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Abstract: In standalone microgrids, the Battery Energy Storage System (BESS) is a popular energy
storage technology. Because of renewable energy generation sources such as PV and Wind Turbine
(WT), the output power of a microgrid varies greatly, which can reduce the BESS lifetime. Because the
BESS has a limited lifespan and is the most expensive component in a microgrid, frequent replacement
significantly increases a project’s operating costs. This paper proposes a capacity optimization method
as well as a cost analysis that takes the BESS lifetime into account. The weighted Wh throughput
method is used in this paper to estimate the BESS lifetime. Furthermore, the well-known Particle
Swarm Optimization (PSO) algorithm is employed to maximize battery capacity while minimizing
the total net present value. According to simulation results, the optimal adjusting factor of 1.761 yields
the lowest total net present value of US$200,653. The optimal capacity of the BESS can significantly
reduce the net present value of total operation costs throughout the project by extending its lifetime.
When applied to larger power systems, the proposed strategy can further reduce total costs.

Keywords: standalone microgrid; renewable energy; battery lifetime; capacity optimization; PSO
algorithm

1. Introduction

Recently, Renewable Energy Resources (RESs) have become attractive sources in the
electrical power system due to various advantages, such as being sustainable sources
and being environmentally friendly [1,2]. The primary RESs are solar and wind energy
generation sources. However, power generation from the RESs is intermittent because of
its behavior. Therefore, renewable energy generation sources cannot be directly connected
to the existing system or used without the appropriate management system [3,4]. A micro-
grid is a small power system constructed to manage Distributed Generators (DGs) from
renewable energy and load clusters. The microgrid that connects to the bulk power system
is called to be in “on-grid mode”, and when it disconnects from the bulk power system
in an emergency, it is called to be in “islanded mode”. The microgrid that operates in the
islanded mode can be called a standalone microgrid [5,6]. The standalone microgrid is
common in remote or rural areas. Thus, the standalone microgrid’s stability is low due to
the lack of assistance from the bulk power system. The primary goal in the microgrid is to
balance the power load and power generation without interrupting the load. Hence, it is
necessary to have manageable power generation sources, such as diesel engine generators
or the BESS, to control the microgrid’s power [7,8]. A standalone microgrid consisting of
renewable energy generation sources, load clusters, and BESS is widely used [9] and avoids
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using diesel generators for environmental reasons. One of the significant problems for
BESS applications is finding optimal capacity that considers the lifetime of BESS. Because of
the high cost of the BESS, BESSs with a short life have been widely used in a microgrid. The
performance assessment of the grid is primarily based on cost and reliability related to the
system’s lower greenhouse gas emissions [10]. The optimal size of PV and BESS in a micro-
grid for maintaining the longest BESS lifetime using the Loss of Power Supply Probability
(LPSP) and only the initial cost as the indicators was presented in [11]. The cost reduction
analysis was estimated for the battery State of Health (SOH) and artificial intelligence was
applied to help with the battery management system. A proper battery health assessment
can extend the battery’s lifetime and reduce the cost of the battery [12]. An accurate SOH is
essential to optimizing battery lifespan. Battery deterioration tracking and SOH estimates
are based on electrochemical impedance spectroscopy and the distribution of relaxation
time measurements. They were used to look for indicators linked to deterioration [13]. The
BESS lifetime estimation in a PV system using a practical model was presented by [14]. The
authors also considered the impact of BESS sizes and types on its lifetime. The BESS life-
time increases with increased BESS size, and upfront costs also increase. The authors also
introduced a strategy to optimise the total cost, including upfront costs and the replacement
cost of BESS. The lifetime prediction method and sizing of lead-acid BESS in microgrids
were applied by varying the BESS’s size and the weighted Wh throughput method to
estimate the BESS lifetime. However, the authors did not consider the cost analysis to
obtain the optimal size [15]. This paper proposes an optimization of BESS on a microgrid
with PV and WT as the power generation source. The objective function of this study is to
reduce total costs. According to the literature review, the articles in the references [11,14]
used a microgrid system with only PV and BESS. References [12,13] considered the SOH
estimation method to reduce costs, but this paper uses the optimization method. The work
in [14] only studied the BESS lifetime estimation in a PV system. Moreover, the authors
in [15] did not consider the cost analysis to obtain the optimal size. Therefore, in this paper,
both PV and WT generation systems are analyzed. The sizing and optimal NPV of the BESS
were analyzed with the optimization method. Implementing a microgrid system requires
forecasting investment costs and profits, as well as maintenance over its lifecycle because
the batteries are expensive components of the microgrid system. If the battery is replaced
prematurely, the cost of the system will increase. Forecasting and estimation methods are
generally used for the life cycle and the replacement of the battery. However, this paper
proposes optimization to get the best results and reduce the total cost of the BESS system.
The weighted Wh method and the PSO algorithm are applied for optimizing the cost of
BESS. In a standalone microgrid system, prolonging the life of the equipment is necessary
to reduce the cost of its replacement. However, the size and installation costs of the storage
systems must be appropriate. Therefore, this paper provides an appropriate weighting to
minimize the cost of the microgrid system. The PSO algorithm is applied to determine the
optimum weighting parameter, which results in faster and more accurate analysis results
than statistical analysis.

