in Figure 3 (Part B).
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It can be observed from Figure 3 that BSS is an integral part of electrified automobiles
in one way or another, such as in the case of FCHEV, where the battery system assists
the fuel cell for comprehensive, effective, and efficient vehicular operation [19]. Natu-
rally, the role of BSS in maintaining the overall performance of electrified automobiles
is of paramount importance, whether it be in terms of power delivery, ownership price,
travelling range, or comfort and safety [20]. Therefore, it is essential to improve and in-
novate several techno-economic aspects associated with battery technologies, including
complete battery cycle [21,22], sustainable battery charging infrastructure [23,24], battery
management system [25,26], etc.

Battery storage as a technology has enjoyed a profound evolution, with an impact
that has matured over a century, and is still a topic of extensive research. The invention of
the first rechargeable lead-acid battery by French physicist Gaston Plante in the late 19th
century triggered the era of electrochemical storage devices [27,28]. This was followed by
an unprecedented expansion, as several families of batteries for EVs were conceptualized
and developed. However, from the perspective of automobiles, two distinct batteries,
nickel metal hydride and lithium-ion, have gained massive popularity, and thus have been
and still are widely employed in commercial electric vehicles (EVs) [29–32]. Currently,
lithium-ion technology is the preferred choice for automotive manufacturers and dominates
the EV industry owing to its obvious merits and high performance [33,34].

Most of the lithium-based batteries require precious and strategic minerals such as
lithium itself together with cobalt [35]. Not only are these minerals becoming very ex-
pensive due to unprecedented demand, but the access to these minerals is becoming
challenging because of current political turmoil [36,37]. A recent example is the politi-
cal situation in the Democratic Republic of the Congo (production of more than 70% of
the world’s cobalt), which has significantly reduced cobalt’s supply. Another problem
is related to the mining, processing, and recycling of these minerals (lithium and cobalt)
for battery use, as the whole process can be detrimental for the sustainable energy cycle.
These challenges are motivating researchers and institutes to limit the usage of strategic
minerals for batteries [37]. Subsequently, extensive research on the development of alter-
nate technologies and the future generation of high-performance batteries is underway
for electrified automobiles [38]. The key to future generation is exploiting the minerals
with innate abundancy, least toxicity, and enhanced safety (such as sodium, sulfur, zinc,
manganese, iron, aluminum, etc.) then assembling them in innovative ways to achieve
high-performance electrochemical storage systems. Therefore, it is expected that several
technological breakthroughs may emerge soon in the context of the future generation of
batteries for electric automobiles [39–42].

Battery management and power control (elements of BMS) are considered integral and
obligatory parts of BSS, especially for automobile applications. BMS ensures the reliable
and safe operation of EV batteries and, therefore, overall stable vehicular operation. It
is also of utmost importance, as the battery pack is usually the most expensive single
component of EV, accounting for at least 35–45% of total manufacturing cost [43]. The
power controller being a part of BMS regulates power/control-related problems such as
monitoring the charging process via an external charger. The power controller operates
according to information provided by the battery management unit including battery states
(charge SoC, health SoH, temperature SoT, power, remaining useful life, etc.). BMS as a
complete unit performs a series of functions, including (but not limited to) the following:
(i) battery state estimation, (ii) battery cells balancing, (iii) battery charge/discharge control,
(iv) thermal management, (v) communication, (vi) safety warnings, protection measures,
and bidirectional human–media interaction, etc. [44–47].

In the context of BMS, discussion about state-of-the-art battery modeling and state
(charge/health) estimation techniques is inevitable. The objective is to provide a virtual
yet effective imitation of battery electrochemical behavior, with a good compromise be-
tween accuracy, ease of implementation, and flexible integration. If properly managed, it
greatly assists in executing accurate and timely decisions, resulting in enhanced vehicular
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performance and extending the lifespan of battery storage [48,49]. In general, battery
modeling methods are classified as: electrical (equivalent circuit), electrochemical, data-
driven, etc. [50–53]. Battery state estimation has a close affinity with battery modeling
techniques, as it is regarded as the expected outcome of battery modeling. State estimators
are among the most important components of BMS for EV applications, since accurate
and timely estimation is essential for reliable and safe operation of battery packs. The
estimated states mainly include SoC, SoH, temperature, etc. Owing to its importance,
the topic of battery state estimation is well reported and rigorously studied by several
researchers [54–57]. Based on the provided literature, battery state estimators are typically
categorized as follows: (i) simplistic [58–60]; (ii) filters [61,62]; and (iii) data-driven [63,64].

As electrified automobiles are the key future technologies for achieving the envisioned
goal of sustainability and decarbonization, it is of utmost importance to study relevant
technologies such as battery storage systems and associated management units from the
perspective of automakers. This motivates a thorough techno-economic assessment and in-
depth discussions, while leading to the identification of essential challenges, opportunities,
and developments that can be expected and are crucial in the coming future.

2. Highlights and Contributions

The previous discussion clearly highlights the role of batteries and associated tech-
nologies in the ongoing success and future direction of electrified automobiles. Given the
importance of this topic, it is critical to review these technologies and determine future
directions, which can help academia, industry, and automakers. In general, finding the
perfect battery chemistry is not easy, as it involves balancing several elements: safety,
performance, cost, range, thermal profile, and reliability across the entire battery lifecycle.
Several aspects of design, economics, and politics are related to this field, such as finding,
extracting, and using appropriate materials that are abundant, safe, and easy to access,
provide better value and performance, etc.

There are several discussions and studies in the literature on topics including battery
technologies [20,65], battery management [2,44], modeling [51,66], estimation [67,68], mate-
rials [38], thermal design [69], recycling [70], etc. Though automakers primarily develop
and use their proprietary technology, it is mandatory to understand the complete battery
cycle and relevant technologies from their perspective to provide essential information and
identify key development trends. This aspect requires further attention. In its context, this
article critically examines the latest and emerging battery technologies from the perspective
of automotive manufacturers. The main highlights and contributions of this paper are
as follows:

� State-of-the-art battery storage systems are classified according to their technical ma-
turity, development timeline, and existing applications. Accordingly, the traditional
generation includes lead-acid and nickel-based batteries, the current generation con-
sists of lithium-based batteries, while the future generation encompasses batteries that
are currently not mature enough but are expected to succeed previous generations.
The future generation includes metal-ion, metal-air, solid-state, and sodium-beta
batteries.

� The complete battery cycle is described from the perspective of automakers. Several
interconnected aspects including manufacturing, application, and recycling are de-
tailed. Based on this, two distinct qualitative factors are introduced: key performance
indicators and design markers.

� The generation-wise evolution of batteries is comprehensively reviewed based on the
introduced qualitative factors. This makes it possible to predict the development of
relevant technologies and, consequently, to furnish the blueprint of technologies that
are expected to flourish in the future.

� Contemporary and emerging methods for battery modeling and state estimation are
discussed in detail with relevance to battery management and power control units. The
methods discussed are then ranked and prioritized according to key next-generation
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requirements: accuracy, computational load, scalability, resilience, implementation,
maturity, etc.

� As a conclusion, the paper provides a detailed techno-economic assessment of what
to expect, and highlights future challenges and opportunities for industry, academia,
and policy makers. The overall contents are graphically presented in Figure 4.
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3. Battery Storage: Evolution and Key Trends

Before initiating the discussion on state-of-the-art battery types for electrified auto-
mobile, it is beneficial to understand the complete battery cycle from the perspective of
automakers. A clear understanding can assist in introducing productive benchmarks to
strategically position the BSS based on their distinct merits (pros and cons) as well as
identifying associated challenges and opportunities, along with key future trends.

