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Abstract: Accurate state of health (SOH) estimation is critical to the operation, maintenance, and
replacement of lithium-ion batteries (LIBs), which have penetrated almost every aspect of our life.
This paper introduces a new approach to accurately estimate the SOH for rechargeable lithium-ion
batteries based on the corresponding charging process and long short-term memory recurrent neural
network (LSTM-RNN). In order to learn the mapping function without employing battery models
and filtering techniques, the LSTM-RNN is initially fed into the health indicators (HIs) extracted
from the charging process and trained to encode the dependencies of the related data sequence.
Subsequently, the trained LSTM-RNN can properly estimate online SOHs of LIBs using extracted
HIs. We experiment on two public datasets for model construction, validation, and comparison.
Conclusively, the trained LSTM-RNN achieves an overall root mean square error (RMSE) lower than
1% on the cases with the same discharging current rate and an RMSE of 1.1198% above 80% SOH on
another testing case that underwent a different discharging current rate.

Keywords: state of health (SOH); lithium-ion batteries (LIBs); long short-term memory recurrent
neural network (LSTM-RNN); health indicators (HIs)

1. Introduction

Lithium-ion batteries are deployed in many fields, such as consumer electronics,
electric vehicles (EV), and aerospace technologies, due to their high energy density, long
lifetime, environmental friendliness, and low self-discharge rate [1–3]. However, as the
charge/discharge cycle increases, the material inside the lithium-ion battery is irreversibly
consumed [4,5], which means that the cell ages, manifesting in decreasing capacity, de-
clining power, and thermal instability. When the battery ages beyond a certain point, the
battery performance consequently becomes unreliable and is prone to failure. State of
health (SOH) is proposed to represent the battery aging degree and can reflect the total
capacity reduction and resistance increment. Most companies set 80% SOH as the crite-
rion for the decommission of used batteries [6]. Additionally, a reliable SOH estimation
method is crucial for secure and reliable battery operation and is the backbone of the battery
management system (BMS) [7].

This paper utilizes the capacity to indicate the battery state of health (SOH), which
can be defined in terms of battery capacity [8,9], internal resistance [10–12], and peak
power [13]. Technically, battery SOH estimation methods mainly fall into two categories.
In the first category, SOH estimation is based on battery models, including the equivalent
circuit models [14,15], electrochemical models [16–18], and empirical models [19,20], in
combination with advanced filter techniques such as the particle filter (PF) and Kalman
filter (KF) techniques. Bi et al. [15] proposed a second-order equivalent circuit model of an
RC circuit for battery packs and subsequently developed a genetic resampling particle filter
(GPF) technique to cope with the inaccuracy of the equivalent circuit model. In addition,
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Li et al. [17] developed an SP-based degradation model including solid electrolyte interface
(SEI) layer formation. This model can quickly estimate capacity fade and voltage profile
changes with high accuracy. Additionally, Guha et al. [19] obtained a degradation model to
monitor the SOH of a battery by fusing the capacity degradation model and an empirical
model for internal resistance growth. In [21], Ossai et al. estimated the SOH of batteries
using the Weibull distribution function based on a nonlinear mixed effect degradation
model framework. Since lithium-ion batteries have intricate electrochemical properties and
complex aging mechanisms, the model-based approach requires computationally intensive
algorithms to accurately estimate SOH [9]. Moreover, the identified parameters always
need to be modified according to the different working conditions and battery types, which
obstructs the promotion of related model-based approaches [22,23].

