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Abstract: The early detection and tracing of anomalous operations in battery packs are critical
to improving performance and ensuring safety. This paper presents a data-driven approach for
online anomaly detection in battery packs that uses real-time voltage and temperature data from
multiple Li-ion battery cells. Mean-based residuals are generated for cell groups and evaluated using
Principal Component Analysis. The evaluated residuals are then thresholded using a cumulative
sum control chart to detect anomalies. The mild external short circuits associated with cell balancing
are detected in the voltage signals and necessitate voltage retraining after balancing. Temperature
residuals prove to be critical, enabling anomaly detection of module balancing events within 14 min
that are unobservable from the voltage residuals. Statistical testing of the proposed approach is
performed on the experimental data from a battery electric locomotive injected with model-based
anomalies. The proposed anomaly detection approach has a low false-positive rate and accurately
detects and traces the synthetic voltage and temperature anomalies. The performance of the proposed
approach compared with direct thresholding of mean-based residuals shows a 56% faster detection
time, 42% fewer false negatives, and 60% fewer missed anomalies while maintaining a comparable
false-positive rate.

Keywords: anomaly detection; data-driven fault diagnosis; lithium-ion battery pack; principal
component analysis; battery safety

1. Introduction

Li-ion batteries (LiBs) are widely used in energy storage applications, such as power
grids, electric vehicles, and electric locomotives, due to their high energy density, power
density, long cycle life, and extended calendar life. Feng et al. [1], however, list several
recent accidents due to the failure of LiBs, often due to thermal runaway. Thermal runaway
is often preceded by an internal short circuit caused by thermal, mechanical, and electrical
abuse. Overcharge and over-discharge can also lead to thermal runaway [2]. Other critical
anomalies in battery packs include balancing circuit failures and external short circuits
(ESCs). Furthermore, sensor anomalies can lead to inaccurate control actions by the battery
management system (BMS). Thus, it becomes critical to have an early and quick detection
method followed by appropriate actions to avoid fault propagation, ensuring the safe and
reliable operation of LiB packs.

The time-series data outputs of a battery system are non-stationary due to the time-
varying current and environmental conditions. Anomalies may not be detected by directly
thresholding the voltage and temperature measurements, especially at anomaly initiation
when the voltage and temperature deviations are small. Therefore, the data are made
stationary by estimating the voltage and temperature residuals as the difference between
the measurements and the expected responses. Previous research focuses on cell-level
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anomaly detection using model-based residual estimation and thresholding [3–9]. State
observers, such as extended Kalman filters (EKF) [10,11], adaptive EKF [9], unscented
Kalman filters (UKF) [12], dual EKF [13], and nonlinear observers [3], have been used,
along with parameter estimation techniques, such as recursive least squares [7,11,12,14]
and particle swarm optimization [8,14], to generate residuals. Anomaly detection is also
performed by thresholding the model-based voltage, temperature, and state of charge
(SoC) residuals against predetermined thresholds [9,13,15,16]. However, generating model-
based residuals is computationally expensive for battery packs, as it involves estimators
for many cells. Computational complexity can be reduced through bar-delta filtering, cell
mean models, and cell difference models to estimate the SoC of each cell [11,14,17]. Several
works are reported in the literature that detect different types of battery-related [4–8] and
sensor-related [9,10,18,19] anomalies. However, most of the aforementioned approaches are
applicable to only one type of fault [7–10]. Some techniques work only if no two faults occur
at the same time [16,19,20]. Some of the aforementioned approaches require parameter
estimation by performing specific characteristic tests [6,9,18].

Apart from model-based approaches, data-driven models, which utilize the cell-
to-cell redundant voltage information in battery packs, are used for anomaly detection.
Correlation-based methods detect and trace voltage anomalies using the correlation co-
efficient between cell voltages [20–22]. However, these methods can be sensitive to mea-
surement noise [23]. Entropy-based anomaly detection methods detect voltage anomalies
by monitoring the entropy measure such as Shannon entropy [24–26]. Sun et al. [27]
detected and located short-circuit anomalies in battery packs by thresholding the mod-
ified Z-score of the relative entropy of individual cells with the pack median. Shannon
entropy is also used for thermal runaway prognosis by detecting thermal faults [28]. These
methods have high computational costs and their performance is dependent on the choice
of entropy measure and computation window, especially in the case of noisy data [23].
Machine learning (ML)-based anomaly detection approaches that have been applied to
other domains and LiBs [29] include classification, clustering, nearest-neighbor, statistical,
information-theoretic, and spectral-based techniques [30]. ML techniques, such as neural
networks [31], the k-means clustering algorithm [32], support vector machines [33], and
random forest classifiers [34,35], have also been applied to anomaly detection in battery
systems. However, most of these techniques require large amounts of labeled battery-fault
data for training.