The complete battery cycle (manufacturing, application, and recycling) is a compli-
cated process comprising several interrelated steps, as presented in Figure 5: material
search and mining, transportation of raw materials to the manufacturing plant, processing
of key minerals/materials, battery cell design, assembling the battery pack, integration of
battery packs into the intended application, and, finally, recycling [71].
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The manufacturing cost of BSS for automobiles is a crucial factor, which is not only
affected by the complete battery cycle, but also by the associated research and development.
Even the fundamental purpose of BSS technology to support overall sustainable energy



Batteries 2023, 9, 185 7 of 31

circle is affected by the complexity of complete battery cycle. The key minerals, which are
rare, unsafe to use/recycle, and/or difficult to mine/process, can negatively impact the
manufacturing price as well as disturb the sustainable energy circle.

There are two distinct qualitative factors (DQFs) to quantify the efficacy of the complete
battery cycle in relation to the final product: (i) key performance indicators, such as lifetime,
power (density and specific), energy (density and specific), efficiency, memory effect, etc.,
and (ii) design markers: cost, toxicity, abundancy, maturity, etc. The next generation of
high-performance batteries for automotive applications is expected to provide a proper
balance between these two qualitative factors.

In general, battery storage technologies can be broadly classified as follows: (i) The
traditional generation consists of lead-acid and Ni-based batteries (pre-Lithium era). The
batteries from the traditional generation are not preferred anymore for high-performance
electrified automobiles. (ii) The current generation consists of Li-based batteries. The
current generation has already superseded the traditional generation in terms of two
qualitative indicators, and is the current preferred choice for a diverse range of EVs. (iii)
The future generation is being extensively researched (post-Lithium era) and yet to manifest
as a complete commercialized product at the same level as that of the current generation.
The future generation is envisioned to offer unmatched performance in terms of key
performance indicators as well as an appropriate balance between the introduced DQFs.
However, the timely realization of intended outcomes is highly dependent on the direction
of research for the future generation of batteries, as illustrated by recent research trends
on EV batteries [36,72,73]. The future generation mainly encompasses metal-ion, metal-
air, solid-state, and sodium-beta batteries. Accordingly, Figure 6 presents the graphical
classification and generational evolution of battery types for EV and portable applications.
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The generation-wise evolution of battery technologies is comprehensively discussed
in the subsequent sections. The discussion concludes with a comparison of key battery
technologies that is effectively based on the introduced qualitative factors: key performance
indicators (KPIs) and design markers (KDMs). The supporting data are collected from the
literature [20,36,38,65,74], but presented in a unique and appropriate manner to facilitate
the motivation and goals of this article. In this context, the first part of the comparison,
which is about KPIs, is provided in Table 1, while the second part, about KDMs, is presented
in Table 2.
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Table 1. Comparison: key performance indicators of battery technologies. Here, the data are
interpreted from the literature [20,36,38,65,74].

Battery Technologies Key Performance Indicators

Generation Family Mention
Specific
Energy

(Wh/kg)

Specific
Power
(W/kg)

Cycles
(×100) Efficiency(%) Memory

Effect

Self-
Discharge
(%/Month)

Traditional
Lead (Pb)-acid L (30–50) M (80–160) L (3–5) L (~75) L L-M

Nickel-based
Ni-Cd L (35–80) M (120–150) H (8–20) L m (~80) H M-H
Ni-MH M (60–120) H (150–450) M (3–15) M (~85) H H

C
ur

re
nt

Li-based

Li-ion (LFP) H (120–200) H (180–220) VH (20–80) H (~92) VL L
Li-ion (NMC) H (150–220) H (180–270) H (20–25) H (~94) VL L
Li-ion (LTO) M (60–110) ~VH VH (40–90) VH (~95) VL VL

Li-poly (LCO) H (120–220) H (220–330) H (10–22) H (~92) VL L
Li-metal (LMO) VH (250–360) H (160–230) ~VH VH (~95) VL VL

Fu
tu

re

Solid-state (Li-S) VH (~450) ~H M (~15) M-H (~87) - H
Solid-state (Li-O2) Ex (~5000) ~M L (~5) L (~75) - VL

Metal-air Zn-air (Zn-O2) VH (~450) ~M M (3–10) H (~90) - VL
Na-beta Na-S H (115–200) M (120–180) H (8–30) M (~85) - L-M

Metal-ion Na-ion H (100–160) ~VH H (5–20) VH (~95) VL L

Legend: VL (very low), L (low), M (medium), H (high), VH (very high), Ex (exceptional/benchmark).

Table 2. Comparison: key design markers of battery technologies.

Battery Technologies Key Design Markers

Gener-
ation Family Mention Cost (EUR

/kWh) §
Operating
Range (◦C)

Toxicity
/Hazards

Overcharge
Tolerance @

Abundance
&/Mining

Recycling
(Level)

Technical
Maturity

Tradit-
ional

Lead (Pb)-acid L-M (~255) A (−20–+45) H/F/P/C H N/N-T S (Cp) H
Nickel-
based

Ni-Cd M (~540) A (0–+50) H/P/C M-H N/N S (Pa) H
Ni-MH ~M-H A (0–+50) L/C L-M N/N N (Pa) M

C
ur

re
nt

Li-based

Li-ion (LFP) M (~425) A (−20–+40) L/F/C L N/N N (Pa) M
Li-ion (NMC) H (~985) A (−20–+50) M/F +/C L L/N-T T (Pa) M
Li-ion (LTO) M-H (~625) E (−40–+60) L L L/N-T T (Pa) L-M

Li-poly (LCO) ~M-H A (−20–+45) M/F +/C L L/N-T T (Pa) M
Li-metal (LMO) ~M E (−40–+85) L/F - N/N - L-M

Fu
tu

re

Solid-state (Li-S) ~L-M E (−20–+70) L/C L H/N T (Pa) L
Solid-state

(Li-O2) ~L-M E (−50–+90) L/C - H/N - L

Metal-air Zn-air (Zn-O2) ~L E (−20–+70) L/C - H/N N (Pa) L

Na-beta Na-S ~L Ht
(+270–+350) L/F */C - H/N T (Pa) L-M

Metal-
ion Na-ion ~L A (−20–+50) L/F + L-M H/N T (Pa/Cp) L-M

Legend: L (low), M (medium), H (high), A (ambient), E (extended), S (simple/established), N (normal/moderate),
T (tough), Ht (high temperature), F (fire/explode), P (poison), C (chemical burn/corrosivity/fumes/pollution),
Cp (complete), Pa (partial/incomplete). + Associated with organic solvents, which are highly inflammable, aside
from the metallic element (at anode), which can catch fire if in contact with water; * associated with molten sodium
and its residue materials, which, upon leakage, can cause short circuits; & indicate cumulative abundance of
key minerals; @ charging beyond nominal capacity and with elevated charging rate; § standard, interpreted, and
relative buying price as of 2022–23 by common vendors (CATL, CALB, etc.), plus the expected projections.

3.1. Traditional Generation of Batteries

Conventional batteries are representative of the pre-Lithium era, encompassing lead-
acid and nickel-based batteries. Most of the conventional batteries are well established in
terms of their technology, maturity, and applications.

3.1.1. Lead-Acid Batteries

The lead-acid family initiated the era of electrochemical batteries. The first lead-acid
battery was conceptualized in 1859 by Gaston Plante in France. The lead-acid technology is
distinguished by its maturity and lower manufacturing cost and has, therefore, dominated
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the market for over a century. In terms of composition, as exhibited in Figure 7a, lead (Pb)
is used as the negative electrode, lead dioxide (PbO2) is used as the positive electrode, and
dilute sulfuric acid (H2SO4) is used as the electrolyte [75,76].
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The specific energy and energy density of a typical lead-acid battery are relatively low.
The cycle expectancy of lead-acid batteries is between 400 and 800, which is also on the
lower side, especially for automotive applications. Moreover, lead being a toxic element
means that it can be a burden to handle properly [77]. These drawbacks limit the use of
lead-acid batteries to specific scenarios in automotive, such as starting, lighting, ignition,
etc. [78].