The major contributions of the paper are summarized as follows: The capacity opti-
mization method and cost analysis of the BESS by taking into account the BESS lifetime are
proposed in this paper. The BESS lifetime is estimated using the weighted Wh throughput
method, which is fully described in [16]. The total cost of the microgrid and the notion of
Net Present Value (NPV) constructs serve as the objective function. The objective func-
tion is solved using the PSO algorithm to determine the BESS’s ideal capacity. Due to
its dependability and affordability, the lead-acid battery is used in this study. According
to an economic analysis, it is a better choice than a modern battery like a lithium-ion
battery [17,18].

The rest of this paper is structured as follows: Section 2 explains the mathematical
modeling of DGs and BESS. Section 3 introduces the optimization model which consists of
the objective function and the PSO algorithm. Section 4 provides the simulation results and
result discussions. Finally, Section 5 concludes the paper.
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2. DGs and BESS Models

In this section, the mathematical models of PV, WT and BESS used in the proposed
optimization problem are briefly explained. A small industrial load is used for the case
study in which PV and WT power generation systems are installed. The battery energy
storage systems are used for power demand periods where the DGs are unable to supply the
load for only some periods. Hence, BESS is small in size, and costs are reduced accordingly.
However, the proper size of a BESS affects its longevity and maintenance or replacement
costs. This model can be applied to the larger systems.

2.1. PV Model

The amount of PV power depends on the solar intensity and temperature and is given
by [16],

PPV = PSTC ·
Gc

GSTC
· [1 + k(Tc)− TSTC], (1)

where PPV is the output power; PSTC is the rated output power at standard conditions (the
solar irradiance GSTC of 1000 W/m2 and the temperature TSTC of 25 ◦C; GC is the solar
irradiance during operation; k is the discrete-time index and Tc is the temperature during
operation. The installed capacity of the PV system in this paper is 65 kWp.

2.2. Wind Turbine Model

The amount of generated WT power depends on the wind speed [19]. The output
power of the WT system is expressed by,

Pwt =


0, v ≤ vci OR v ≥ vco,

Prated−wt
(v−vci)
(vr−vci)

, vci ≤ v ≥ vr,

Prated−wt, vr ≤ v ≥ vco,

(2)

where PWT is the output power of the wind turbine; v is the wind speed and Prated−wt is the
rated output power of WT. The capacity of the WT system is selected as 40 kWp.

2.3. BESS Model

In this paper, a lead-acid battery is used for the calculation of the BESS cost because it
is more cost-effective and safer compared to Li-ion battery. Although price of the Li-ion
battery is continuing to decrease, it is still expensive in Thailand. In Thailand, the batteries
widely used for energy storage in PV power generation systems are lead-acid batteries. In
order to simulate the operation of the BESS, mathematical models for calculating the charge
and discharge parameters and State of Charge (SOC) of the BESS are required. Batteries are
bidirectional energy sources, meaning they can store energy in a manner comparable to an
electrical load. In contrast, they provide energy as an energy source. The battery energy
balance equation and its constraint are,

EB(t + ∆t) = EB(t) + (PB,ch(t) · ηB,ch − PB,d(t)/ηB,d)∆t, (3)

Emin
B ≤ EB(t) ≤ Emax

B , (4)

where EB is the energy of the BESS at time t; PB,ch, PB,d are the charging and discharging
powers of BESS; ηB,ch, ηB,d are the charging and discharging efficiency of BESS respectively.