Among the other data-driven approaches, Principal Component Analysis (PCA) is
a promising unsupervised anomaly detection algorithm that has been extensively used
in anomaly detection for multivariate systems [36–38]. Wang et al. [38], for example,
proposed sensor fault detection for a chiller system using PCA on the process variables.
Schmid et al. [39] proposed a PCA-based approach that detects voltage anomalies in a
group of cells by applying PCA on voltage data processed using outlier robust sample
studentization. In [40], these researchers extended their method to include the kernel
PCA-based method to detect internal short-circuit (ISC) faults using voltage signals but it
is computationally expensive. The approaches in [39,40] detected anomalies with a single
anomalous voltage but their applicability in the case of multiple anomalous signals was
not studied. The effect of cell balancing on detection performance was also not studied.
Furthermore, the literature lacks an effective anomaly detection approach that can also
detect thermal anomalies, even in the case of multiple anomalous signals.

This paper extends and improves the work in [39] to present an anomaly detection
scheme that combines PCA and the cumulative sum (CUSUM) control chart to detect
and locate both voltage and temperature anomalies in groups of Li-ion cells in real time.
Addressing the aforementioned research gaps, the proposed approach detects voltage and
temperature anomalies, even in the case of multiple simultaneous anomalous signals. The
voltage and temperature residuals are the difference between the measured cell signals
and the mean signals of the cell group. Unlike model-based approaches, median-based
and mean-based residuals (MBRs) reduce the effect of aging, as all the cells in the cell
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group experience similar loading and environmental conditions during their life. In the
proposed approach, the MBRs are processed using PCA to capture cell-to-cell information
including the inconsistencies and thresholded using the CUSUM control chart to detect
anomalies, which reduces the false positives and improves the detection rate. Experimental
validation of the proposed approach is performed on external short-circuit data from a
battery electric locomotive. We compare the proposed approach using PCA-processed
MBRs (PCA method) with the direct thresholding of voltage and temperature MBRs (direct
method) [41]. To further evaluate performance, statistical testing of the proposed approach
is performed using model-based synthetic anomalies injected into nominal experimental
data. The detection time, recovery time, false-negative rate, missed anomaly rate, and false-
positive rate statistics are compared for the two methods. Finally, the effect of balancing on
the performance of the anomaly detection approach is also studied.

2. Anomaly Detection Algorithms

Mean-based residual generation is proposed for both voltage and temperature. We
assume that the cells within a group behave similarly under nominal conditions. These cell
groups could be battery strings consisting of series/parallel connected cells that are spatially,
thermally, chemically, and electrically similar. The MBRs of voltage and temperature in a
cell group with n cells are calculated by

xi(t) = Xi(t)− µX(t) (1)

where Xi is the voltage/temperature of the ith cell and the mean µX(t) =
1
n

n

∑
i=1

Xi(t).

The first and simplest anomaly detection scheme (direct method) directly compares
each residual signal with a predetermined threshold [41]. For earlier anomaly detection,
the PCA method captures cell-to-cell heterogeneity using PCA. Figure 1 shows a block
diagram for anomaly detection using the PCA method. Both methods rely on parameters
derived from k samples of the residuals of nominal anomaly-free data. This training data
provide the mean of the voltage/temperature residuals of each cell (µVr,i/µTr,i) and the
standard deviation of the voltage/temperature residuals for all cells (σVr/σTr), which are
used to calculate the Z-score. PCA is applied on the Z-score because the application of PCA
directly on residuals would point the first principal component toward the mean of the
data instead of the direction of the highest variance of the residuals.

Figure 1. Block diagram of proposed PCA-based anomaly detection algorithm (PCA Method).