Within the lead-acid family, the valve-regulated lead-acid battery (VRLA) is among the
best options owing to significant advances in electrochemistry, resulting in higher specific
energy/power and recharging speed [79,80]. The VRLA is a cumulative term accounting
for gel cells and absorbed glass mat types. In addition, its intrinsic property of working
well at both low and high temperatures renders it a potential candidate for EVs. With these
attributes, VRLA batteries are used in some commercial vehicles as the main/starter energy
source: Ford ranger, Chrysler Voyager, Suzuki Alto, etc. [20].

3.1.2. Nickel-Based Batteries

Nickel-based (Ni-based) batteries are also among the most-established electrochemical
storage devices besides the lead-acid family. The first two Ni-based batteries (Ni-Fe and
Ni-Cd) were invented by Waldemar Jungner in Sweden in 1899 [81]. Nickel as an element
is superior to lead in terms of electrochemical properties and toxicity, but the typical cost of
a Ni-based battery is substantially higher than that of a lead-acid one [82].

Within the Ni-based family, the Ni-Zn (nickel-zinc) battery has the highest nominal cell
voltage (1.6 V) and is superior to its counterpart Ni-Cd battery in terms of non-toxicity and
lower material cost [83,84]. However, the Ni-Zn battery still suffers from a short lifespan
of around 300 cycles due to the partial solubility of zinc ions in the electrolyte [85]. This
drawback limits the commercial utilization of Ni-Zn batteries for automotive applications,
where the cycle expectancy should be higher. Another problem is the strong memory effect,
which is a prominent problem in nickel-based batteries [86,87]. Consistently across Ni-
based batteries, the cathode and electrolyte are, respectively, made of nickel oxyhydroxide
(NiOOH) and potassium hydroxide (KOH), while the anode may differ depending on the
type of battery (for example, in the case of Ni-Cd, the anode is cadmium) [88,89].

The Ni-metal-hydride battery (Ni-MH) is well embraced by automakers owing to its
good performance indicators, moderate cycle expectancy, and proven technology [90,91].
The anode in the Ni-MH battery is composed of a metal-hydride alloy, which can absorb
hydrogen [92]. The rest of the structure is the same as that of other Ni-based batteries.
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The structure of a typical Ni-MH battery cell is exhibited in Figure 7b. The nominal cell
voltage of the Ni-MH battery is on the lower side (1.32 V); however, both specific energy
and energy density are superior to several Ni-based and lead-acid batteries [93]. Ni-MH
batteries also have wide operating temperatures and are environmentally friendly. Given
the clear merits, Ni-MH batteries are extensively used in several commercial EVs and
hybrid electric vehicles (HEVs), such as Toyota Prius, Mirai, Honda Insight, Toyota RAV4L,
etc. [20,94]. Currently, Ni-MH batteries, being the pinnacle of the Ni-based family, are being
widely replaced by Li-based electrochemical devices due to their superior nature in almost
all the key performance indicators.

3.2. Current Generation of Batteries

The current generation is focused on lithium-based (Li-based) batteries, which have
superseded lead-acid and nickel-based batteries. This is particularly true for automotive
and portable applications, as Li-based batteries are superior in terms of providing the same
power/energy with much less volume/weight, no memory effect, low self-discharge, and
a longer lifespan [38,95]. The research on Li-based electrochemical devices dates to 1912
(started by G.N. Lewis); however, a proper device was first conceptualized by Goodenough
in the US in 1980 [96]. Later, the first working prototype was displayed in 1985 by Akira
Yoshino in Japan [97], which then resulted in a commercial product by 1991 (SONY).

Li-based batteries can be subclassified into lithium-ion, lithium-ion polymer (quasi-
metallic), and lithium-metal variants [20,38]. Polymer lithium batteries are considered a
transition between current and future technologies, while Li-metal types are mostly the
batteries of the future. Lithium-based batteries are already extensively used in several
commercial EVs and HEVs, such as Tesla 3, BMW i3, Nissan Leaf, etc. [20].

3.2.1. Lithium-Ion Batteries

Currently, for electrified automobiles, Li-ion batteries are the preferred choice and,
therefore, widely employed and considered a commercial success. This is thanks to their
intrinsic superiority in terms of energy, safety, and lifetime compared to previous gener-
ations of conventional batteries. The Li-ion batteries with organic solvents are the most
established, with competitive cost and high technical maturity. The anode of a typical
Li-ion battery is made up of carbon or silicon-carbon, while the cathode is a layered metal
oxide [38]. The electrolyte is usually a Li-salt (lithium hexafluorophosphate for good ionic
conductivity and electrochemical stability) mixed in an organic solvent [98]. Depending
on the material used for cathode design, the typical Li-ion batteries can be classified as
LCO (LiCoO2), NMC (LiNiMnCoO2), and NCA (LiNiCoAlO2) [99,100]. The NMC material
provides a superior lifespan and better overall performance and, therefore, is preferable for
automotive applications, while the NCA Li-ion battery is extensively used by Tesla in their
electric cars. Another newer and popular variant is termed LTO (lithium-titanium-oxide),
which differentiates itself by an anode made up of lithium-titanate nanocrystals instead
of carbon, providing a much higher surface area per gram. This property enables higher
power density for LTO type batteries (translating to fast charge/discharge), though, the
open-circuit nominal voltage of the LTO battery is significantly reduced (~2.3 V), resulting
in lower energy density compared to its counterparts (NMC, LCO, etc.). Nevertheless,
most of the Li-ion batteries are flexible in terms of design; a trait from power/energy can
be expanded at the cost of the other.

As cobalt can be regarded as one of the strategic and critical resources, considerable
efforts are now devoted to finding alternate materials with a lesser percentage of cobalt.
With this in mind, the Li-ion batteries are classified into three categories: cobalt-rich, cobalt-
medium, and cobalt-free [20]. In this context, a contemporary variant of Li-ion batteries
is LFP (LiFePO4 as cathode material), which, despite having lower energy density, is
becoming very popular for automotive applications due to its unsurpassed safety, high
cycle life, and low cost (cobalt-free nature) [101]. Therefore, LFP is a suitable candidate for
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large-scale production for electrified vehicles. The composition of a typical LFP battery is
presented in Figure 8a.

The commercialized Li-ion cells for EV applications are typically classified into three
types: cylindrical, prismatic, and pouch type [38,102,103]. The cylindrical type is a steel
shell package highly suitable for rapid and cost-effective manufacturing. Therefore, the
cylindrical cell type has been favored by Tesla for almost all its early models. The prismatic
cell is suitable for battery thermal management due to its cubic shape. In general, a large
surface facilitates heat exchange between the cell and cooling source. As a result, prismatic
cells are widely adopted by a variety of manufacturers such as Volkswagen, Toyota, Nissan,
etc. The pouch type cells are still in the experimental stage due to associated safety concerns.
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3.2.2. Lithium-Ion Polymer Batteries

The lithium-ion polymer (Li-poly) battery is a rechargeable type, employing a poly-
mer electrolyte instead of the liquid electrolyte (Li-salt mixed in an organic solvent) of
mainstream Li-ion batteries [104]. The rest of the structure is similar to Li-ion batteries,
such as a transition metal-oxide LiCoO2 used as the cathode (polymer LCO). The polymer
electrolyte is typically a highly conductive semisolid gel, such as poly (ethylene oxide),
poly(acrylonitrile), etc. [105]. Li-poly batteries provide higher specific energy, so are suitable
for applications where weight is the deciding factor, such as portable devices [106].