The maximum permissible output power of the BESS is limited as,

− Pmax
B,ch ≤ Pb(t) ≤ Bmax

B,d , (5)

where Pmax
B,ch , Pmax

B,d are the maximum charging and discharging powers of BESS.
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The battery SOC and DOD can be obtained as,

SOC(t) =
EB(t)

EB,rated
, 0 ≤ SOC(t) ≤ 1, (6)

DOD = 1− SOC, (7)

where SOC is the battery state of charge; EB is the energy of BESS at time t; EB,reted is the
rated energy and DOD is the battery depth of discharge.

The SOC = 1 or 0 means that the battery is fully charged or completely discharged
respectively. The SOC at time t can be expressed as,

SOC(t + ∆t) = SOC(t) · (1− β) +
EB(t + ∆t)

EB,rated
, (8)

where β is the battery’s self-discharge rate.
The battery SOC should be maintained within the specific ranges that depend on the

type of the battery,
SOCmin ≤ SOC(t) ≤ SOCmax, (9)

where SOCmin, SOCmax are the minimum and maximum limits of battery SOC.

2.4. BESS Capacity Model

BESS is used to maintain the microgrid’s power balance. Thus, the required power of
a BESS is the power mismatch between the load and the power generation. The balance
between load and generation can be achieved through,

PB,required(t) = PL(t)− PWT(t)− PPV(t), (10)

where PB,required is the BESS’ required power; PL is the load demand; PWT is the output
power of WT and PPV is the output power of PV.

Taking into account the charging and discharging efficiencies, the BESS power and its
rated power can be rewritten as follows: [20],

PB(t) =


PB,required(t)/ηB,d, PB,required(t) > 0,
PB,required(t)× ηB,ch, PB,required(t) < 0,
0, PB,required(t) = 0,

(11)

PB,rated = max(|PB(t)|), (12)

where PB,rated is the BESS’s rated power.
The required energy from BESS can be calculated as,

EB,required = max(EB(t))−min(EB(t)). (13)

The SOC of BESS should be kept within a specific range. Therefore, the rated energy
considering DOD limits is expressed by

EB,rated =
EB,required

DODmax − DODmin , (14)

where DODmax, DODmin are the DOD limits of the BESS.
In order to reduce the SOC level of the BESS, oversizing of the BESS is considered in

this paper, as discussed in the next section. The oversized BESS does not have the same
lifetime as an optimal size BESS [21,22]. BESS’s non-optimal size also increases investment
costs. An adjusting factor is used to obtain the BESS’ oversized energy as,

EB,Orated = EB,rated × qB, (15)
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where EB,Orated is the BESS’s oversized energy, EB,rated is the BESS’ rated energy and qB is
the adjusting factor.

The adjusting factor qB is equal to or greater than 1. As the size of the battery can
affect the DOD range, it follows that a battery with a higher capacity will last longer under
identical conditions. However, the cost of installation will rise. Consequently, the parameter
that must be optimized in this paper is qB. The optimal values will result in longer battery
life and a reduction in total system costs.

2.5. BESS Lifetime Estimation

In this paper, a weighted Wh throughput method is used to calculate the lifetime of a
lead-acid battery. This method has been employed by many researchers [15,23], as it can
roughly estimate the battery lifetime by using the SOC as the most significant factor for
battery lifetime. The battery has an overall throughput calculated from the manufacturer’s
datasheet, which usually provides the relationship between the Cycles to Failure (CTF) and
the different DODs as shown in Figure 1. In this study, the employed battery is the Sun
Xtender PVX-2580L model (12 V, 3.096 kWh) [24].

