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Abstract: The genetic algorithm (GA) is one of the most used methods to identify the parameters of
Li-ion battery models. However, the parametrization of the GA method is not straightforward and
can lead to poor accuracy and/or long calculation times. The Taguchi design method provides an
approach to optimize GA parameters, achieving a good balance between accuracy and calculation
time. The Taguchi design method is thus used to define the most adapted GA parameters to identify
the parameters of model of Li-ion batteries for household applications based on static and dynamic
tests in the time domain. The results show a good compromise between calculation time and accuracy
(RMSE less than 0.6). This promising approach could be applied to other Li-ion battery applications,
resulting from measurements in the frequency domain or different kinds of energy storage.

Keywords: second-life EV batteries; EECM; digital twin; genetic algorithm; Taguchi experimental design

1. Introduction

Lithium-ion batteries used in electric vehicles (EVs) degrade significantly in the first
five years of operation and are designed for a useful life of about eight years, equivalent to
a twenty percent loss in initial capacity [1]. Nevertheless, even if they no longer meet EV
performance standards, these batteries are still capable enough to serve less demanding
applications, including stationary energy-storage services [2], lowering storage system
prices and leading to a potential solar energy revolution [3–5]. Indeed, it is estimated
that by 2030, stationary storage powered by used EV lithium-ion batteries could exceed 5
GWh [6]. However, few studies on second-life EV batteries have been published in terms
of assessing the technical feasibility, economic viability and, in the positive case, a protocol
of use to maximize their second-life usage in solar storage systems [1]. Any attempt to do
so requires validating a digital twin, which we tried to achieve in this paper.

Battery modeling approaches can be summed up into three approaches: the electro-
chemical or physics-based model; the black-box model; and the equivalent electric circuit
model (EECM) [7]. However, the latter is the most widely used model in battery manage-
ment systems (BMS) due to its simplicity and reasonable accuracy [8]. In addition, EEC
models are highly recommended for observation and control problems and could be con-
sidered a solid foundation for state-of-charge (SOC) and state-of-health (SOH) estimations
in low dynamic applications.

In [9,10], the authors compared the performance between 1-RC, 2-RC, and 3-RC EEC
models. They used electrochemical impedance spectroscopy to derive 26.9 V Li-ion battery
pack impedances at different SOC points. The impedances versus SOC relationships were
considered third-degree polynomials, and the coefficients were fitted using the MATLAB
genetic algorithm solver. The proposed models were then validated by two different real-
world driving cycles reproduced by a hardware-in-the-loop platform. The 3-RC EECM
scored the best root mean square error (RMSE) with a value of less than 0.6%. This paper
uses a third-order EECM to reproduce Li-ion cell behavior. A C/40 rate (dis)charging test
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was conducted to obtain the open circuit voltage (OCV) versus SOC relationship and a
dynamic profile extracted from a real-world solar application for parameter fitting and
validation. Usually, the GA is used with default parameters [9,11], with a set of predefined
parameters [12], or using the trial-and-error method, which may not be suitable for the
application under study and may take a long time without obtaining the desired solution.
In contrast to the previously mentioned studies, the RC differential equations with constant
parameters are used to describe the cell dynamics, and the hysteresis effect was considered.
For parameter identification, the genetic algorithm solver in MATLAB, combined with a
systematic approach based on the Taguchi experimental design and ANOVA (analysis of
variance), is implemented. The RMSE of the model obtained is also less than 0.6%, with
accuracy reaching more than 99.44%.

The novelty and contribution of this study can be summarized as follows:

• Provide an easy-to-implement, robust, and systematic approach to the characterization
of a Li-ion cell from experimentation, to modeling, to validation.

• The parameters used for setting the GA have been justified using the Taguchi method
and proven to make the algorithm more efficient in terms of computation time and
model fitting.

• The GA parameter optimization method could be generalized and used for other
characterization techniques (e.g., particle swarm optimization).

• A real-word household power consumption profile was used to parametrize the cell
model; therefore, this study is a solid basis for further investigation on the use of
second-life Li-ion batteries in solar home storage systems.

This paper is organized as follows. Section 2 describes the series of laboratory tests
conducted to parametrize the lithium-ion cell model. In Section 3, the cell EECM is
described. Section 4 elaborates on the parameter identification approach, followed by
Section 5 which shows a set of estimated cell voltages versus measured cell voltages.
Finally, Section 6 concludes the paper.