Just like Li-ion batteries, Li-poly batteries operate according to the principle of the
intercalation and de-intercalation of Li-ions between the positive and negative electrodes.
Unlike Li-ion batteries’ cylindrical and prismatic rigid casing, Li-poly batteries have flexible
casing, which is somewhat resilient to external stresses [107]. The polymer-based elec-
trolytes (quasi-metallic) deliver higher specific energy and power compared to aqueous
types, but this feature comes with the compromise of overall higher manufacturing cost [38],
which is the major deficiency of Li-poly technology. Li-poly batteries are considered a
transition between the current and future generations of high-performance batteries.

3.2.3. Lithium-Metal Batteries

The lithium-metal (Li-metal) family is a relatively newer generation of batteries com-
prising different configurations, but all with metallic Li as the anode [108]. The Li-metal
family is not mature enough from a commercial point of view and from the perspective of
automakers, given the fact that most Li-metal batteries are still non-rechargeable (primary
use) [109]. A popular and well-established Li-metal battery called the LMO battery uses
metallic Li as the anode and manganese dioxide (MnO2) as the cathode, along with Li-salt



Batteries 2023, 9, 185 12 of 31

electrolyte in an organic solvent [109]. Such batteries provide a very high specific capacity
of 3860 mAh/g, as evident from a coin-type LMO battery. The self-discharge is also low,
with a longer lifespan and compact size (and light weight), but about 0.15–0.3 kg of Li/kWh
is required, resulting in higher manufacturing costs. Therefore, such batteries are suitable
for high-value and critical portable applications such as pacemakers and other medical
devices [110,111].

Given their distinct merits, rechargeable Li-metal batteries are under rigorous research
and development, as they have profound prospects for automotive and portable applica-
tions. Some researchers have proposed and investigated solid bio-polymer electrolytes to
obtain higher energy density, an extended operating temperature range, and safety [112].
In 2018, a Li-metal polymer battery was commercially used in a hybrid electric vehicle for
port operations with a wider temperature range of −20 to +65 (◦C).

3.3. Future Generation of Batteries

As with other technologies, the current generation of Li-ion batteries will at some point
of their technological lifespan reach the intrinsic limits of specific energy and energy density.
Another important issue is the stringent necessity of key and strategic minerals (such as
Li and Co) for high-performance Li-based batteries for EV applications. At present, the
process of extracting and processing key minerals for Li-batteries is becoming increasingly
difficult, which has a predominant impact on the overall manufacturing price of EVs and
HEVs. Thus, these bottlenecks require battery technologies beyond lithium to be properly
investigated. In this context, the ‘future batteries’ refer to novel technologies that are
currently under development and have the potential to be the next-generation commercial
batteries for automobiles. The future generation includes Na-beta, Na-ion, Metal-air, Li-
metal (solid-state), etc. With the appropriate research and development focus, the ‘future
generation’ should, over time, at least match (if not exceed) the ‘current generation’ in
terms of key performance indicators, but with the added benefit of mineral abundance,
environmental friendliness, and affordability.

3.3.1. Sodium-Beta Batteries

Sodium-beta (Na-beta) batteries are among the newest battery technologies and con-
sidered as a potential breakthrough, especially from the perspective of stationary applica-
tions [113,114]. The Na-beta family represents both solid-state and molten-state batteries,
and they are considered a part of the future generation owing to raw material abundance
and superior theoretical energy densities [20,38].

Presently, two technologies have been successfully realized: (i) sodium-metal chloride
(Na-MCl2) and (ii) sodium-sulfur (Na-S) [115,116]. The cathode of the Na-MCl2 battery
employs transition metal chlorides: the iron chloride (Na-FeCl2) and nickel chloride (Na-
NiCl2). Out of these two types, the Na-NiCl2 battery has the advantage of a wider operating
temperature range, less metallic corrosion, and higher power density. Na-NiCl2 batteries
are employed in a couple of commercial vehicles, such as BMW-AG and Mercedes-Benz
Vito [20]. This is because such batteries have superior energy densities, adequate cycling
capability, and high operating efficiency [38]. However, cost is an important factor, which
is related to the presence of nickel in the Na-NiCl2 family.

The Na-S cylindrical-shaped battery, in contrast, is a molten-salt battery with a sulfur
cathode, sodium anode, and beta-alumina ceramic electrolyte [117]. Na-S batteries have
very high theoretical energy densities (about five times that of a typical l-acid battery),
and are inexpensive and non-toxic. However, the biggest challenge from the perspective
of automobile applications is the operating range (270 to 350 ◦C), which also poses some
serious safety issues. Despite such a prominent problem, an application of Na-S (prototype
EV: ‘Ecostar’) was depicted by Ford in 1991 [65].

The recent and future trends are toward the development of Na-S batteries that can
successfully operate at ambient temperature. However, ambient temperature operation
presents the following bottlenecks: poor conductivity, low reaction rates, and ‘shuttle’ effect
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resulting in shorter lifespan [118]. A leading group of researchers at Ceramatec (2009)
developed and investigated Na-S variants using NASICON membranes. The battery was
demonstrated to effectively operate at 90 ◦C [119]. Similarly, in March 2011, Sumitomo
Electric Industries and Kyoto University revealed a low-temperature molten Na-S battery
operating under 100 ◦C, with double the energy density of Li-ion at a considerably lower
cost [120]. In this context, the graphical layout of a typical Na-S battery is depicted in
Figure 8b.

3.3.2. Metal-Ion Batteries

The metal-ion batteries are potential alternatives to Li-ion batteries, mainly including
sodium-ion (Na-ion), zinc-ion (Zn-ion), and magnesium-ion (Mg-ion). Metal-ion batteries
have some clear merits when compared with Li-ion batteries, such as material abundance,
lower production costs, enhanced safety, and environmental friendliness [121].

According to several researchers, Na-ion batteries are expected to play an important
role as the price of lithium keeps on increasing. The Na-ion battery is a rechargeable battery
that uses sodium ions (Na+) as its charge carriers. The working principle and design of
the Na-ion battery are essentially similar to the Li-ion battery, except that Li is replaced by
Na [121]. Subsequently, the electrolyte can either be aqueous or non-aqueous (molten or
solid); however, an aqueous electrolyte results in poor electrochemical stability and limited
energy density [38]. The non-aqueous electrolytes are, therefore, preferred, such as Na
salt (sodium hexafluorophosphate) dissolved in an organic solvent. However, the energy
density of Na-ion batteries is comparatively lower, therefore providing the same perfor-
mance as of Li-ion but with a larger size/weight. A group of researchers [122] presented a
Na-ion solid-state battery with a metallic Na anode and ceramic/polymer Na superionic
conducting electrolyte. The prototype displayed competitive experimental performance.
Given the relatively newer nature of Na-ion batteries, the performance indicators of Na-ion
batteries can be improved by choosing innovative materials, such as carbonaceous mate-
rials for electrodes and intermetallic compounds for anode [121]. A prominent Chinese
manufacturer, CATL, unveiled the first generation of commercial-scale Na-ion batteries,
offering an energy density around 160 Wh/kg. Furthermore, these batteries can be charged
up to 80% in about 15 min at room temperature [38]. The researchers at CATL are aiming
for an energy density beyond 200 Wh/kg for the second generation of Na-ion batteries.