10 20 30 40 50 60 70 80 90 100
DOD (%)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

CT
F 

(C
yc

le
s)

Figure 1. The relationship between CTF and DOD.

The energy throughput corresponding to a specific DOD is expressed as,

Ethroughput(DOD) = 2× EB,rated × DOD× CTF, (16)

where Ethroughput is the energy throughput corresponding to a specific DOD and CTF is the
cycles to failure.

Because the DOD varies within the range of DOD limits, the energy throughput varies
with the DOD, as shown in Figure 2. By considering Equation (16) and the data shown in
the Figure 1, the relationship between energy throughput and DOD in the Figure 2 can be
obtained. The nonlinear curve in the Figure 2 is caused by the nonlinear function in the
Figure which is the relationship between the Cycles to Failure (CTF) and different DODs.
The data from the Figure 1 was obtained from the datasheet of the lead-acid battery in [24].
The overall energy throughput is the average energy throughput between the DOD limits
and can be determined as,

Ethroughput,avg = avg{Ethroughput(DOD)}DOD(max)
DOD(min) . (17)
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Figure 2. The relationship between energy throughput and DOD.

The cumulative energy throughput EWsoc multiplied by the SOC weighting factor
WSOC during period ∆t is given as,

EWsoc = WSOC × |PB(t)| × ∆t. (18)

The relationship between SOC and the weighting factor WSOC is shown in Figure 3.
For example, using 1 Wh of battery at 0.2 p.u. of SOC is equivalent to 1.3 Wh of the
cumulative energy throughput. On the other hand, using 1 Wh at 1 p.u. of SOC is equal to
0.55 Wh of the cumulative throughput. Based on the Figure 3 that shows the relationship
between SOC and SOC weighting factor and on Equations (18) and (19), battery life loss
mainly depends on SOC and SOC weighting factor (SOC and WSOC). If the SOC of the
battery is kept lower, the battery life loss will be affected (see Equation (19)). Thus, the
battery should operate at a high SOC or within its upper SOC limits to extend its lifetime.
It has to be noted that this method ignores many influencing factors for simplicity, such as
temperature, because temperature can be controlled. Therefore, the battery life loss can be
calculated as,

Lli f e =
EWsoc

Ethroughput,avg
, (19)

where Lli f e is the battery life loss and Ethroughput,avg is the average energy throughput.
The battery is considered to reach the end of life when the total cumulative energy

throughput is equal to the overall energy throughput.
The following exponential function can be used to express the relationship between

the number of cycles and the depth of discharge,

NCTF = f (DOD) = a× eb×DODB + c× ed×DODB , (20)

where a, b, c, d are constants.
The depreciation (DB) of BESS can then be calculated as,

DB =
m

∑
i=1

NB,cycle(DODi)

NCTF(DODi)
, (21)

where NB,cycle is the number of cycles according to the depth of discharge.
Therefore, the BESS lifetime LB can be obtained as,

LB =
1

DB,1year
× years, (22)
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where DB,1year is the depreciation of the battery in one year.
Hence, the total number of BESS replacements NRB throughout the project is given by,

NRB =
Lp

LB
− 1. (23)

where Lp is the project life.
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Figure 3. The relationship between SOC and the SOC weighting factor WSOC.

3. Optimization Model

The optimization problem is introduced in this section, and the PSO algorithm used to
solve it is briefly described.

3.1. Objective Function

The cost of the microgrid is represented by the concept of the Net Present Value
(NPV). The total cost includes the initial cost, fixed operation and maintenance costs, and
replacement costs. Therefore, the objective function used to minimize the NPV of the total
cost can be defined as:

Min(NPVCtotal) = min(Cinitial + NPVCom + NPVCre), (24)

where NPVCtotal represents the net present value of the total cost; NPVCom is the net
present value of the fixed operation and maintenance costs; NPVCre is the net present value
of the replacement cost and Cinitial is the initial cost.