The second category of SOH estimating methods is built on data-driven (machine
learning) methodologies. In contrast to model-based approaches, data-driven methods
are dependent on the offline charging/discharging data to learn the mapping function to
estimate the SOH, ignoring the complex aging mechanisms and intricate internal electro-
chemical properties of lithium-ion batteries. Due to significant strides made in the field
of machine learning, these data-driven approaches, mainly including the support vector
machine (SVM) [24,25], Gaussian process regression (GPR) [26–28], and the neural network
(NN) [9,29–32], typically produce more accurate SOH estimates. In [24], Feng et al. built
a predictive diagnosis model based on a support vector machine whose coefficients for
cells are identified by determining the support vectors. Richardson et al. [27] proposed
Gaussian process (GP) regression for estimating the SOH of batteries and highlighted the
advantages of GPs over other SOH forecasting approaches. To obtain more accurate SOH
estimates, the effective health indicators fed into the algorithms are initially extracted from
the charge/discharge data. Zhao et al. [25] employed a relevance vector machine (RVM) to
fit the mapping function between the five types of extracted health indicators and SOH.
Wang et al. [28] initially proposed an accurate SOH prediction model using multi-output
Gaussian process regression (MOGPR) and subsequently performed the SOH estimation
based on extracted health indicators (HIs). Li et al. [9] utilized the convolutional neural net-
work for SOH estimation based on the battery’s charging current, voltage, and temperature.
Based on an incremental capacity curve, Lin et al. [29] utilized a back-propagation neural
network to develop an SOH hybrid estimation method. In [31], Shahriari et al. obtained
SOH estimates based on the relationship between health indicators (HIs) from the state of
charge (SOC) and the battery open-circuit voltage. Additionally, Liu et al. [32] extracted
partial segments of charging and discharging data as health indicators for SOH estimation.

By establishing a non-linear mapping function between the input vectors and SOH,
data-driven methods can accurately estimate battery SOH. Since the cyclic charge/discharge
data can be viewed as a series of time series data, the sequence prediction problem of SOH
estimation can be tackled using RNNs with a “memory” property [33]. To address the
gradient vanishing problem of convolutional recurrent neural networks (RNN) [34], the
LSTM-RNN is designed to learn long-term dependencies by remembering information over
long periods [35]. Due to the suitability of this characteristic for addressing the time series
predicting problem, this paper employs a vanilla LSTM-RNN with one single hidden layer
to estimate the online SOH with the stable and monolithic charging process of lithium-ion
batteries. Specifically, the main advantage of this method is that it can adequately exploit
time series characteristics to learn the long-term dependencies from the historical cyclic
data. With only one single hidden layer on the LSTM-RNN, this method can be achieved
with less model complexity and fewer parameter sets compared with other data-driven
approaches. Another advantage is that it can directly map battery measurement signals
such as voltage and current to the online SOH, avoiding the inference algorithms and
intensively computational filter techniques used in model-based SOH estimators.

After a brief introduction, the second section will introduce the battery cyclic datasets
and the health indicator extraction process. The third section will elaborate on the detailed
LSTM-RNN for online SOH estimation. The fourth section will describe the procedure for



Batteries 2023, 9, 94 3 of 16

the LSTM-RNN application and show the online SOH estimation results on the introduced
battery datasets, and this will be followed by the conclusions in Section 5. All abbreviations
are explained in Table A1 of Appendix A.

2. Battery Datasets and Health Indicator Extraction

This paper utilizes two public cyclic aging datasets, one from the data repository
of the NASA Ames Prognostics Center of Excellence (PCoE) [36] and another provided
by the Center for Advanced Life Cycle Engineering (CALCE) [37,38] at the University of
Maryland, to verify the effectiveness and performance of the proposed SOH estimator.
The SOH is defined as the ratio of the present capacity to the nominal capacity and can be
expressed as follows:

SOH =
CP
CN
× 100% (1)

where CN denotes the nominal capacity and CP is the present capacity of the battery.