Zinc-ion-based aqueous batteries provide an acceptable energy density and have the
intrinsic advantages of safety, environmental benefit, and being economical. However, some
drawbacks are still unresolved and, therefore, under research, such as suitable cathode
materials for the efficient intercalation of zinc ions [123]. Recently, a team proposed a
reversible zinc-ion battery with a cathode made of MnO2 [124]. Termed as a redox flow
battery, the proposed type is considered a promising candidate for large-scale static energy
storage. Another group of researchers modified the same technology to achieve a voltage of
1.95 V, which is the highest so far. Moreover, the proposed battery provided a gravimetric
capacity of about 570 mAh/g and an energy density of around 409 Wh/kg. Another group
of researchers developed an aqueous Zn-ion battery with a novel porous crystal cathode
consisting of zinc pyrovanadate nanowires [125]. The resultant battery achieved a high
specific energy of 214 Wh/kg, but lower lifespan.

3.3.3. Metal-Air Batteries

Being a newer technology, metal-air (M-air) batteries employ an anode made of pure
metal and an external cathode made of ambient air, while the electrolyte is either aqueous
or aprotic [126]. The energy capacity of the M-air battery is determined by the inherent
capacity of the anode material. Nevertheless, in general, they can offer very high theoretical
specific energy (easily comparable to and even exceeding to that of gasoline engines [11]),
identifying the metal-air family as a prime (and potential) candidate for electrified auto-
mobiles [38]. The M-air family mainly includes zinc-air (Zn-air), aluminum-air (Al-air),
iron-air (Fe-air), magnesium-air (Mg-Air), and calcium-air (Ca-air) beside the lithium-air
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(Li-air) counterpart [127,128]. The ideal theoretical range can vary from ~11,700 Wh/kg
(highest possible for Li-air) to ~1084 Wh/kg (lowest possible for Zn-air) [129,130]. With
such elevated energy densities, the M-air batteries open up the possibility of an extensive
travelling range with lowest possible weight. The M-air batteries can be manufactured into
electrically/mechanically rechargeable variants, where, as of now, the mechanical variants
are convenient for refueling and recycling. However, recharging is an aspect that is still not
mature enough and, therefore, deserves more attention.

Within the M-air family, the Zn-air battery is the most promising one, but is still
under extensive research [131]. This is because Zn-air batteries provide balanced attributes,
higher theoretical energy density (~350 Wh/kg [132]), and relatively stable kinematics,
leading to rechargeable variants. Moreover, Zn being an abundant and safe element can
lead to cheaper, easy-to-handle, and recyclable batteries [133]. Several commercial auto
manufacturers have already investigated Zn-air batteries, as evident from their utilization
in Mercedes-Benz MB410 and GM-Opel Corsa Combo [20]. The composition of a typical
Zn-air battery cell is presented in Figure 9a. The current key research areas related to
Zn-air batteries are (i) enhancing the recharging efficiency; (ii) enhancing the kinematics at
the anode and cathode; and (iii) expanding the lifespan for automotive applications. For
example, a recent work has exhibited the usability of non-noble materials, considering an
adequate catalytic performance during oxygen reduction (ORR) and evolution reactions
(OER) [134]. As stated by the authors, both ORR and OER dictate the performance merits
of metal-air batteries: open-circuit potential, cyclic lifespan, and energy density. The
merits/demerits and performance of relatively abundant and cheap materials such as those
that are carbon-based are comprehensively presented in the context of bifunctional oxygen
catalytic activity.
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The Li-air (Li-O2) batteries can be classified into four categories according to the nature
of the electrolyte: (i) nonaqueous; (ii) aqueous; (iii) hybrid aqueous/nonaqueous; and (iv)
solid-state [20]. The Li-O2 battery with a nonaqueous electrolyte can reach an extremely
high theoretical energy density (~11,700 Wh/kg), thus making it competitive with gasoline
termed a ‘future power source’ [20]. The aqueous Li-O2 variant, in contrast, has a high risk
of catching fire but shows a lower decomposition voltage. The hybrid technology combines
the merits of both aqueous and nonaqueous types. Great efforts are, therefore, devoted
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to improving the operational efficiency and cycle life of hybrid Li-O2 batteries, especially
for the protection of electrodes. Nonetheless, many researchers recognize that lithium as a
metal poses a challenging chemistry. Therefore, many years of fundamental research are
required to successfully commercialize rechargeable Li-O2 batteries. Additionally, poor
electrical conductivity is another relevant problem associated with Li-air batteries [38].

3.3.4. Solid-State Batteries

From the Li-metal family, the solid-state batteries are among the key research themes
and considered a viable future for high-performance electrified automobiles (future gen-
eration of batteries). The Li-based solid-state batteries are based on a Li metal anode and
layered oxide cathode in combination with a solid electrolyte (solid polymers or inorganic
solids) [135]. Among solid-state batteries, lithium-sulfur (Li-S) and lithium-air (Li-O2)
batteries are the most promising products from the perspective of automakers. Solid-state
batteries in general can pose several problems, such as flammability and poor cycling
performance.

Sulfur as an element has the features of high gravimetric capacity, low cost, and innate
abundance. These features pushed researchers to exploit and investigate the chemistry
of sulfur for battery applications. With a similar theoretical specific energy of more than
2500 Wh/kg, the Li-S battery with a solid electrolyte is considered a competitive candidate
for next-generation energy storage devices. A group of researchers in [136] expect a bright
future for the Li-S battery due to its higher energy density, better safety, broader temperature
window, and lower manufacturing cost due to the abundance of sulfur in the Earth’s crust.
However, sulfur-based cathodes still suffer from poor electronic conductivity, which is a
major bottleneck and hindering commercial acceptance [135]. Another technical obstacle is
the passivation of the Li anode resulting in higher self-discharge rate and faster capacity
degradation [137]. If these problems are well addressed, it is believed by researchers
that Li-S solid-state batteries can be promising for high-performance automotive. A high-
performance Li-S solid-state battery with a sulfide electrolyte and use of a thin silver-
carbon layer, which contributes to a longer lifespan, is being studied by researchers [138].
Researchers have mentioned a technical issue about the charge-transfer process that may
require solid-state batteries made up of ceramic/polymeric electrolytes. In this context, a
typical Li-S battery cell is presented in Figure 9b.

Alongside the Li-S solid-state battery, the Li-air battery with a solid electrolyte is
a potential candidate for next-generation electrified automotive. In 2015, a team at the
University of Cambridge worked on Li-air batteries by developing a charging process
capable of prolonging the battery life and efficiency [139]. The presented work resulted in
a battery delivering high energy density with 90% efficiency and that could be recharged
up to 2000 times. The solid-state Li-air batteries are, therefore, described as the ultimate
batteries because they propose a high theoretical energy density of up to ten times the
energy offered by regular lithium-ion batteries.

4. Battery Management and Modeling

Battery management and power control are the two most important decision-making
units of onboard electronic control units (ECU). Usually, these units are interconnected and
perform a series of critical operations for assuring reliable and safe operation from both the
perspective of user experience and the vehicle itself. The power controller ensures optimal
charging by external means (plugin option). This is achieved by manipulating the onboard
charger (AC/DC and DC/DC with inherent isolation [20,140]) based on the information
provided by the battery management unit (SoC, SoH, temperature, power limit, etc.) and
external charger (if applicable). In addition to monitoring the battery charge, the power
controller also monitors and regulates the operation of the electric motor while keeping the
overall operation reliable and as safe as possible.