The initial cost, the net present values of the replacement cost, and the fixed operation
and maintenance costs respectively are given as,

Cinitial = (kBE,initial × EB,Orated) + (kBP,initial × PB,rated), (25)

NPVCre =
NRB

∑
n=1

Cinitial
(1 + d)NRB×LB

, (26)

NPVCom = kB,om × EB,Orated ×USW, (27)

where kBE,initial is the BESS initial cost per kWh ($/kWh); EB,Orated is the BESS’ oversized
energy; kBP,initial is the BESS initial cost per kW ($/kW); kB,om is the operation and mainte-
nance costs set to 5% of the initial cost ($/kWh/year); d is the discount rate (5%); LB is the
BESS lifetime and USW is the uniform series present worth factor.
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The uniform series present worth factor is given as,

USW =
(1 + d)Lp − 1
Lp(1 + d)Lp

, (28)

where d is the discount rate.
Figure 4 depicts the procedure flowchart for the BESS capacity determination. It starts

by obtaining the input power of WT, PV, and load, and then calculating the rated power
and energy capacity of the battery. Then, it estimates the BESS lifetime using the BESS
model and obtains the objective function’s value. If NPVCtotal is minimal, the calculation
ends. If not, qB is adjusted by incremental increases of 0.001 between 1 and 5 and the
procedure is repeated.

Start

Daily power of 

PV, WT and Load

PL - PPV – PWT = PB,required

Calculation PB,rated and EB,rated

qB ≥ 1, EB,Orated = qB*EB,rated

Execute by BESS model and 

estimation of BESS lifetime

Calculate the objective 

function (NPVCtotal)

Check min. 

NPVCtotal

PSO parameter setting 

Random population from 50

Adjust qB

Optimal capacity of BESS 

with minimum NPVCtotal

No

Yes

Figure 4. Flowchart for determination of the optimal BESS capacity. The qB value is changed from 1
to 5 in 0.001 increments.

3.2. PSO Algorithm

Particle swarm optimization (PSO) is an intelligent optimization algorithm introduced
by J. Kennedy and R. Eberhart [25]. It has been widely used in many works owing to
its effectiveness and simplicity. The basics of PSO can be found in [26–28]. The reason
for choosing the PSO algorithm is that it has a simple structure with few parameters and
provides a quick solution. It creates particle swarms, which simulate a system or structure
of a group of organisms that group together for some specific purpose in each organism.
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The PSO chooses each i-th particle initial position and velocity at random. Then the i-th
particle position and velocity are updated until the termination conditions are met. The
particle’s position and velocity of the particle i are expressed by,

xi(k + 1) = xi(k) + vi(k + 1), (29)

vi(k + 1) = w× vi(k) + c1r1i(pi,best − xi(k) + c2ir2i(gi,best − xik)), (30)

where xi is the position of particle i; vi is the velocity of the particle i; w is the inertia factor;
c1, c2 are the acceleration factors; r1, r2 are the random number [0–1]; pbest is the best particle
and gbest is the best global solution.

Both acceleration factors (c1, c2) are commonly set to 2 [29]. The inertia factor which
linearly decreases in each iteration ite is calculated as,

wite = wmax − ite× wmax − wmin
itemax

, (31)

where wmax, wmin are the weights of the maximum and minimum speeds and itemax is the
maximum iteration.

This paper applies the PSO algorithm to determine the optimal installation size of
the BESS based on the battery size multiplier and the cost of the energy storage system
throughout the project as a measure of fitness or sufficiency. Each particle in the herd
has the battery size adjuster (qB) as a variable and is assigned to represent the answer
point. The initialization parameters for the PSO are the number of particles (n = 50),
the maximum number of iterations (itemax = 100), the range of velocity weighted values
(wmax/wmin = 0.9/0.4), and the learning weighting value (c1, c2 = 2). The optimization
toolbox in MATLAB is used to solve the PSO algorithm [30]. The effectiveness of the
proposed strategy was verified using MATLAB running on MacBook Air (Early 2015),
1.6 GHz Dual-Core Intel Core i5, RAM 8 GB 1600 MHz DDR3. The verification findings for
the suggested optimization approach are presented in the following section.