2. Brief Introduction of Collected Dataset

The experiments were conducted using two INR 18650 MJ1 Li-ion cells. Data were
collected from the first cell to fit the parameter values to the ECCM and from the second
cell to validate the model. These cells comprise nickel-rich NMC811 cathodes and graphite-
silicon anodes with a nominal capacity of 3.5 Ah and a nominal voltage of 3.6 V, which can
be used across a wide range of applications from spacesuits to automotive vehicles [13]. In
addition, the test bench includes a battery-regenerative test system for the charge, discharge,
and measurements; a thermal chamber for thermal conditioning; and a computer for
data monitoring and control. During the tests, the thermal and electrical variables were
measured and registered with an acquisition time from 1 to 60 s, depending on the different
steps of the test. Therefore, the frequency value was conveniently chosen for each step to
record all the significant changes and simultaneously save the length of the data files.

Electric consumption data are indispensable to facilitating the employment of de-
centralized renewables [14]. It helps engineers and researchers size renewable sources,
manage and optimize the energy flow, and reduce costs. There are roughly three techniques
used to generate a load profile [15]. First, the top-down model, or the measurement-based
approach, uses routinely acquired data from measuring devices placed at different locations
in the system. Hence, the quality of real-time-collected data heavily depends on the sensors’
accuracy. Moreover, the top-down model requires a minimum of six months of historical
data, as long as it includes both summer and winter, to generate or forecast a functional
load profile. Second, the bottom-up model, or the component-based approach, requires the
energy consumed by each electrical appliance to be obtainable. For this, two methods are
adopted. In the first one, all the components are metered, and no historical data are required.
However, this process is time and money-consuming. In the second one, none or part of
the components are metered, and the energy consumed by the rest is estimated. Finally, the
hybrid model, which combines the two techniques mentioned previously, benefits from the
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low cost of the top-down approach and the excellent theoretical accuracy of the bottom-up
approach [16]. A French household power consumption dataset [17] collected between
December 2006 and November 2010 in a house in Seaux using the top-down approach
was used as a reference for our work. It provides 2,075,259 measurements of global active
power with a one-minute step-time. This dataset accompanies no reference paper; however,
it has been used by [18] to quantify self-consumption linked to solar home battery systems
and by [19] to forecast power consumption using machine-learning algorithms.

Three tests were performed. The first test evaluated the OCV versus SOC relationship
at 25 ◦C. It consists of fully discharging the cell, charging the cell at a C/40 rate until fully
charged, and discharging at a C/40 rate until fully discharged. Two voltage versus SOC
relationships for the charge and discharge portion of the test were derived from the test
data. The OCV (SOC, 25◦) was computed as the average. Indeed, (dis)charging the battery
at a low rate pares the ohmic and polarization effects so that the cell can be considered at
equilibrium at each point in time [20–22].

The cell starts at about 80% SOC in the second test (Figure 1), followed by 16 current
waveform cycles. Every four cycles are separated by a 30 min rest, and each cycle is equiva-
lent to about a 3.9% SOC decrease. The current waveform was computed by subtracting the
power consumed by the French household mentioned above from the power generated by
a 3.6 kW PV installation during 30 min of 1 January 2008 in Seaux, France, and normalized
from a 48 V 2 kWh Li-ion pack level to a cell level. Indeed, the EECM parameter values
are significantly affected by the final application as well as the cell SOC [9]. Therefore,
the profile used should be representative of the chosen application and applied across the
whole SOC operation range to find the optimal parameter combination for the entire range.

Finally, in the third test, the second cell underwent four cycles from the current
waveform mentioned above, and the data collected were used to validate the model.
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3. Lithium-Ion Cell Modelling

The EEC models describe the battery’s electrical behavior in terms of voltages and
currents. Using only passive electrical components, the resulting equations are a low-
dimensional system of ordinary differential equations, which are generally nonlinear
because the battery parameter depends on the temperature and the state of charge. To re-
duce the complexity further, only the open circuit voltage is assumed to have dependencies
on temperature and state of charge. Therefore, it is estimated at multiple states of charge
points and temperatures via laboratory tests, and then interpolated to deduce the contin-
uous OCV–SOC relationships. As a result, these models are relatively accurate and less
complex, making them a competitive candidate to be embedded in battery management
systems for real-life applications, ensuring reliable and safe operating conditions.