The battery management unit ensures the safe and reliable operation of battery pack.
The real time data are first collected via embedded sensors and is then fed to battery
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modeling and state estimation algorithms (stored on the computer of the ECU). The crucial
information about the state of the battery is, in turn, furnished, such as charge (SoC),
health (SoH), temperature (SoT), power capability, etc. [20]. Based on the provided states,
appropriate decisions are taken at the right time: temperature regulation of the battery
pack based on ambient temperature and that of the battery; external charge control based
on battery capability, the SoC, and information provided by the external charger; battery
cell equalization and balancing; fault diagnosis and prognostic; safety warnings, protection
measures, and bidirectional human–media interaction, etc. In this context, an abstract view
of the battery management and power control unit is exhibited in Figure 10, though the
illustrated unit may differ depending on the type of EV and corresponding automaker.
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Mathematically modeling the complex electrochemical behavior of a battery pack with
an appropriate compromise between accuracy and complexity is an important prerequisite
for onboard BMS. As battery models evaluate and provide critical information about battery
packs, a well-developed scheme is mandatory. The provided critical information mainly
comprises the estimation of battery states: SoC, SoH, power, temperature, etc. Given the
provided information, the onboard management system performs a series of decisions
to ensure reliable and safer vehicular operation. To mimic the electrochemical behavior
of the battery pack and depending on the required operation, the modeling methods are
broadly classified as follows: (i) electrical and/or equivalent circuits, (ii) electrochemical,
(iii) empirical and semi-empirical, and (iv) data-driven [20,50–53,141].

4.1. Electrical (Equivalent Circuit) Models

Electrical equivalent models are widely exploited to model the complex behavior of
battery packs and calculate the estimate of battery states [142,143]. This is because they use
certain combinations of basic electrical passive elements: resistors (R) and capacitors (C).

The most fundamental electrical model (also known as the basic Rint model) is pre-
sented in Figure 11a [20,144]. As illustrated, the basic model is identified by a dependent
open-circuit voltage source (Voc) in series with resistance. The basic model is quite simple
but does not consider the vital polarization effect. To solve this problem, the basic model
can be extended to consider polarization, that is, by adding an RC tank unit in series [145].
The extended model is flexible in terms of improving the dynamic representation of the
battery pack by adding a couple of RC tank units in series, as shown in Figure 11a. How-
ever, adding more RC tank units can increase the computational complexity and number of
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parameters to be identified and tuned [20]. Therefore, the equivalent configuration should
be selected with an appropriate tradeoff between complexity, computational burden, and
accuracy. Many researchers believe that the Rint model with two coupled RC tank units is
sufficient to mimic the behavior of a battery pack.
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4.2. Electrochemical Models

Electrochemical models are essentially used to study, understand, and design batteries
for EV applications. Such models mimic the complex battery behavior at the microscopic
level based on multi-physics interpretation of nonlinear electrochemical reactions [20]. Cur-
rently, the electrochemical models are adequate, but at the cost of the following limitations:
(i) several intercoupled nonlinear/linear equations, explaining the overall behavior of the
battery, but requiring a global optimizer to solve these equations; (ii) a large number of
parameters and boundary conditions, which must be tuned and initiated correctly, thereby
affecting the performance of the model itself; and (iii) posing a significant computational
burden and ill convergence problem due to previously discussed points [20,146,147].

The single-particle electrochemical model is considered the most mature and simplistic
one; however, accuracy in its base form is on the lower side [20]. The abstractive layout
of a single-particle model is presented in Figure 11b. The single-particle model is quite
flexible in terms of modifications, as exhibited in [148], where electrolyte dynamics are
incorporated to exhibit a good observance of the real parameters. Accordingly, to enhance
the accuracy even further, a pseudo-two-dimensional model is proposed for simulating the
complex electrochemical behavior of the studied battery pack.

Recently, reduced-order single-particle models have gained significant attention owing
to their lower computational burden enabling real-time application, though the major
associated drawback is the inaccuracy of predicted battery parameters. With this, a group
of researchers in [149] have developed a reduced-order single-particle model considering
the variable diffusivity of Li-ions, which enhances the accuracy of the predicted parameters.
The authors have comprehensively illustrated the synthesis of the improved model and
thereafter, the sensitivity analysis is performed concluding with experimental validation
using a pouch type Li-cell at different load and temperature profiles. Another group of
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researchers in [150] have devised a reduced-order electrochemical model, which offers
quite an accurate representation of complex battery behavior. However, the model is highly
dependent on numerous parameters resulting in increased complexity. This also brings the
problem of scalability, requiring several parameters to be tuned for application on a different
battery pack. In this context, an effective parameter identification method is applied to
a simplified yet accurate electrochemical model for Li-ion battery characterization [151].
The proposed electrochemical model is essentially thermally coupled, where solid-phase
diffusion is considered to reflect the actual dynamics. The stepwise parameter identification
process is established by extracting system dynamics from experimental data. The model
is comprehensively validated with a galvanostatic discharge test with temperature range
from −20 ◦C to 45 (◦C).

4.3. Data-Driven Models

Data-driven approaches represent the newer generation of battery modeling tech-
niques. They are among the key research trends, owing to the recent boom in AI and
popularization of machine (and deep) learning methods such as neural networks, fuzzy
inference systems, vector machines, etc. The data-driven models are black-box in nature;
therefore, they are highly flexible and theoretically can be applied to any multi-physics
nonlinear system to perform the intended task. However, this requires a thorough under-
standing of the system to be mimicked, and rigorous tuning of associated parameters, not to
mention the huge computational burden particularly associated with deep learning models,
for example, setting the layers (input, hidden, and output) of neural networks (Figure 11c)
such that a well-trained network can provide an accurate estimate of the battery states.

The data-driven methods, especially machine (and deep) learning, have found re-
cent applications for estimating battery states (health, temperature, etc.) [152]. Some of
the applications of data-driven methods are as follows: vector machines [153], artificial
neural networks [154], long-short-term memory networks, etc. A recent study exhibits
the application of a data-driven approach to optimally configure the essential components
of modern microgrids such as battery storage considering their degradation [155]. The
efficacy of data-driven approaches is evident from satisfactory results in a diverse range of
operating scenarios. The recent applications depict the general robustness of data-driven
models compared to their conventional counterparts, though the requirement of training
datasets and the associated computational burden are the major bottlenecks [156].

Among data-driven models, deep neural networks have witnessed recent attention.
An application of a modified convolution neural network (CNN) is reported in [157], where
techniques such as transfer learning and network pruning are exploited to address the
shortcomings of conventional CNN, including training data dependency and computa-
tional burden. The accuracy of online capacity estimation is thereafter presented for four
different LFP battery packs. Another innovative work is reported in [158], where the au-
thors have extended the conventional CNN approach for estimating the complete charging
curves just by collecting thirty points within ten minutes. Furthermore, the approach is
generic in a way that it can be applied to any battery with a few training datasets by using
a transfer learning process. It is worth mentioning here that the deep neural-networks
can be consistently applied to a diverse range of batteries, such as SoC estimation of LFP
battery [159] and co-estimation of LFP battery states in [160]. The data-driven methods can
also be combined with other approaches such as pulse–current operation of Li-ion batteries
in the context of stabilizing future grids [161].

Conclusively, data-driven models are promising for the application of battery mod-
eling and state estimation, and their use is expected to rise with time as an ultimate
solution [162].

5. Battery State Estimation

State estimation has a close affinity with battery modeling techniques (shown in
Table 3), as it is regarded as the expected outcome of battery modeling. State estimators
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are among the most important components of BMS for EV applications, since accurate
and timely estimation is essential for reliable and safer operation of battery packs. The
estimated states mainly include charge (SoC), health (SoH), temperature (SoT), etc. Owing
to its importance, the topic of battery state estimation is well reported and rigorously
studied by several researchers. Battery state estimators are typically categorized as follows:
(i) simplistic; (ii) filters; and (iii) data-driven.

Table 3. Battery modeling techniques with their suitable applications.

Technique Complexity Computation Precision Analysis Maturity Application for BMS

Electrical L L-M M H H Power and SoC

Electrochemical H M-H M-H M M-H Design and
understanding

Data-driven M M-H H L L SoC, SoH, etc.

Legend: L (low), M (medium), H (high).