2.1. Description of NASA Battery Dataset

The NASA battery datasets, regarding several commercially available lithium-ion 18
650-sized rechargeable batteries, was collected from a battery prognostics test bed. The test
bed setup included a power supply, a programmable load, a voltmeter, a thermocouple
sensor, and an environmental chamber to regulate and stabilize the temperature [26].
Among the six battery datasets, the first dataset includes three batteries (labeled B0005,
B0006, and B0007) considered suitable for this battery state of health estimation study. This
set of cells was run through three operational profiles (charge, discharge, and impedance)
at room temperature. As is shown in Figure 1a, the charge was carried out in a constant
current–constant voltage (CC–CV) mode where the constant current was 1.5 A, the voltage
was 4.2 V, and the constant voltage (CV) mode continued until the charging current dropped
to 20 mA. Discharge was carried out at a constant current (CC) level of 2 A until the voltage
fell to 2.7 V, 2.5 V, and 2.2 V for batteries B0005, B0006, and B0007, respectively. The
charge/discharge cycle was repeated to accelerate the aging until the batteries reached
their end-of-life (EOF) criterion of a 30% reduction in rated capacity (from 2 Ah to 1.4 Ah),
and all the SOH degradation curves are shown in Figure 1b.
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Figure 1. (a) Battery terminal voltage and charge/discharge current during one cycle; (b) the curves
of degradation capacity.

2.2. Description of CALCE Battery Dataset

The second battery dataset, from the Center for Advanced Life Cycle Engineering
(CALCE) at the University of Maryland, was obtained from the implementation of cyclic
battery testing on the Arbin200 battery testing system at room temperature. Specifically,
we employ a set of five CS2 cells labeled CS2-33, CS2-35, CS2-36, CS2-37, and CS2-38 to
verify the effectiveness of the LSTM-RNN estimating model. Each cell underwent the same
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CC–CV charging mode in which the constant current rate was 0.5 C (this indicates that
the charging current was 0.55 A), and the constant voltage was sustained at 4.2 V until the
charge current fell below 0.05 A. As for the discharge process, CS2-33 was cycled with a
constant discharge current of 0.55 A, which indicates that the discharge current rate was
0.5 C. The rest of the cells (CS2-35, CS2-36, CS2-37, and CS2-38) were discharged with a
constant current rate of 1 C. The materials of the cells consisted of graphite on the anode
and LiCoO2 on the cathode. Figure 2 represents the SOH degradation curves of all the
batteries whose nominal capacity is 1.1 Ah.
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2.3. Health Indicator Extraction

In some articles, health indicators are extracted from the discharging process [39], but
this is not practical due to the complex and inconsistent discharging scenario, especially for
electric vehicles (EVs) [40]. Therefore, in this paper we extract the health indicators from
the controllable and monolithic charging process to estimate the current online SOH.

Figure 3 represents the related terminal voltage and current curves for the NASA
batteries during the CC–CV charging process. Figure 3a shows the terminal voltage
responses extracted from a partial voltage segment of a single cell during different cycles.
The terminal voltage gets higher and reaches the cut-off voltage earlier as the cycle number
increases. Therefore, the voltage integration from the 3.8–4.2 V terminal voltage varies
regularly with the number of cycles. Consequently, this partial voltage integration can
indicate the cell’s health status, which is denoted as HIv and calculated as follows:

HIv =
∫ t=t1

t=t0

v(t)dt (2)

where v(t) represents the terminal voltage function versus time, and t0 and t1 denote the
moments at which the voltage equals 3.8 V and 4.2 V, respectively. The plots of HIv values
versus the cycles for different cells from the NASA repository are represented in Figure 4a.
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Besides the charge terminal voltage, Figure 3b compares the whole current curves
during different cycles and shows that the corresponding current decreases as the number
of cycles increases. Consequently, the integration, calculated from the charging process, can
be viewed as a health indicator and denoted as HIi. This current integration is the charging
capacity and can be calculated as follows:

HIi =
∫ t=t1

t=t0

i(t)dt (3)

where i(t) represents the corresponding charge current, and t0 and t1 denote the charge
start and end moments, respectively. The HIi curves for different cells from the NASA
repository are shown in Figure 4b.

As the partial charge voltage segment is more easily accessible than the whole charging
current, we only employ the HIv as the health indicator for the CALCE batteries to avoid
current sampling interference. Figure 5a illustrates the corresponding terminal voltage
curves during different cycles of battery CS2-35, and the corresponding HIv values versus
the cycle number are represented in Figure 5b. As can be seen in Figure 5b, the HIv
values degrade with more noise than the corresponding SOH values compared with those
in Figure 2.
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CALCE battery dataset.