In this section, the third-order EECM is introduced. As shown in Figure 2, the model
used in [9] has been modified by adding the hysteresis effect and by using electrical-circuit
differential equations to imitate dynamic cell behavior instead of parameters versus SOC
polynomial relationships.

The cell OCV and SOC are highly correlated and can be significantly influenced by
temperature [23]. It is usually measured by applying current pulses with known SOC
alternations, letting the battery rest for at least 30 min before finally measuring the terminal
voltage [11]. However, the static test adopted in this paper consists of (dis)charging at a
prolonged rate (i.e., C/40), owing to its high SOC resolution and ease of implementation
(Figure 3).
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The observed instantaneous voltage variation when charging or discharging the cell
is modeled by an ohm internal resistance [24]. The multiple series RC branches in the
EECM emit the voltage dynamic deviation from the OCV when the cell undergoes an input
current and slow recovery when the cell is allowed to rest. This is usually referred to as the
polarization effect [25], which is caused by the slow migration of lithium in the cell [9].

Figure 4 shows that averaging the two voltage versus SOC relationships obtained
considerably decreases the hysteresis effect. However, [26] showed that a 1% battery’s OCV
measurement noise is equivalent to a 29.8% error increase in SOC estimation. Therefore,
the Plett single-state hysteresis model was considered in this study [22]:

Vhest(t) = M.h(t) + M0.sgn(i(t)) (1)

where M0.sgn(i(t)) models the instantaneous hysteresis when the input current sign changes,
and M.h(t) models the dynamic hysteresis when the SOC cell changes. h(t) is a normalized
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hysteresis contribution between +1 and −1, and M the maximum polarization voltage due
to hysteresis. The derivative of h(t) can be expressed as:

.
h(t) = −|η(t).i(t).γ(t)/Q|.(sgn(i(t)) + h(t)) (2)

where γ(t) is the rate of the hysteresis decay toward either +1 or −1.
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V(t) =
[
1 −M 1 1 1

]


OCV(t)
h(t)

VC1(t)
VC2(t)
VC3(t)

+
[
R0 −M0

][ i(t)
sgn(i(t))

]
(4)

where the OCV can be interpolated from the OCV versus SOC relationship, η is the
coulombic efficiency, Q the total capacity, and τk the k-RC time constant. It should be
noted that, regarding the sign convention, i(t) is positive when charging and negative
when discharging.

4. EECM Parameter Identification Approach
4.1. Genetic Algorithm

Genetic algorithms (GAs) are stochastic optimization and global search methods
that imitate natural biological evolution [27]. A GA operates on a population of artificial
individuals. A chromosome represents each individual, and each chromosome expresses a
solution to a problem and has a fitness (i.e., a number that measures how good a solution is
to the given problem). Starting with a randomly generated population of individuals, a GA
carries out a survival of the fittest-based selection and the recombination process to derive
the next generation’s successor population. During recombination, parent chromosomes
are selected, and their genetic material is recombined to produce child chromosomes.
However, the offspring generated using the selected parents only have the characteristics
of its parents, including their drawbacks. Therefore, random mutations must be applied
to each offspring to overcome the problem and create new individuals, preventing the
evolution from freezing. As in natural adaptation, this process leads to the evolution of
individuals more suitably adapted to their environment than the individuals from which
they were derived until some stopping criterion is reached.

The GAs lifecycle can be summarized as follow:

1. Create a population of random chromosomes (potential solutions);
2. Score each chromosome in the population for fitness, and ‘usually’ select individuals

with better fitness values as parents;
3. Create a new generation through crossover and mutation;
4. Repeat until some criteria is reached (e.g., max number of generations, max amount

of time running);
5. Emit the fittest chromosome as the solution.

4.2. Systematic Approach Based on Taguchi Experimental Design

The GA is a well-proven solution for complicated estimation problems [12] due to
its numerous advantages, notably its capability to usually converge despite how far the
initial conditions are from the optimal solution and how many unknown variables are
used as long as they are bounded. However, it can be time-consuming to run and can
sometimes be stuck in local minima. The authors of [28] showed that optimizing the GA
solver parameters can overcome these limitations. Therefore, they proposed a systematic
and comprehensible approach based on the Taguchi experimental design for parameter
tuning, which will be replicated in this paper while considering only the parameters levels
suitable in our case (Table 1).