4. Results

In this study, a standalone microgrid with an industrial load, a WT, a PV and a BESS
illustrated in Figure 5 is considered. The daily load demand, PV and WT generations with
a 5-min resolution shown in Figure 6, tasken from [31], are used to verify the effectiveness
of the proposed method. The industrial load has a peak power of 100 kW at 12:30 p.m. The
PV generates power between 7:00 a.m. and 5:00 p.m. with a maximum value of 63 kW
at noon. The power generated by wind turbines fluctuates around 35 kW throughout the
day. The required power from the BESS is obtained based on the mismatch between the
load demand and the total power generation. In Figure 7, the BESS’ discharging power is
positive and the charging power is negative. The initial SOC is set at 50%. The standalone
microgrid project life is set to 20 years. The case parameters used in the optimization are
given in Table 1.

Table 1. Case study parameters.

Parameter Variable Unit Value

Project life Lp years 20
BESS Calendar life LB years 10
BESS SOC limits SOCmin-SOCmax % 20–80

Charge/discharge efficiency ηB,ch /ηB,d % 90/90
Initial cost per energy [32–34] kBE,initial $/kWh 183.86

Initial cost per power kBP,initial $/kW 183.86
Operation & maintenance cost kB,om $/kWh/year 9.19

Discount rate [35] d % 5
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Figure 5. Schematic diagram of the standalone microgrid.
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Figure 6. Industrial load, PV source and WT powers taken from [31].

The rated energy of BESS EB,ratedis 82 kWh (qB = 1). For qB = 1, the BESS lifetime is
1.2 years, and the NPVCtotal throughout the project is US$204,436. When qB = 1, the SOC
value is in the range of 20% to 80%. As the qB is increases, the battery size is increasing, and
the deviation of the battery SOC from 50% is decreasing. However, the increased battery
capacity results in higher total costs. Thus, the PSO optimization method is applied to find
the optimal value of qB. The BESS SOCs for qB = 1, 1.761, and 5 are illustrated in Figure 8.

Figure 9 shows a stepped pattern of the relationship between NRB and qB. As the
qB increases, the number of battery replacements will decrease. As the size of the battery
increases, the SOH and the battery lifetime increase as well. The relationship between NRB
and LB is shown as the purple line (saw-tooth pattern) and is used to obtain the NPVCre
using Equation (26).
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Figure 7. BESS−power for the case shown in Figure 6.
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Using the proposed method, the obtained value of US$200,653 was the lowest NPVCtotal
at the qB of 1.761. This corresponds to the optimal capacity of the BESS of 144.4 kWh. The
effects of qB on the Cinitial , the NPVCom and the NPVCre are depicted in Figure 10. As the
qB increases, the size of the battery and the cost increase, and the number of replacements
decreases. If the battery size is small, the cost of battery replacement is low, but the cost
of replacing the battery is high. As the qB varied from 1 to 5, in steps of 0.001, the Cinitial
increased from US$18,419 to US$78,724, and the NPVCom increased from US$23.48 to
US$117.43. In contrast, the Cre has downward trends because the qB can extend the BESS
lifetime and the BESS replacement was reduced.

The effects of qB on the BESS lifetime and the number of BESS replacements are shown
in Figure 11. The number of BESS replacements will decrease step by step with respect to
the DOD and the size of the battery in relation to the qB factor. However, when calculating
the BESS replacement cost in the low qB range, the replacement cost is low, and when qB is
high, the cost of replacing the battery increases. The minimum saw-tooth pattern range
is the point where the number of BESS replacements is reduced. The qB has a positive
effect on the BESS lifetime. The BESS lifetime also increased from 1.2 years to 5.44 years
when the qB increased from 1 to 5. The number of BESS replacements decreased because
the number of replacements remains equivalent even when qB is adjusted slightly, such as
when NRB = 8 and qB = 2.0 and 2.2.
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The qB has an effect on the NPVCtotal of the microgrid, as shown in Figure 12. This
curve is similar to a saw-tooth line due to the nonlinear characteristic of the replacement
cost. When qB = 1.761 and qB = 2.0 are compared, the NPVCtotal of the qB = 1.761 is the
lowest. Even though the Cinitial and Com for qB = 1.761 are greater than those for qB = 2.0,
the Cre is lower because it can reduce the NRB from 9 to 8. This shows how the qB affects
the NPVCtotal . The BESS lifetime and cost analysis versus some of the qB values are given
in Table 2. Battery lifetime estimates show that increasing the size of the battery by the qB
factor increases battery life because it reduces the number of cycles at a high DOD value.