The training data are placed in the matrix X ∈ Rn×k and decomposed via singular
value decomposition to X = USVT , where U ∈ Rn×n is the left singular matrix, S ∈ Rn×n

is the singular value matrix, and V ∈ Rk×n is the right singular matrix. The number of
principal components, p, is selected to provide a cumulative variance of 90% [37]. The
truncated left singular matrix Ur is the first p columns of U.
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In real time, x(t) is measured, mean shifted, and normalized by the training data µXr,i
and σXr to estimate the Z-score as

x(t) =
xi(t)− µXr,i

σXr
(2)

The matrix multiplication UT
r x(t) is the projection into the lower dimensional space (i.e.,

principal subspace), where only nominal data points exist, and x̂(t) = Urx(t) gives the
projection back to the original dimension. The reconstruction of x(t) [42] is

x̂(t) = UrUT
r x(t). (3)

Because the principal subspace spanned by Ur is anomaly-free, the reconstruction x̂(t) is
the expected value in the case of nominal operation. Therefore, an anomaly can be detected
by monitoring the difference between x(t) and x̂(t).

Statistical process control (SPC) charts have been widely used in residual-based
anomaly detection for stationary processes. Shewhart, CUSUM, and exponentially weighted
moving average (EWMA) control charts are commonly used in univariate SPC [36,43].
Among these, the CUSUM control chart is one of the most effective in detecting small devi-
ations in monitored signals [36,43]. CUSUM control charts have been used in model-based
anomaly detection for battery systems [9,10,41].

The PCA method reduces the normalized residual vector to a scalar using the RMSE
and uses CUSUM statistics [43] to threshold the filtered RMSE. A simple first-order low-
pass filter with a cutoff frequency manually tuned to 4.9 mHz is used to filter the RMSE for
robust detection by filtering out high-frequency variations. However, the direct method
directly thresholds the absolute values of the filtered voltage and temperature residuals
using CUSUM statistics, where the filter has a cutoff frequency of 8.4 mHz. The positive
deviation CUSUM is C+[t] = max(0, C+[t−1] + (y[t]− µc)− K), and the negative deviation
CUSUM is C−[t] = max(0, C−[t−1] − (y[t]− µc)− K), with C+[0] = C−[0] = 0 and K is
chosen to be 4σc for lower false positives, where µc and σc are the mean and standard
deviation of the thresholding variable, y[t], for the anomaly-free training data. Both C+

and C− are compared against the 5σc control limits for the direct method [41]. In the PCA
method, it is sufficient to compare C+ against the 5σc control limit because PCA always
produces a positive deviation in the RMSE. Voltage and temperature anomalies are detected
independently from C+

V and C+
T , respectively.

If an anomaly is detected, the anomalous cell can be identified as the cell with the
maximum absolute error in the reconstructed residuals. The first and first two principal
components are used to reconstruct the voltage and temperature residuals, respectively, for
good tracing performance [42].

3. Synthetic Anomalous Data

LiBs have been commonly modeled using electrochemical and equivalent circuit
models (ECM). The former are more accurate and explain the electrochemical processes
that occur inside a battery but are computationally expensive [44]. The latter are com-
putationally efficient and can provide sufficient accuracy to be widely used in real-time
applications [45]. Thevenin’s equivalent circuit models have been widely used to model
LiBs [3,12,13], sometimes including a short-circuit resistance to model LiB cells under
internal short circuits [4,46,47]. Higher-order dynamic thermal models are available in the
literature [5,6] but a lumped thermal model is often sufficiently accurate [3].

One of the main challenges in testing anomaly detection algorithms is the lack of
experimental anomalous data. We adopted a hybrid experimental model approach rather
than relying exclusively on model-based data. Anomalies are injected into the voltage
and/or temperature of the anomalous cell. Two sensor anomalies, loose voltage and tem-
perature sense leads, are injected by adding bias terms with noise into the experimental
data. Figure 2 shows the schematics of the anomaly injection approach to create syn-
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thetic anomalous data for internal short circuits, air flow anomalies, and voltage dropouts.
Thevenin’s equivalent circuit model with short circuit resistance and a first-order lumped
thermal model are used to generate anomalous voltage and temperature data, respectively.
In the electrical model, the state propagation for the SoC (z) and diffusion voltage (Vc),
and output equations [41] are:

Ib(t) = Isc(t) + I(t),

ż(t) = − Ib(t)
36Q

,

V̇c(t) = −
1

R1C1
Vc(t) +

Ib(t)
C1

,

V(t) =
OCV(z(t))−Vc(t)− I(t)R0

R0 + Rsc
Rsc,

(4)

where R0 is the Ohmic resistance, R1 is the polarization resistance, C1 is the polarization
capacitance, Q is the capacity, Rsc is the short-circuit resistance, and OCV is the open circuit
voltage as a linear function of z. The thermal behavior can be modeled using the dynamic
model [41],

Ṫ(t) = a
(

I(t)2R0 + Isc(t)2Rsc +
Vc(t)2

R1

)
+ b(T(t)− Tamb(t))F(t), (5)

where a is the thermal dissipation coefficient and b is the thermal inertia coefficient. Tamb is
the ambient temperature and F is the fan status (0 for off and 1 for on). This thermal model
incorporates heat generation due to the ISC modeled as Joule’s heating [48].