4.2.1. Generating Taguchi Experimental Design

The experimental design proposed by Taguchi involves orthogonal arrays to organize
the parameters affecting the GA solver and the levels at which they should be varied.
Instead of testing all possible combinations, the Taguchi method tests pairs of combinations,
gathering the necessary data to determine which factors most affect the GA solver with
minimum experimentation [29]. As presented in Table 1, we had one GA parameter with
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two levels, and the rest had three levels. The Taguchi orthogonal array design L18 (21 37)
was chosen and generated by Minitab (Table 2).

Table 1. Solver options and their experimental levels.

No. Parameters Code
Level

1 2 3

1 Migration Direction A Forward Both -
2 Population Size B 100 150 200

3 Fitness Scaling
Function C Proportional Rank Top

4 Selection Function D Remainder Tournament Roulette
5 Elite Count E 1 5 10
6 Crossover Fraction F 0.3 0.7 0.9
9 Crossover Function G Two Point Scattered Arithmetic

8 Mutation Function H Adaptive
xsqFeasible Uniform Gaussian

Table 2. Taguchi Orthogonal Array design L18 (21 37).

Experiment Parameters of ga Solver

A B C D E F G H

1 1 1 1 1 1 1 1 1
2 1 1 2 2 2 2 2 2
3 1 1 3 3 3 3 3 3
4 1 2 1 1 2 2 3 3
5 1 2 2 2 3 3 1 1
6 1 2 3 3 1 1 2 2
7 1 3 1 2 1 3 2 3
8 1 3 2 3 2 1 3 1
9 1 3 3 1 3 2 1 2

10 2 1 1 3 3 2 2 1
11 2 1 2 1 1 3 3 2
12 2 1 3 2 2 1 1 3
13 2 2 1 2 3 1 3 2
14 2 2 2 3 1 2 1 3
15 2 2 3 1 2 3 2 1
16 2 3 1 3 2 3 1 2
17 2 3 2 1 3 1 2 3
18 2 3 3 2 1 2 3 1

4.2.2. Conducting the Experiments

In [28], the authors considered fixing the computation time for every experiment,
seeking a fair comparison. However, time can be seen as a ‘factor’ in extensive data and
parameter numbers; therefore, fixing it can degrade the statistical analysis of GA solver
options’ contribution. In this paper, the computation time of every experiment was fixed to
30 s. However, from the significance analysis, it was expected that the set of GA parameters
contribute to minimizing the computation time, while being convergent to a reasonable
fitness value.

The cost function chosen was the root mean square error (RMSE):

RMSE =

√
1
N ∑N

i

(
V̆i − V̂i

)2 (5)

where V̌i is the cell measured voltage, and V̂i is the cell estimated voltage.
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The GA solver parameters set according to the Taguchi array are shown in Table 2,
and the simulation procedure is summarized in Figure 5. For consistency, every experiment
was repeated three times as shown in Table 3.
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1 1 1 1 1 1 1 1 1 0.945 0.812 0.797
2 1 1 2 2 2 2 2 2 0.615 0.784 0.698
3 1 1 3 3 3 3 3 3 1.410 1.841 0.816
4 1 2 1 1 2 2 3 3 0.989 1.162 1.526
5 1 2 2 2 3 3 1 1 0.706 0.752 0.674
6 1 2 3 3 1 1 2 2 0.699 0.715 0.650
7 1 3 1 2 1 3 2 3 0.744 0.889 0.829
8 1 3 2 3 2 1 3 1 0.793 2.161 1.265
9 1 3 3 1 3 2 1 2 0.634 0.665 0.621

10 2 1 1 3 3 2 2 1 0.642 0.675 0.842
11 2 1 2 1 1 3 3 2 1.131 1.022 0.990
12 2 1 3 2 2 1 1 3 0.632 0.811 0.7889
13 2 2 1 2 3 1 3 2 0.791 0.944 0.800
14 2 2 2 3 1 2 1 3 0.657 0.905 0.614
15 2 2 3 1 2 3 2 1 0.642 0.636 0.6390
16 2 3 1 3 2 3 1 2 0.766 0.703 0.7802
17 2 3 2 1 3 1 2 3 0.978 1.109 0.917
18 2 3 3 2 1 2 3 1 1.456 1.890 0.891

4.2.3. Analyzing Data

ANOVA was used at a 95% confidence level to determine the effect and contribution
of each parameter on the experiment outcome. The ‘Cross-over Function’ p-value in Table 4,
which is less than 0.005 [30], indicates that it significantly contributed to rapidly converging
towards a reasonable optimal RMSE, in the ideal case. Its level was chosen from the effect
charts (Figure 6) to ensure rapid convergence, minimizing the computation time, and the
non-significant factors from the experiments delivered the best fitness value (Table 5).
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Table 4. ANOVA analysis.