3. LSTM-RNN Algorithm

Due to their “memory” characteristics, RNNs are suitable for this type of time-series
data estimation [33]. However, conventional RNNs have issues in learning long-term de-
pendencies where the gradients may either vanish or explode during backpropagation [34].
To address this problem, an LSTM-RNN was proposed to capture long-term dependencies
within the sequence by remembering information over long periods [35]. Therefore, this
paper utilizes an LSTM-RNN to estimate the SOH of lithium-ion batteries.

Figure 6 schematically illustrates the network architecture of LSTM-RNN, which can
work as a nonlinear dynamic system by mapping input vectors to output sequences. The
LSTM cell is equipped with a memory cell ck, which is the key part of the structure and
stores the long-term dependencies. In addition, the input, output, and forget gates are
distinctive features of the LSTM-RNN and can regulate the information flow. Each gate
is a sigmoid unit (σ) that is activated from the hidden layer at the last time step hk−1 and
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from the present input layer ψk. The constructed LSTM-RNN can be represented by the
composite function below:

ik = σ(Wψiψk + Whihk−1 + bi)
fk = σ(Wψ fψk + Wh f hk−1 + b f )
ck = fkck−1 + iktanh(Wψcψk + Whchk−1 + bc)
ok = σ(Wψoψk + Whohk−1 + bo)
hk = oktanh(ck)

(4)

where h0 is the initial hidden state, σ denotes the sigmoid function, and i, f, c, and o are the
input gate, forget gate, memory cell, and output gate, respectively. These gates can inhibit
the flow of information by setting the value of the sigmoid unit as 0 from the current input
layer ψk and the hidden layer at the last time step hk−1. The W and b values are the network
weights and biases, respectively. The subscripts of W describe the interaction occurring
between the two corresponding components, e.g., Wψi denotes the input–input gate matrix
and Whi denotes the hidden–input gate matrix. At each gate, a bias b is added to the matrix
multiplication to increase the computing flexibility.
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Figure 6. Network architecture of the LSTM-RNN.

When we exploit the LSTM-RNN to estimate online SOH, the network initially needs
to be trained with a series of sequences from the dataset. In order to take full advantage of
the LSTM’s ability to capture long-term dependencies, this work utilizes n-step (n equals
10) input vectors to estimate one SOH value. Therefore, a typical dataset used to train
the network is given by D = ((ψ1, ψ2, . . . , ψn, SOHn*), (ψ2, ψ3, . . . , ψn+1, SOHn+1*), . . .
(ψk−n+1, ψk−n+2, . . . , ψk, SOHk*), . . . , (ψN−n+1, ψN−n+2, . . . , ψN, SOHN*)), where SOHk*
denotes the ground-true value at cycle k and ψk is the vector of inputs at cycle k. After
the LSTM-RNN, a fully connected layer linearly transforms the hidden state tensor hk to
obtain a single estimated SOH value. The fully connected layer achieving the regression is
given by:

SOHk = Vouthk + b f (5)

where Vout and bf are the weight matrix and biases of the fully connected layer, respectively.
The whole training and SOH estimating process structure is shown in Figure 7. Conse-
quently, we can estimate the online SOH using the trained LSTM-RNN with the testing
input vectors.
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Figure 7. SOH estimating process structure.

4. SOH Estimation Results and Analysis

This section implements the proposed LSTM-RNN to estimate the online SOH of
batteries as they age using the two public datasets introduced above. Considering the
stable and monolithic charging scenario, we can extract the health indicators from the
partial charging voltage segment and the charging current, respectively, to estimate the
corresponding SOH. The kth vector of inputs, consisting of the health indicators fed into
LSTM-RNN, is described as ψk, where k denotes the kth charging cycle. The following
two subsections investigate and verify the performance of the proposed SOH estimation
technique using the NASA and CALCE battery datasets, respectively.