Figure 2. Flow chart for synthetic data generation for an air–flow anomaly.

As the proposed approach is a purely data-driven approach, it essentially detects
the cell-to-cell voltage and temperature deviations from the nominal setting and does not
depend on the cause of the deviation. Therefore, synthetic anomalous data are generated to
test the effectiveness of the proposed approach for different fault signatures. For example,
even though a real air–flow anomaly could lead to multiple anomalous temperatures, we
inject an anomaly only in one cell temperature to test the detection performance because
the higher the number of anomalous signals, the easier they can be detected by PCA. Hence,
statistical testing using multiple cell anomalies may not be ideal for evaluating detection
performance and anomalous cell identification accuracy.

Six performance indices are used to evaluate anomaly detection performance: the
detection time (DT), recovery time (RT), false-negative rate (FNR), false-positive rate
(FPR), missed anomaly rate (MAR), and true tracing rate (TTR). The DT is the time
between the start and detection of the anomaly. The RT is the elapsed time between the
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end and flag reset of the anomaly. The FNR is the percentage of false negatives between the
first detection and the end of the anomaly. The FPR is the percentage of the time that the
anomalies are flagged in the nominal data. The MAR is the ratio of missed detections to
total anomalies. The true tracing rate (TTR) is the percentage of time the anomalous cell is
located accurately when an anomaly is detected. Thus, an ideal approach will have a low
DT, low RT, low FPR, low FNR, low MAR, and a high TTR.

4. Results and Discussion
4.1. Battery System and Data

This study used experimental current, voltage, temperature, and fan-status data from
a Wabtec FLXDrive battery electric locomotive battery pack consisting of 825 Li-ion NMC
cells with a 37 Ah capacity in a 275S-3P arrangement. The 3P cells were considered a single
equivalent cell with the same voltage, three times the capacity, and each cell receiving
1/3 of the current. Twenty-five cell groups were formed, each with 11 similar cells. The
voltage (V) and surface temperature (T) were measured for each cell and the current (I)
was measured for the entire battery pack (VTI data) during nominal locomotive operations.
The current was positive during discharging and negative during charging. The battery
pack was air-cooled and a fan blew air into the pack to enhance the convective heat transfer.
The ambient temperature (Tamb) and fan status (F) were also measured for each sub-group.
All the measurements were sampled at 1 Hz. During cell balancing, a passive circuit
discharged the cells to the lowest SoC within the series string through a shunt resistance of
100 Ω.

4.2. Validation of Synthetic Anomalous Data

The model parameters were the batch least-square estimates, R0, R1, C1, Q, a, and
b. The anomaly model parameters were the anomaly type, anomaly magnitude (ϑ), start
time (ta), and anomaly duration (∆ta). The anomaly magnitude ranged from 0 to 1 from no
anomaly to the most severe anomaly considered, respectively. The ISC was modeled with
Rsc = exp (9(1− 0.6ϑ)2)− 1 (See Figure 3b). The voltage dropout anomaly was modeled
with Rsc = exp (9(1− 0.6ϑ)2)− 1 (See Figure 3d). The air–flow anomaly was modeled with
b = (1− ϑ)b̂, where b̂ is the nominal value of the thermal inertia coefficient (See Figure 3e).
Unlike the other anomalies, loose voltage and temperature sense leads were injected for a
fixed duration, as shown in Figures 3a,c, respectively. Figure 4 shows that the maximum
voltage and temperature deviations as functions of the anomaly magnitude for all five
anomalies were similar.

Figure 3. Examples of nominal (dashed) and synthetic anomalous (solid) voltage (b,e) and tempera-
ture (c,f) data associated with (1) loose voltage sense lead, (2) ISC, (3) loose temperature sense lead,
(4) voltage dropout, and (5) air–flow anomaly, with the input current (a,d).
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Figure 4. Variation in maximum deviation of temperature and voltage with anomaly magnitude;
solid lines represent temperature deviations (left axis) and dashed/dotted lines represent voltage
deviations: © ISC, 5 air flow, � loose temperature sense lead, ♦ loose voltage sense lead, and 4
voltage dropout.