Source DF Adj SS Adj MS F p

A 1 0.06578 0.06578 0.92 0.381
B 2 0.18040 0.18040 2.53 0.173
C 2 0.23933 0.11966 1.68 0.277
D 2 0.21353 0.10677 1.50 0.309
E 2 0.00555 0.00555 0.08 0.791
F 2 0.04346 0.04346 0.61 0.470
G 2 2.04866 1.02433 14.36 0.008
H 2 0.44251 0.22125 3.10 0.133

Error 2 0.35666 0.07133
Total 17 3.59588
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Table 5. Selected solver option set.

A B C D E F G H

Both 150 Proportional Remainder 10 0.9 Two Point Uniform

5. Results and Discussion

To test the developed Li-ion EECM and the proposed GA parameter optimization, a
dynamic profile extracted from a real-world solar application was used. Figure 7 shows
the results for cell I from which the laboratory data were collected to identify the model
parameters. The estimated versus measured voltage was fairly accurate across each input
current cycle. The RMSE error of the model was 0.59% with a maximum error rate of 0.6%
(Figure 8), giving an accuracy of 99.4%, which is comparable with the results obtained
by [9]. Figure 9 gives a zoomed-in view of the transient shape, which smoothly follows the
measured voltage.

To validate the model, laboratory data were collected from another cell of the same
type. Figures 10 and 11 show that the model was also accurate, with an accuracy of more
than 99.4%.

The estimation results show that the developed model can reflect the dynamic of
the lithium-ion cell and can also be used at a pack level. However, improvements can
be made regarding the use of the cell for a more extended SOC range; a new set of the
EECM parameters should be identified for this specific range. It should be noted that
the EECM can be classified as an empirical model; therefore, even a high-order EECM
cannot provide itself any insight into internal dynamics and, consequently, the aging of a
cell. However, [31] showed that calendar/cycling aging (e.g., solid-electrolyte interphase
decomposition or regrowth, electrolyte decomposition, current collector corrosion, binder
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decomposition, lithium plating) mainly affects power capabilities by increasing internal
resistance and the remaining useful capacity by decreasing the active materials usually
due to side reactions. Both are observable using our model and can be estimated online as
the cell ages. To summarize, for longevity, efficiency, balancing, and safety concerns, the
SOC and SOH of Li-ion batteries should be estimated throughout their lifespan. Indeed,
a good SOC and SOH estimation can enable the battery management system to impose
power and energy limitations accurately. In a lab environment, where precise calibrations
can be made, the SOC is computed using coulomb counting and the SOH (as a function
of the total capacity) is computed by fully discharging the battery in predefined time
intervals. However, in real-life applications, where accurate calibration cannot be made
without interrupting the continuity of service, more advanced methods are used, such as
the Kalman filter [32], sliding-mode observers [33], and GAs [27]. A simple but robust
model containing the SOC, internal resistance, and total capacity as observable parameters
should be usually used in all cases (Equations (3) and (4)).
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6. Conclusions

Finding the best fit between battery models and real-world data can be challenging
and complex. A variety of laboratory tests should be done, and parameter identification
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techniques should be used to achieve a good match between measured and simulated
results. Stand-alone optimization algorithms need better accuracy and can fall into local
minima. Therefore, a hybrid optimization approach can yield the best solution. In this
paper, a third-order EECM was parametrized and validated using static and dynamic tests.
The data collected were used to identify the parameters using the GA solver in MATLAB
along with a systematic approach based on the Taguchi experimental design. The optimized
model, subject to real-world input current cycles, accurately estimates the battery output
voltage with an RMSE of 0.59% and an accuracy reaching more than 99.4%.

Future work may include developing a method to accurately monitor the internal
resistance and total capacity at a pack level, while conducting accelerated testing of the
battery in a solar application environment.