1 1.5 2 2.5 3 3.5 4 4.5 5
The adjusting factor qB

196,224

207,436

218,649

229,862

241,075

N
PV

C to
ta

l ($
)

1.761

200,653 $

Figure 12. Net present value of the system total cost for different values of qB.

Table 2. Simulation results for some of the qB values.

qB LB NRB Cinitial ($) NPVCom ($) NPVCre ($) NPVCtotal ($)

1.0 1.20 16 18,419 23.48 185,992 204,436
1.5 1.72 11 25,958 35.23 178,562 204,557

1.761 2.00 9 29,896 41.36 170,468 200,653
2.0 2.25 8 33,497 46.97 168.626 202,172
2.2 2.46 8 36,513 51.67 176,524 213,088
3.0 3.31 6 48,573 70.46 171,838 220,482
4.0 4.38 4 63,649 93.94 153,539 217,284
5.0 5.44 3 78,724 117.43 142,152 220,994

5. Conclusions

This paper proposed a capacity optimization method for a BESS in a standalone micro-
grid while taking the BESS’ lifetime into account. The BESS’ capacity influenced the initial
cost, operation and maintenance costs, and replacement cost. The case study demonstrated
the efficacy of the proposed method. According to the PSO algorithm results, the optimal
capacity of the BESS (qB = 1.761, EB,rated = 144.4 kWh, and NPVCtotal = US$200,653) has
the lowest NPV of the total cost. According to the simulation results, the capacity and
lifetime of the BESS were the major factors influencing the total cost of the system. Based
on the results, the overall cost was reduced slightly. This is due to the small size of the test
system, which caused the battery system to be small as well. However, if the proposed
method is applied to a larger system, the total cost can be greatly reduced. Future research
will concentrate on scaling up the proposed method and comparing it to other current
battery technologies.
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Abbreviations
The following abbreviations are used in this manuscript:

BESS Battery Energy Storage System
c1, c2 Acceleration factors
Cinitial Initial cost
Com Fixed operation and maintenance cost
Cre Replacement cost
CTF Cycles to failure
Ctotal Total cost
d Discount rate
DGs Distributed generation system
DOD Depth of discharge
EB Battery energy
EB,rated Battery capacity
EB,Orated Battery’s oversize energy
Ethroughput Battery throughput corresponding to a specified DOD
Ethroughput,avg Average battery throughput
gbest The best global solution
Gc The solar irradiance on the operating time
GSTC The solar irradiance on the standard test condition (STC) (1000w/m2)
i Particle index
itemax Maximum iteration
kc Temperature coefficient
k Discrete time index
kB,om The operation and maintenance cost set to 5% of the initial cost ($/kWh/year)
kBE,initial The BESS initial cost per energy ($/kWh)
kBP,initial The BESS initial cost per power ($/kW)
LB BESS lifetime
Lli f e Life loss
LPSP Loss of power supply probability
n Number of particles in the swarm
NPVC Net present value of cost
NPV Net present value
NRB Number of BESS replacement throughput the project
pbest Personal pest solution
PB Output power limit of BESS
PB,ch, PB,d Charging and discharging power of BESS
PB,required BESS’s required power
PB,rated BESS’s rated power
Pmax

B,ch , Pmax
B,d Upper limits of charging and discharging power of BESS

PPV Output power of PV system
Prated−wt Rated output power of WT
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PSTC Rated output power at standard test condition
PV Photovoltaic
PWT Output power of WT
qB Adjusting factor
r1, r2 Random number [0, 1]
SOC State of charge
TC The PV temperature on the operating time
USW Uniform series presents the worth factor
v Wind speed (m/s)
vi Velocity of the particle i
vci, vr, vco Cut-in speed, rated speed and cut-off speed of WT
w Inertia factor
WSOC Weight factor
x Position of particle i
β Battery’s self discharge rate
ηB,ch, ηB,d Charging and discharging efficiency of BESS
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