4.1. SOH Estimation Based on the NASA Battery Dataset

Section 2 introduced the cyclic experiment with the battery datasets. Considering
the varying information in the whole life cycle of the batteries, we train the LSTM-RNN
using the entire battery samples rather than partial data from the whole cycling life, since
this is more compatible with the intended practical application. Specifically, the initial
training uses 80% of the battery B0005 and B0006 datasets, whereas cross-validation uses
the remaining 20%. The dataset from cell B0007 is for testing. The validation serves the
hyper-parameters adjustment, and the testing achieves the performance assessment. After
completing the parameter configuration, we retrain the model with the datasets from
batteries B0005 and B0006. As mentioned above, the vector of inputs ψk fed into the LSTM
in the experiment using the NASA dataset is defined as ψk = (HIv, HIi), where HIv denotes
the voltage integration from the partial voltage segment and HIi represents the charging
capacity in the charging process. All the experiments were implemented using Python
3.9.12 on a laptop equipped with an Intel Core i5-8300H processor.

To perform the online SOH estimation, we explore a vanilla LSTM with one single
hidden layer to reduce the model complexity and parameter settings. In the training
process, the LSTM network can reach higher predicting accuracy when its layer owns
more computational nodes. However, the network is prone to overfitting when the layer
is equipped with large computational nodes. Combining with the cross-validation, we
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set 128 computational nodes in the layer and select the mean square error (MSE) as the
optimization goal, which can be calculated as:

MSE =
1
m

m

∑
i=1

(SOHi − SOH∗i ) (6)

where m is the number of examples in one batch, SOHi* is the predicted SOH for the ith
example, and SOHi is the ith actual value.

For the evaluation of the performance of the algorithms in the testing stage, the error
metrics are given in terms of the root mean square error (RMSE) and mean absolute error
(MAE) in the following equations:

RMSE =

√
1
m

m

∑
i=1

(SOHi − SOH∗i )
2 (7)

MAE =
1
m

m

∑
i=1
|SOHi − SOH∗i | (8)

where the root mean square error (RMSE) is sensitive to the large errors, and the mean
absolute error reflects how close the estimated SOH is to the real SOH, regardless of the sign.

Having features on a similar scale helps the gradient descent converge more smoothly
and quickly toward the minima. We standardize the features by removing the mean and
scaling to unit variance to transform the health indicators into a similar scale. The stand
score of a sample x is calculated as:

z =
(x− u)

s
(9)

where u is the mean of the training samples and s is the deviation of the training samples.
The testing samples are transformed based on the mean and deviation of the training samples.

To minimize the MSE loss, the network weights W and biases b are updated through
every training epoch ε, which includes one forward and one backward pass. Based on the
gradient of the MSE loss function, the Adam optimization algorithm [41] was utilized to
update the parameters and is given by the following:

mε = β1mε−1∇L(Wε−1)

rε = β2rε−1∇L(Wε−1)
2

m̃ε = mε/(1− βε
1)

r̃ε = rε/(1− βε
2)

Wε = Wε−1 − α m̃ε
r̃ε−k

(10)

where β1 and β2 are decay rates set to 0.9 and 0.999, respectively, L denotes the loss
function, α is the learning rate, and constant term k is set to 10−8. Wε represents the
matrix of network parameters at the current training epoch. More details about the Adam
optimization method can be found in [41].

We routinely use cross-validation to evaluate model performance to obtain adequate
hyper-parameters. In combination with the cross-validation technique, we set the training
epochs as 15,000. Figure 8 displays a plot of the RMSE as a function versus the training
epoch. As can be observed, the RMSE drops fast in the first 5000 epochs and almost
reaches 0 after 12,000 epochs. Due to the decreasing tendency after 12,000 epochs, 15,000 is
considered a reasonable number of training epochs. We choose a batch size of 64 to train
the network as a compromise between the large and small batches. All the parameters of
the LSTM-RNN are listed in Table 1.
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Table 1. Parameter settings for the LSTM-RNN.