Author Contributions: Conceptualization, T.A.R. and D.C.; methodology, T.A.R.; software, T.A.R.;
validation, D.C. and N.Y.S.; formal analysis, T.A.R.; investigation, T.A.R. and D.C.; resources, D.C.
and N.Y.S.; data curation, T.A.R.; writing—original draft preparation, T.A.R.; writing—review and
editing, T.A.R., D.C. and N.Y.S.; visualization, T.A.R.; supervision, D.C. and N.Y.S.; project administra-
tion, D.C. and N.Y.S.; funding acquisition, N.Y.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded by the EIPHI Graduate School (contract ANR-17-EURE-0002) and
the Region Bourgogne Franche-Comté.

Data Availability Statement: The data of the French household energy consumption are available
here: https://archive.ics.uci.edu/ml/machine-learning-databases/00235/; The solar irradiation data
were retrieved from: https://www.renewables.ninja/; The experimental data from the Femto-ST will
be published in coherence with laboratory policy.

Acknowledgments: This work was supported by the EIPHI Graduate School (contract ANR-17-
EURE-0002) and the Region Bourgogne Franche-Comté.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Haram, M.H.S.M.; Lee, J.W.; Ramasamy, G.; Ngu, E.E.; Thiagarajah, S.P.; Lee, Y.H. Feasibility of Utilising Second Life EV Batteries:

Applications, Lifespan, Economics, Environmental Impact, Assessment, and Challenges. Alex. Eng. J. 2021, 60, 4517–4536.
[CrossRef]

2. Electric Vehicles, Second Life Batteries, and Their Effect on the Power Sector|McKinsey. Available online: https://www.mckinsey.
com/industries/automotive-and-assembly/our-insights/second-life-ev-batteries-the-newest-value-pool-in-energy-storage (ac-
cessed on 22 August 2022).

3. Bagalini, V.; Zhao, B.Y.; Wang, R.Z.; Desideri, U. Solar PV-Battery-Electric Grid-Based Energy System for Residential Applications:
System Configuration and Viability. Research 2019, 2019, 3838603. [CrossRef] [PubMed]

4. Chaianong, A.; Bangviwat, A.; Menke, C.; Breitschopf, B.; Eichhammer, W. Customer Economics of Residential PV–Battery
Systems in Thailand. Renew. Energy 2020, 146, 297–308. [CrossRef]

5. Faessler, B. Stationary, Second Use Battery Energy Storage Systems and Their Applications: A Research Review. Energies 2021, 14,
2335. [CrossRef]

6. Tabusse, R.; Bouquain, D.; Jemei, S.; Chrenko, D. Battery Aging Test Design during First and Second Life. In Proceedings of the
2020 IEEE Vehicle Power and Propulsion Conference (VPPC), Gijon, Spain, 18 November–16 December 2020; pp. 1–6.

7. Kumar, P.; Balasingam, B.; Rankin, G.; Pattipati, K.R. Battery Thermal Model Identification and Surface Temperature Prediction.
In Proceedings of the IECON 2021—47th Annual Conference of the IEEE Industrial Electronics Society, Toronto, ON, Canada,
13–16 October 2021; pp. 1–6.

8. Tran, M.-K.; Mathew, M.; Janhunen, S.; Panchal, S.; Raahemifar, K.; Fraser, R.; Fowler, M. A Comprehensive Equivalent Circuit
Model for Lithium-Ion Batteries, Incorporating the Effects of State of Health, State of Charge, and Temperature on Model
Parameters. J. Energy Storage 2021, 43, 103252. [CrossRef]

9. Pizarro-Carmona, V.; Castano-Solís, S.; Cortés-Carmona, M.; Fraile-Ardanuy, J.; Jimenez-Bermejo, D. GA-Based Approach to
Optimize an Equivalent Electric Circuit Model of a Li-Ion Battery-Pack. Expert Syst. Appl. 2021, 172, 114647. [CrossRef]

10. Vaidya, S.; Depernet, D.; Chrenko, D.; Laghrouche, S. Experimental Development of Embedded Online Impedance Spectroscopy
of Lithium-Ion Batteries—Proof of Concept and Validation. In Proceedings of the Electrimacs 2022, Nancy, France, 16–19 May
2022.