4.2.1. Air–Flow Anomaly Affecting a Single Cell’s Temperature

Both anomaly detection algorithms were trained with 24 h of data and tested on a
different 24 h of data. Figure 5 shows an example of anomaly detection on a cell group
with a mild (ϑ = 0.2) air–flow anomaly injected into cell 3 at ta = 8.33 h, with a deviation
of ∆ta = 11.67 h. The parameters obtained from the training process in the PCA method
are reported in Table 1. The nominal current is shown in Figure 5a. The voltage and
temperature of the cells were tightly clustered, as shown in Figure 5b,c, respectively, before
the anomaly was injected. The anomalous MBR of the cell 3 temperature was smaller than
its nominal MBR, as shown in Figure 5d. Figure 5e shows that C+

∆T3
and C−∆T3

did not cross
their thresholds. Thus, the direct method failed to detect this mild anomaly. Figure 5f shows
the anomaly being detected using the PCA method, as the temperature anomaly score C+

T
crossed the threshold around 33 min after the anomaly injection. C+

T increased gradually,
indicating a persistent anomaly. Figure 5g shows the corresponding anomalous cell being
located with 90.9% accuracy. Figure 6 shows the anomaly score increasing nonlinearly with
the anomaly magnitude. Thus, larger anomalies were substantially easier to detect.

Table 1. Outputs from training process in PCA method.

Voltage PCA Temperature PCA

pV 7 pT 4
σVr [V] 0.0018 σTr [°C] 0.3205
µc,V 0.0423 µc,T 0.0353
σc,V 0.0366 σc,T 0.0082
Vthreshold 0.1830 Tthreshold 0.0410



Batteries 2023, 9, 70 8 of 16

Figure 5. Anomaly detection using PCA (PCA method) and baseline (direct method) approaches
for air–flow anomaly (ϑ = 0.2), with anomaly initiation (dotted) at 8.33 h: (a) Input current profile;
(b) Voltage of 11 cells and mean voltage (dashed); (c) Temperature of 11 cells and mean temperature
(dashed); (d) Nominal (dashed) and anomalous (solid) temperature MBR of cell 3; (e) Direct method
temperature C+ and C− of cell 3 and threshold (dashed); (f) Temperature anomaly score from PCA
method with threshold (dashed); and (g) PCA method tracing of anomalous cell.

Figure 6. Variation in temperature anomaly score with anomaly magnitude for air–flow anomaly
with anomaly initiation (dotted) at 8.33 h: Threshold (dashed), ϑ = 0.2 (solid), ϑ = 0.4 (dash-dotted),
ϑ = 0.6 (dotted), ϑ = 0.8 thick (solid), ϑ = 1 (thick dash-dotted).
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4.2.2. Air–Flow Anomaly Affecting Two Cells’ Temperatures

To evaluate the ability of the proposed algorithm in the case of simultaneous multiple
anomalous signals, the PCA method was tested on synthetic anomalous data, with a mild
air–flow anomaly (ϑ = 0.2) initiated at ta = 8.33 h, leading to anomalous temperatures
in cells 3 and 4 for 11.67 h, as shown in Figure 7. The nominal experimental data are the
same as in Section 4.2.1. Even though cells 3 and 4 had temperature anomalies, all the cell
temperatures were tightly packed, as shown in Figure 7a, and thus undetectable by the
direct method. The deviations from the nominal behavior were small and are visualized by
comparing the MBRs in the anomalous and nominal cases in Figure 7b. The PCA method
detected the anomaly within 29 min (see Figure 7c) and traced the anomalous cell accurately
as either cell 3 or 4 for more than 92.7% of the time. It should be noted that the detection
time, in this case, was 4 min lower than that reported in Section 4.2.1, where only cell 3 was
anomalous. As evident by the detection times in both cases, the occurrence of multiple
anomalous signals made them easier for the PCA method to detect because the cumulative
change in the cell-to-cell relationship was amplified. Thus, the PCA method can detect
anomalies in the case of multiple anomalous cells in the early stage and accurately trace
the cell that has the most anomalous deviation. However, this approach failed to detect
anomalies where all the cells within the cell group showed identical anomaly signatures,
but this situation is highly unlikely in a real battery pack. For example, the voltage signals
in the case of a module ESC tracked each other, but the temperature anomaly signatures
were non-identical.