Parameter Value Setting

Optimizer Adam
Loss function MSE

Activation function RELU
Computational nodes in one layer 128

Batch size 64
Learning rate 0.00005

Epochs 15,000

In the online SOH estimation, we compare the LSTM-RNN with the gated recurrent
unit recurrent neural network (GRU-RNN) and simple recurrent neural network (Sim-RNN)
to demonstrate its effectiveness and performance. In order to carry out a fair comparison,
the RNN and GRU algorithms are provided with the same structure and parameters as the
LSTM, except for the main RNN and GRU working layers. The Sim-RNN and GRU-RNN
are given 15,000 and 25,000 epochs, respectively, to achieve converging loss in the training
process. The computational time required to train the LSTM-RNN, Sim-RNN, and GRU-
RNN is around 18.1 min, 13.8 min, and 30.6 min, respectively. Consequently, more training
epochs for the GRU-RNN incur a longer training time.

Figure 9 shows the online SOH estimation results for cell B0007 using the three
networks. As can be seen, the SOH predictions of the three networks generally follow the
actual SOH values. The estimation errors of the LSTM-RNN, Sim-RNN, and GRU-RNN
are plotted in Figure 9d, and all the estimation errors of the three different networks stay
approximately within 2%. The test results from the LSTM-RNN, Sim-RNN, and GRU-RNN
algorithms are listed in Table 2. The overall RMSE and MAE of the LSTM are 0.5623% and
0.5746%, respectively (slighter smaller than those of the GRU and RNN). Therefore, the
proposed SOH estimator can accurately estimate the online SOH with the extracted HIs
based on the charging process in this experiment.

Table 2. The RMSE and MAE results from the testing of battery B0007.

LSTM (%) GRU (%) RNN (%)

RMSE 0.5623 0.6421 0.6345
MAE 0.5746 0.7494 0.6400
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and GRU-RNN.

4.2. SOH Estimation Based on the CALCE Battery Dataset

To validate the generality of the proposed LSTM-RNN, we further employ the CALCE
battery dataset to establish its effectiveness. As mentioned above, the input vector, fed into
the LSTM network, only contains one health indicator HIv in the CALCE battery dataset
experiment. Excluding the HIi optimizes the online SOH estimation process by avoiding
interference from the electric current sampling process.

Similarly, the training and cross-validation are performed on the cyclic data of batteries
CS2-36 and CS2-38, while the testing is achieved using the remaining battery datasets. The
parameters of this LSTM-RNN are virtually the same as those in Table 1, except that the
batch size is 128. Additionally, we continue to train the model using 15,000 training epochs.
The computation time for training the LSTM-RNN based on cells CS2-36 and CS2-38 is
32.0 min.

Figure 10 shows the estimation performance on batteries CS2-35 and CS2-37, which un-
derwent the 1 C discharging rate. Figure 10a,b represent the corresponding SOH estimation
results for batteries CS2-35 and CS2-37. The overall RMSE achieved on the two batteries
is 0.9311% and 0.8288%, respectively. The overall RMSE and MAE performance metrics
for batteries CS2-35 and CS2-37 are listed in Table 3. Moreover, the estimation errors of
each cycle for the two testing cases are plotted in Figure 10c,d, and the errors mainly stay
within 3%. Specifically, the estimation root mean square errors above 80% SOH (safe battery
operating range) generally fall within 2% and are smaller than those estimated in the final
phase. Moreover, the SOH estimation results from the LSTM-RNN eliminate the impact of
the input noise from the HIv extraction process shown in Figure 5b.
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Table 3. The RMSE and MAE results for the batteries under different charging rates.