https://archive.ics.uci.edu/ml/machine-learning-databases/00235/
https://www.renewables.ninja/
http://doi.org/10.1016/j.aej.2021.03.021
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/second-life-ev-batteries-the-newest-value-pool-in-energy-storage
https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/second-life-ev-batteries-the-newest-value-pool-in-energy-storage
http://doi.org/10.34133/2019/3838603
http://www.ncbi.nlm.nih.gov/pubmed/31922133
http://doi.org/10.1016/j.renene.2019.06.159
http://doi.org/10.3390/en14082335
http://doi.org/10.1016/j.est.2021.103252
http://doi.org/10.1016/j.eswa.2021.114647


Batteries 2023, 9, 72 13 of 13

11. Baronti, F.; Zamboni, W.; Roncella, R.; Saletti, R.; Spagnuolo, G. Open-Circuit Voltage Measurement of Lithium-Iron-Phosphate
Batteries. In Proceedings of the 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
Proceedings, Pisa, Italy, 11–14 May 2015; pp. 1711–1716.

12. Guo, S. The Application of Genetic Algorithms to Parameter Estimation in Lead-Acid Battery Equivalent Circuit Models. Ph.D.
Thesis, University of Birmingham, Birmingham, UK, 2010.

13. Heenan, T.M.M.; Jnawali, A.; Kok, M.D.R.; Tranter, T.G.; Tan, C.; Dimitrijevic, A.; Jervis, R.; Brett, D.J.L.; Shearing, P.R. An
Advanced Microstructural and Electrochemical Datasheet on 18650 Li-Ion Batteries with Nickel-Rich NMC811 Cathodes and
Graphite-Silicon Anodes. J. Electrochem. Soc. 2020, 167, 140530. [CrossRef]

14. Klass, A.; Wilson, E. Remaking Energy: The Critical Role of Energy Consumption Data. Calif. Law Rev. 2016, 104, 1095.
15. Alahmed, A.; Almuhaini, M. Hybrid Top-Down and Bottom-Up Approach for Investigating Residential Load Compositions and

Load Percentages. arXiv 2020, arXiv:2004.12940.
16. Vogt, Y. Top–down Energy Modeling. Strateg. Plan. Energy Environ. 2003, 22, 64–79. [CrossRef]
17. Index of /Ml/Machine-Learning-Databases/00235. Available online: https://archive.ics.uci.edu/ml/machine-learning-

databases/00235/ (accessed on 22 August 2022).
18. Quoilin, S.; Kavvadias, K.; Mercier, A.; Pappone, I.; Zucker, A. Quantifying Self-Consumption Linked to Solar Home Battery

Systems: Statistical Analysis and Economic Assessment. Appl. Energy 2016, 182, 58–67. [CrossRef]
19. Parate, A.; Bhoite, S. Individual Household Electric Power Consumption Forecasting Using Machine Learning Algorithms. Int. J.

Comput. Appl. Technol. Res. 2019, 8, 371–376. [CrossRef]
20. He, Y.; He, R.; Guo, B.; Zhang, Z.; Yang, S.; Liu, X.; Zhao, X.; Pan, Y.; Yan, X.; Li, S. Modeling of Dynamic Hysteresis Characters for

the Lithium-Ion Battery. J. Electrochem. Soc. 2020, 167, 090532. [CrossRef]
21. Lu, B.; Song, Y.; Zhang, Q.; Pan, J.; Cheng, Y.-T.; Zhang, J. Voltage Hysteresis of Lithium Ion Batteries Caused by Mechanical

Stress. Phys. Chem. Chem. Phys. 2016, 18, 4721–4727. [CrossRef]
22. Graells, C.P.; Trimboli, M.S.; Plett, G.L. Differential Hysteresis Models for a Silicon-Anode Li-Ion Battery Cell. In Proceedings of

the 2020 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 23–26 June 2020; pp. 175–180.
23. Zhang, R.; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W.; Wang, M. A Study on the Open Circuit Voltage and

State of Charge Characterization of High Capacity Lithium-Ion Battery Under Different Temperature. Energies 2018, 11, 2408.
[CrossRef]

24. Zahid, T.; Li, W. A Comparative Study Based on the Least Square Parameter Identification Method for State of Charge Estimation
of a LiFePO4 Battery Pack Using Three Model-Based Algorithms for Electric Vehicles. Energies 2016, 9, 720. [CrossRef]

25. Wang, Q.; Wang, J.; Zhao, P.; Kang, J.; Yan, F.; Du, C. Correlation between the Model Accuracy and Model-Based SOC Estimation.
Electrochim. Acta 2017, 228, 146–159. [CrossRef]

26. Rahimi Eichi, H.; Chow, M.-Y. Modeling and Analysis of Battery Hysteresis Effects. In Proceedings of the 2012 IEEE Energy
Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; pp. 4479–4486.