The simplistic estimators are easy to implement but are limited by moderate accuracy
at best. The filter-based estimators provide precise estimation but are dependent on the
understanding of the physical model itself. Finally, the data-driven models are model-
independent, yet provide accurate estimation, but at the cost of computational burden
and needing a significant amount of training data. The conclusive comparison of these
estimators is provided in Table 4.

Table 4. Battery state estimators for electrified automobiles.

State Estimators
Qualitative Indicators

Implementation
Level/Cost/App.

Data Required
Training/Initial Sensor Noise

Model
Dependency Precision

Method Mention

Simplistic
Lookup table

E/L/On N/Y S N (Y *) L-MIntegrator
Internal Ω and EIS

Filters Kalman and
particle M-H/M-H/On N/N NS Y M-H

Data-driven
Neural network

M-H/H/Of + Y/N NS N HVector machines
Fuzzy inference

Legend: S (sensitive), NS (not sensitive), E (easy), L (low), On (online), N (no), Y (yes), M (moderate), H (hard),
Of (offline). + Higher computational burden during the training phase. The application can be online but
requires intensive training. * Resistance and EIS methods typically depend on system model such as equivalent
electrical circuit.

5.1. Simplistic Estimators

Simplistic estimators are among the most-established methods with innate simplic-
ity, ease of implementation, and greater technical maturity. However, most simplistic
approaches, depending on their application, provide moderate accuracy at best. Their
fundamental application is found in the form of a lookup table with the preserved rela-
tionship between open circuit voltage and SoC [20]. Typically, such a table is provided by
the manufacturer, and is developed through rigorous field testing. A group of researchers
reported the application of a lookup table in the context of BMS, where SoC is estimated
based on the calculated open circuit voltage, and provided an offline table [163]. However,
the shortcomings are obvious: (i) the lookup table is unique to a specific battery pack and
is sometimes not provided by the manufacturer and (ii) the accuracy is profoundly affected
by the presence of memory effect (nickel-based batteries), which can lead to unwanted esti-
mation errors. Therefore, lookup table-driven methods are not suitable for high-precision
applications.
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The Coulomb counter (amp-hour integrator) is a popular and well-documented
method for estimating the SoC of battery packs [60,164,165]. The Coulomb counter method
is very easy to implement, as in theory, only a single current sensor and some simple calcu-
lations are required. Nevertheless, the initial SoC value (SoC0) is usually required in order
to use a Coulomb counter [60]. Therefore, Coulomb counting methods are supplemented
with initial state estimators [58]. Another shortcoming is the accumulation of open-loop
estimation errors, as well as poor estimation accuracy caused by natural capacity fade.

The internal resistance of the battery pack (calculated from the electrical circuit) can
be mapped to provide crude information about SoH and capacity fade, etc. However,
such methods have poor accuracy, as reported in [20]. The estimation accuracy can be
improved by integrating additional techniques such as electrochemical impedance (EIS)
for facilitating precise estimation of the battery states [58]. This means that simplistic
estimators are usually assisted by other methods to improve the estimation accuracy.

5.2. Filter-Based Estimators

The filter-based estimators (Kalman and particle) are model-dependent. Therefore,
they can provide superior accuracy and robustness against parameter drift, but generally
at the cost of extensive computational complexity/burden. The Kalman filter (Kf) and its
variants (adaptive, unscented, extended, etc.) are rigorously reported in the literature for
battery state estimation: SoC, SoH, etc. [20,61]. A square root extended Kf is proposed
in [166] to handle filtering variance in dynamic operating scenarios. Another application
is depicted in [167], where cubature Kf is exploited to reduce design complexity while
retaining scalability. With time, as the battery degrades, the performance of the baseline
Kf method normally declines [20]. The adaptive and unscented Kf variants are effective
estimators in such cases owing to less sensitivity against parameter uncertainty/variation
and process noise.

Alongside the Kf-based methods, the particle filter (Pf) is a promising candidate for
precise battery state estimation. The Pf-based estimators are suitable for highly complicated
and nonlinear problems, such as capacity fade and SoH estimation [54]. A model-oriented
Pf-based estimator is developed in [168] to predict the aging trajectories of Li-ion batteries,
while gradient correction is added to reduce sensitivity to parameter variation. Another
application is illustrated in [169], where a second-order Pf-based estimator is proposed for
battery SoH estimation. Conclusively, the filter-based estimators (Kf and Pf) are geared
toward accuracy/precision but require detailed understanding of models and appropriate
adaptations to work against parameter variations and uncertainties.

In a nutshell, although they are proficient and reliable, the model-based estimators
depend on complex differential and nonlinear equations, posing computational challenges,
as well as tuning them and finding several unknown parameters. Moreover, they are
not generic, and an estimator operating for a specific battery may not work the same
way for other batteries. This shortcoming has led to significant attention being paid to
model-independent and data-driven approaches.

5.3. Data-Driven Estimators

Data-driven methods are considered a viable future owing to the following advantages:
black-box nature (model-independent), resistance to parameter variation, and scalability.
However, these advantages come with a higher computational burden and need for a
significant amount of training data with appropriate quality (for example labelling) in the
context of estimation accuracy. Data-driven methods have found several recent applications
for battery state estimation, such as neural networks, vector machines, fuzzy inference,
metaheuristic [152,153,170,171], etc. Among the major shortcomings is that an inconsistent
dataset can lead to an unavoidable estimation inaccuracy. For this, a fractional-order
physics-informed recurrent neural network is proposed in [172] for battery state estimation,
where the performance is enhanced by incorporating fractional-order gradient functions
during the backpropagation step.



Batteries 2023, 9, 185 21 of 31

Mostly, the applications are estimating SoH and capacity fade, and predicting the
remaining useful life of battery packs. A group of researchers in [63] reviewed the data-
driven machine learning approaches for predicting battery states. To enhance the accuracy
of battery health estimation, least-square vector machine and model-based Pf are hybridized
as an effective joint supervision approach [173]. Similarly, an application of a global meta-
heuristic optimizer (non-dominating sorting genetic algorithm) is illustrated in [174] for
data-driven SoH estimation.

Deep learning neural networks are also very promising for battery state estimation.
For example, a convolutional neural network-based estimator is proposed in [157] to
provide fast yet accurate battery capacity forecasting by employing a small dataset. Another
application of convolutional neural networks is exhibited in [175] for the accurate estimation
of the heat generation rate and voltage distribution of Li-ion batteries in the context of EVs.
As indicated in [176], heat generation rate estimation is a very important factor for accurate
and timely decision-making within the framework of effective BMS of high-performance
EVs, where a novel physics-informed neural network is employed and validated in a
diverse range of driving conditions. The performance and scalability of deep models is,
however, dependent on the diversity and quality of the training dataset, which is the major
shortcoming beside the computational burden associated with the training phase. Distinctly,
the data-driven models can be integrated with classical electrochemical perceptions; some
examples are presented in the recent literature where data-driven electrothermal models
are proposed with the aim of estimating battery degradation, modeling SoH, and predicting
the effect of temperature on battery performance.

6. Open Discussion: Challenges, Opportunities, and Key Developments

Batteries and associated technologies are among the key elements and main factors
that shape the future potential of electrified vehicles. It is, therefore, essential to understand
the perspective of automakers and consumers with equal importance. While the common
user thinks mostly about fundamental attributes such as range, cost, and driving experience
(power, charging time, etc.), automakers have a more detailed understanding and naturally
more challenges to deal with. In this context, finding the perfect battery chemistry is quite
challenging, as it involves assessing several elements: safety, performance, cost, range,
thermal performance, and reliability across the entire battery lifecycle. Moreover, several
aspects of design, economics, and politics are coupled with battery design for electrified
automobiles.