Testing Battery Discharging Rate RMSE (%) MAE (%)

CS2-33 0.5 C 2.038 1.4952
CS2-35 1 C 0.9311 0.7437
CS2-37 1 C 0.8288 0.6373

To evaluate the robustness of the trained LSTM-RNN model against different discharg-
ing current rates, battery CS2-33, which underwent a 0.5 C discharging rate, was used to
validate the estimator. Figure 11a,b show the estimation results and the estimation errors of
each cycle, respectively. The SOH estimations above 80% SOH are close to the actual values
at different cycles, and the corresponding estimation errors are almost within 3%. However,
the SOH estimation errors of the LSTM-RNN model are relatively large for the cycles in
which the SOH is below 80%. The overall RMSE of the estimation result for battery CS2-33
is 2.0384%, and the MAE is 1.495%, as listed in Table 3. Since lithium-ion batteries generally
operate within a certain range for a safety, evaluating the estimator performance above 80%
SOH is more practical and critical. Table 4 shows that the overall RMSE of the estimation
results above 80% SOH for the battery CS2-33 is 1.1198%, and the MAE 0.9454%, a result
approaching the estimation performance of the developed LSTM-RNN for batteries CS2-35
and CS2-37, which means that the trained LSTM network possesses a certain degree of
robustness against the different discharging current rates.
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Table 4. The RMSE and MAE results for the different testing cells above 80% SOH.

Testing Battery Discharging Rate RMSE (%)
(SOH > 80%)

MAE (%)
(SOH > 80%)

CS2-33 0.5 C 1.1198 0.9454
CS2-35 1 C 0.9062 0.7260
CS2-37 1 C 0.8317 0.6370

From the preceding experiments and analysis, we can conclude that the proposed
LSTM-RNN-based estimator can accurately estimate online SOH with robustness against
different discharging current rates for different battery types.

5. Conclusions

State of health illustrates the aging of lithium-ion batteries and accurate SOH esti-
mation provides a basis for lithium-ion battery maintenance and replacement. As the
characteristics of the LSTM-RNN enable it to address the time series predicting problem,
this paper mainly uses an LSTM-RNN model to estimate the online SOH of lithium-ion
batteries with a stable and monolithic charging process.

In the final analysis, the primary benefit of this approach is that it accurately estimates
SOH by effectively leveraging the properties of time series to infer long dependencies from
offline battery data. Due to the one hidden layer on the LSTM-RNN, this method can be
accomplished with less model complexity and fewer parameter sets than other data-driven
approaches. Additionally, the proposed LSTM-RNN can directly map battery measurement
signals such as voltage and current to the online SOH, avoiding the inference algorithms
and intensively computational filter techniques used in model-based SOH estimators.

Experimental studies using two different battery datasets illustrate the performance
and adaptability of this type of data-driven algorithm in the SOH estimation of lithium-
ion batteries. In summary, the proposed LSTM-RNN achieves good performance in the
NASA battery dataset with an overall RMSE of 0.5623% and shows robustness against
the battery discharging rate when applied to the CALCE battery dataset. In addition, the
experiment results show that the LSTM-RNN produces more accurate lithium-ion battery
SOH estimates than the gated recurrent unit recurrent neural network (GRU-RNN) and
simple recurrent neural network (Sim-RNN). Since the SOH estimator is developed based
on the charging process rather than the complex discharging scenario, we can use this
estimator in many practical applications for online SOH estimation.
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Appendix A

Table A1. Abbreviation comparison table.

Abbreviation Explanation

SOH State of health
LIB Lithium-ion battery

LSTM Long short-term memory
HI Health indicator

SOC State of charge
RMSE Root mean square error
MAE Mean absolute error

EV Electirc vehicle
BMS Battery manangement system
PF Particle filter
KF Kalma filter
SEI Solid electrolyte interface

SVM Support vector machine
GPR Gaussian process regression
NN Neural network

RVM Relevance vector machine
NASA National Aeronautics and Space Administration
PCoE Prognostics Center of Excellence

CALCE Center for Advanced Life Cycle Engineering
CC–CV Constant current–constant voltage

GRU Gated recurrent unit
Sim-RNN Simple recurrent neural network
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