Figure 7. Detection of air–flow anomaly (ϑ = 0.2), leading to anomalous temperatures in cells 3 and
4, with anomaly initiation (dotted) at 8.33 hours, using PCA method: (a) Temperature of 11 cells and
mean temperature (dashed); (b) Nominal (dashed) and anomalous (solid) temperature MBR of cells
3 and 4; (c) Temperature anomaly score from PCA method with threshold (dashed); and (d) PCA
method tracing of anomalous cell.

4.3. Experimental ESC Testing
4.3.1. Testing on Single-Cell ESC

Cell balancing in the battery electric locomotive involves connecting a 100 Ω shunt
resistor across the cells’ terminals. This is a mild (ϑ = 0.47) ESC or micro-short circuit [14].
One single cell-balancing event and 13 module balancing events were used to evaluate
the PCA method for ESC detection. Figure 8 shows the single-cell ESC fault initiated at
50 min, causing cell 10’s voltage (dashed line) to drop while the current was zero. The PCA
method on the voltage data detected the ESC within 255 min. The algorithm did not detect
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anomalies in the temperature data. The anomalous cell 10 was accurately traced. Even
though the example in Figure 8 shows the application of the PCA method to a zero-current
operation, this method did not use the current signals and detected the ESC, even when the
current was non-zero because the residual of the shorted cell voltage behaved differently
compared to the nominal cell-to-cell relationship.

4.3.2. Statistical Testing on Module ESC

During module balancing, all 11 cells experienced ESCs. The pack current, cell voltage,
and cell temperature are shown in Figure 9a–c, respectively. Figure 9d shows that the
temperature PCA detected the anomaly within 16.3 min. The voltage PCA, however, did
not detect the anomaly because all the cells were balancing, as discussed earlier. In this
example, even though the temperature variations were unnoticeable, as seen in Figure 9c,
due to the cell-to-cell variation in the thermal dynamics, multiple anomalous temperatures
were present. Statistical testing on 13 different module balancing events showed that the
temperature PCA detected the fault within 13.5 min, on average, with an FNR of 2.3%. The
voltage PCA, however, was ineffective with a 99% FNR. This experimentally validates the
ability of the PCA method to detect anomalies in the case of multiple anomalous signals.

Figure 8. Detection using PCA method on experimental data with ESC in cell 10 initiated at 50 min
(vertical, dotted): (a) Pack current; (b) Voltages of 11 cells (cell 10, dashed); (c) Temperatures of 11
cells (cell 10, dashed); (d) C+

V with its threshold (dashed)

4.4. Statistical Testing Using Synthetic Anomalous Data

To evaluate the FPR, 24 h of nominal experimental data from twenty-five cell groups
of 11 cells each were processed using both methods. The direct method and PCA method
showed low average FPRs of 1.9% and 2.9%, respectively. To explore the overall per-
formance of the proposed anomaly detection algorithms, we tested the performance on
families of synthetic anomalous data. Each anomaly was tested on all 25 cell groups, with
magnitudes varying from 0.1 to 1 in steps of 0.1. Figure 10 shows the DT, RT, FNR, and
MAR results for the ISC. The PCA method detected ISC anomalies quicker (lower DT)
and more accurately (lower FNR) than the direct method. The PCA method missed fewer
anomalies overall than the direct method and detected all anomalies with ϑ ≥ 0.4. As the
anomaly spanned until the end, there was no RT in this example.
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Figure 9. Detection using PCA method on experimental data with ESC in all cells initiated at 50 min
(vertical dotted): (a) Pack current; (b) Voltage of 11 cells; (c) Temperature of 11 cells; (d) C+

T with its
threshold (dashed).