To identify potential opportunities and to pinpoint key future trends, understanding
the complete battery cycle is the most critical step. In general, from the perspective of
automakers and battery designers, the most abundant and safe-to-use materials/minerals
are, indeed, on the wish list, as they are easier to extract, recycle, process, etc. This can
ultimately assist in controlling the cost factor of the future generation of batteries. However,
it is not common that such abundant mineral can meet the needs of a common user;
for example, the driving experience (power delivery and extended range) may not be
competitive with that of the current Li-ion generation with exotic mineral. Therefore, a
complex engineering process is required to find a suitable compromise between several
conflicting factors, such as manufacturing price, driving performance, safety, recycling, etc.,
in order to reach an appropriate choice.

In this context, the introduced distinct qualitative factors (design markers and per-
formance indicators) can play a pivotal role in reaching the required appropriate choice.
The battery performance indicators mainly include specific power/energy (higher power
delivery, less weight, and autonomy), cyclic lifespan (longer life), etc., while the key design
markers include manufacturing cost, minerals (abundance, toxicity, and maturity), etc. A
suitable synergy between the qualitative factors can help to identify the suitable genera-
tion of batteries for electrified vehicles, with the potential to provide reasonable driving
performance but with a lower manufacturing price and higher safety.
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Through the introduced qualitative factors, a particular battery can also be associated
with an appropriate automotive application. For example, the LTO battery provides
very higher power density and cyclic lifespan, which makes it suitable for the start–stop
functionality of eco-vehicles as well as application in gasoline and fuel cell hybrids, where
a smaller battery with fast response is generally required, though the higher baseline price
of LTO batteries is the major bottleneck for large-scale applications. Similarly, the LFP
battery has a class-leading cyclic lifespan with highest safety (among the Li-generation)
and an adequate price bracket, which places LFP batteries among the best choices for EVs
where an extended travelling range is not required (small EVs, and given the fact that
the energy density of LFP batteries is inferior to LCO and NMC batteries). Likewise, for
exotic electric vehicles where exceptional performance and an extended travelling range
is required, the cutting-edge Li-ion batteries such as NMC are among the best choices for
automobile manufacturers. From the future generation of batteries, the Zn-air technology
has the potential to supersede existing Li-based technology in terms of energy density,
safety, and material abundance. However, its commercial success totally depends on if
the shortcomings of Zn-air technology such as proper rechargeability and efficiency are
addressed. In a nutshell, the introduced qualitative factors can provide the complete picture
for reaching a rational application-oriented choice. Accordingly, a comparison between
state-of-the-art battery technologies for EVs is presented in Figure 12. Two radar charts
with all-round assessments are provided (key performance indicators and design markers).
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It can be observed from Figure 12 that the traditional generation of batteries (Ni-MH,
used in the earlier generation of Toyota hybrid vehicles) has limited energy density
and lower efficiency. Therefore, with time, auto manufacturers have replaced the tra-
ditional batteries with high-performance Li-based batteries. The current generation of
high-performance batteries (LFP, NMC, LCO, etc.) are mostly lithium-based owing to their
distinct merits such as higher specific energy and power density (higher autonomy, lesser
weight, superior power delivery, etc.). However, the problem of Li-based batteries is related
to minerals, cost, toxicity, etc. (lithium and cobalt are the essential elements of several
Li-based batteries, and are toxic, difficult to access, and costly). It is expected that the access
to strategic minerals for high-performance Li-ion batteries will become difficult with time,
which would surely impede the progression of the Li-based current generation of batteries,
therefore increasing their price with time. With this fact, the search for the next generation
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of batteries is underway, such as zinc-air and Na-ion batteries with adequate performance
indicators but lower manufacturing price, less toxicity, and abundant minerals. However,
for now, such batteries have lower maturity and several implementation problems. The
results and discussion clearly show that that Li-based batteries would dominate the EV
battery market, both currently and in the near future. However, some cutting-edge tech-
nologies such as solid-state, metal-air, sulfur-based, and metal-ion batteries are likely to be
the next-generation EV batteries with an adequate trade-off between performance indica-
tors and design markers. Another important aspect is the application of Li-ion batteries for
ancillary and vehicle-to-grid services, as depicted in [177].

Battery modeling and estimation methods are an important aspect in the context of
battery management systems, ensuring that the driving experience is reliable and safer.
Currently, most high-performance and commercial batteries are Li-based, so cutting-edge
research is focused more on modeling and estimation methods for Li batteries. With this,
there is a significant gap, and potential avenues exist to develop state-of-the-art techniques
applicable to the future generation of batteries, including metal-ion, metal-air, and solid-
state batteries. In general, the data-driven methods can play a vital role due to their
black-box nature and the fact that less effort is required to a tune data-driven technique for
another battery when it is already performing well for a particular battery.

7. Conclusions and Perspectives

The role of batteries and associated technologies in the ongoing success and future
direction of electrified automobiles is evident. Given the importance of this topic, it is
pivotal to review these technologies and determine future directions, which can help
academia, industry, and automakers. With this motivation, this article critically examines
state-of-the-art battery technologies from the perspective of automobile manufacturers,
provides insightful discussions, and facilitates key technological trends.

It is compulsory to understand the complete battery cycle from the perspective of
automakers. In this context, the complete battery cycle is first described. Several intercon-
nected aspects including manufacturing, application, and recycling are detailed. Based
on this, two distinct qualitative factors are introduced: key performance indicators and
design markers. Thereafter, the generations of batteries for EV applications (traditional,
current, and futuristic) are reviewed and analyzed via the introduced qualitative factors,
which effectively leads to major development trends and probable evolutions for battery
technologies. Recent battery modeling and state estimation methods are also comprehen-
sively discussed in relation to battery management and power control units. Accordingly,
the promising modeling methods are identified and ranked based on key next-generation
requirements: accuracy, computational load, scalability, resilience, implementation, matu-
rity, etc. This article is concluded by presenting a techno-economic assessment of what to
expect, as well as highlighting future challenges and opportunities. The intercomparison of
state-of-the-art battery technologies for EVs is presented via radar charts with all-round
assessments.

The key findings show that precious and strategic minerals such as lithium and
cobalt (extensively used in the current generation of Li-based batteries) are becoming very
expensive due to unprecedented demand and political/demographical problems, posing a
great challenge for battery manufacturers. This challenge is motivating researchers and
institutes to limit the usage of strategic minerals. Subsequently, extensive research on
the development of alternate technologies and the future generation of high-performance
batteries is underway. In this context, the aim of the future generation of batteries is to
exploit minerals with innate abundancy, least toxicity, and enhanced safety (such as sodium,
sulfur, zinc, manganese, iron, aluminum, etc.), then to assemble them in innovative ways
for achieving high-performance electrochemical storage systems. It is, therefore, expected
that several technological breakthroughs may emerge soon in the context of the future
generation of batteries.
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Among battery modeling and estimation methods for the future generation of electri-
fied vehicles, the data-driven and hybrid approaches are expected to lead owing to several
advantages: their black-box nature and effective scalability, higher accuracy, and timely
decision-making. However, several shortcomings should be properly addressed so that
these methods can completely replace the conventional ones. The fundamental key will be
to find an appropriate compromise between accuracy, computation, and implementation.
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BEV Battery electric vehicle
BSS Battery storage system
BMS Battery management system
DQFs Distinct qualitative factors
ECU Electronic control unit
EIS Electrochemical Z spectroscopy
EVs Electric vehicles
FCHEV Fuel cell hybrid electric vehicle
GHG Greenhouse gasses
GHEV Gasoline hybrid electric vehicle
HEVs Hybrid electric vehicles
KPIs Key performance indicators
KDIs Key design indicators
Kf Kalman filter
Pf Particle filter
r-HEV Range extender hybrid vehicle
SoC State-of-charge
SoH State-of-health
SoT State-of-temperature
VRLA Valve-regulated lead-acid
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