27. Chrenko, D.; Fernandez Montejano, M.; Vaidya, S.; Tabusse, R. Aging Study of In-Use Lithium-Ion Battery Packs to Predict End
of Life Using Black Box Model. Appl. Sci. 2022, 12, 6557. [CrossRef]

28. Dao, S.; Abhary, K.; Marian, R. Maximising Performance of Genetic Algorithm Solver in Matlab. Eng. Lett. 2016, 24, 75–83.
29. 14.1: Design of Experiments via Taguchi Methods—Orthogonal Arrays. Available online: https://eng.libretexts.org/

Bookshelves/Industrial_and_Systems_Engineering/Book%3A_Chemical_Process_Dynamics_and_Con-trols_(Woolf)/14%
3A_Design_of_Experiments/14.01%3A_Design_of_Experiments_via_Taguchi_Methods_-_Orthogonal_Arrays (accessed on 28
November 2022).

30. Bower, K.M. Analysis of Variance (ANOVA) Using Minitab. Sci. Comput. Instrum. 2000, 17, 64–65.
31. Schlasza, C.; Ostertag, P.; Chrenko, D.; Kriesten, R.; Bouquain, D. Review on the Aging Mechanisms in Li-Ion Batteries for Electric

Vehicles Based on the FMEA Method. In Proceedings of the 2014 IEEE Transportation Electrification Conference and Expo (ITEC),
Dearborn, MI, USA, 15–18 June 2014; pp. 1–6.

32. Azis, N.A.; Joelianto, E.; Widyotriatmo, A. State of Charge (SoC) and State of Health (SoH) Estimation of Lithium-Ion Battery
Using Dual Extended Kalman Filter Based on Polynomial Battery Model. In Proceedings of the 2019 6th International Conference
on Instrumentation, Control, and Automation (ICA), Bandung, Indonesia, 31 July–2 August 2019; pp. 88–93.

33. Obeid, H.; Petrone, R.; Chaoui, H.; Gualous, H. Higher Order Sliding-Mode Observers for State-of-Charge and State-of-Health
Estimation of Lithium-Ion Batteries. IEEE Trans. Veh. Technol. 2022, 1–11. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1149/1945-7111/abc4c1
http://doi.org/10.1080/10485230309509626
https://archive.ics.uci.edu/ml/machine-learning-databases/00235/
https://archive.ics.uci.edu/ml/machine-learning-databases/00235/
http://doi.org/10.1016/j.apenergy.2016.08.077
http://doi.org/10.7753/IJCATR0809.1007
http://doi.org/10.1149/1945-7111/ab8b96
http://doi.org/10.1039/C5CP06179B
http://doi.org/10.3390/en11092408
http://doi.org/10.3390/en9090720
http://doi.org/10.1016/j.electacta.2017.01.057
http://doi.org/10.3390/app12136557
https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Book%3A_Chemical_Process_Dynamics_and_Con-trols_(Woolf)/14%3A_Design_of_Experiments/14.01%3A_Design_of_Experiments_via_Taguchi_Methods_-_Orthogonal_Arrays
https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Book%3A_Chemical_Process_Dynamics_and_Con-trols_(Woolf)/14%3A_Design_of_Experiments/14.01%3A_Design_of_Experiments_via_Taguchi_Methods_-_Orthogonal_Arrays
https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Book%3A_Chemical_Process_Dynamics_and_Con-trols_(Woolf)/14%3A_Design_of_Experiments/14.01%3A_Design_of_Experiments_via_Taguchi_Methods_-_Orthogonal_Arrays
http://doi.org/10.1109/TVT.2022.3226686

	Introduction 
	Brief Introduction of Collected Dataset 
	Lithium-Ion Cell Modelling 
	EECM Parameter Identification Approach 
	Genetic Algorithm 
	Systematic Approach Based on Taguchi Experimental Design 
	Generating Taguchi Experimental Design 
	Conducting the Experiments 
	Analyzing Data 


	Results and Discussion 
	Conclusions 
	References