Figure 10. Variation in performance indices of direct method (�) and PCA method (♦) with anomaly
magnitude for ISC

Table 2 summarizes the average DT, RT, FNR, and MAR for the five anomalies. The
PCA method performed much better than the direct method in the DT, FNR, and MAR.
Relative to the direct method, the PCA method improved the DT, MAR, and FNR by
56%, 60%, and 42%, respectively. The air–flow anomalies were most accurately predicted,
with the lowest FNR and MAR. Loose temperature and voltage sense lead anomalies
were quickly detected (low DT), as the residuals contained sudden changes. In this study,
the RT is relevant only for loose voltage and temperature sense leads because the other
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anomalies will never recover on their own in a practical situation. Generally speaking,
the RT of the PCA method was longer than that of the direct method due to the history
effect in the CUSUM control chart. Figure 11a shows the MAR for the PCA method
versus the anomaly magnitude. Voltage anomalies with deviations greater than 4 mV and
temperature anomalies with deviations greater than 0.15 °C were detected with a zero
MAR. Both methods showed similar detection rates of ∆V ≥ 26 mV and ∆T ≥ 2.4 °C,
respectively. Figure 11b shows the TTR versus ϑ for the PCA method. The tracing accuracy
increased with the increasing anomaly magnitude. Anomalous cells were correctly traced
with more than 95% accuracy for voltage and temperature deviations greater than 7 mV
and 0.3 °C, respectively.

Table 2. Average performance indices from statistical testing.

Anomaly
Type ISC Air Flow

Loose
Temperature
Sense Lead

Loose
voltage

Sense Lead

Voltage
Dropout

Method Direct PCA Direct PCA Direct PCA Direct PCA Direct PCA

DT [min] 280 102 312 46 0.75 0.72 16 6 320 252
FNR [%] 47 28 26 2 46 16 36 28 49 42
MAR [%] 33 8 19 0 46 14 32 26 35 17
RT [min] - - - - 47 257 424 552 - -

Figure 11. PCA method: (a) missed anomaly rate versus anomaly magnitude; (b) true tracing rate
versus anomaly magnitude: © ISC,5 air flow, � loose temperature sense lead, ♦ loose voltage sense
lead, and4 voltage dropout.

The voltage and temperature data used in this work were collected with highly
sensitive sensors with noise of less than 0.4 mV and 0.03 °C, respectively. Other sensing
systems with lower sensitivities would not be capable of detecting 4 mV and 0.15 °C
deviations because the thresholds would be increased to prevent false positives through
the training of the CUSUM control chart on the noisy data. It is, therefore, expected that the
sensitivity of voltage and temperature anomaly detection depends strongly on the quality
of the sensors and data acquisition system.

4.5. Retraining after Balancing Events

Balancing events occur periodically to equalize the SoC of cells in the string. Balancing
is an ESC event that changes the cell-to-cell voltage relationship. The first two principal
components (PCs) of the voltage and temperature before, during, and after the balancing
events, are compared in Figures 12 and 13, respectively. Both the voltage and temperature
PCs before and during balancing did not match. Figure 12 also shows that the cell-to-cell
voltage relationships before and after balancing are different. Thus, the voltage PCA needs
to be retrained after balancing to adapt to the new nominal characteristics and avoid false
positives. However, Figure 13 shows that the temperature PCs were similar before and



Batteries 2023, 9, 70 13 of 16

after balancing. This was expected because balancing only changes the relative SoC of the
cells, not the electrothermal cell characteristics. Thus, the temperature PCA does not need
retraining after balancing events.

Figure 12. First two voltage principal components before balancing4 (solid), during balancing©
(dotted), and after balancing ♦ (dashed).

Figure 13. First two temperature principal components before balancing4 (solid), during balancing
© (dotted), and after balancing ♦ (dashed).

5. Conclusions

This paper shows that mean-based voltage and temperature residuals for a group of
similar cells can effectively detect electrical and thermal anomalies in battery systems. Mean-
based residuals convert real-time voltage and temperature measurements to stationary data.
These residuals are filtered and CUMSUM thresholded to detect anomalies in the direct
method. Thus, the direct method detects anomalies where the temperature and/or voltage
data deviate significantly from the mean. In the PCA method, PCA is used to reconstruct
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the normalized residuals, which are then scalarized using the RMSE as an additional
step, giving the added ability to detect anomalies where the temperature and/or voltage
data deviate from cell to cell. Both methods require nominal training data to establish
the normalization constants, thresholds, and left singular matrix (for the PCA method).
Both methods detect and trace synthetic internal short circuits, air–flow constrictions,
and loose and broken sensor connections. False-positive rates are low (<3%) and can be
reduced via increased thresholds but with an increase in missed detections. Overall, the
PCA method outperforms the direct method by 40–60% and is able to detect all anomalies
with voltage and temperature deviations greater than 4 mV and 0.15 °C, respectively.
Experimental ESC anomalies associated with balancing are detected within 14 min, relying
on the temperature residuals for module-level events. Voltage PCA retraining is required
after cell-balancing events.
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