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Abstract: The state estimation technology of lithium-ion batteries is one of the core functions elements
of the battery management system (BMS), and it is an academic hotspot related to the functionality
and safety of the battery for electric vehicles. This paper comprehensively reviews the research status,
technical challenges, and development trends of state estimation of lithium-ion batteries. First, the
key issues and technical challenges of battery state estimation are summarized from three aspects of
characteristics, models, and algorithms, and the technical challenges in state estimation are deeply
analyzed. Second, four typical battery states (state of health, state of charge, state of energy, and state
of power) and their joint estimation methods are reviewed, and feasible estimation frameworks are
proposed, respectively. Finally, the development trends of state estimation are prospected. Advanced
technologies such as artificial intelligence and cloud networking have further reshaped battery state
estimation, bringing new methods to estimate the state of the battery under complex and extreme
operating conditions. The research results provide a valuable reference for battery state estimation in
the next-generation battery management system.

Keywords: lithium-ion batteries; battery management system; electric vehicles; sustainable energy;
state estimation technique

1. Introduction

Environmental pollution and the shortage of fossil energy motivate the shift from fossil
fuels to renewable energy [1,2]. Featured by the continuously decreasing cost, long lifespan,
high power density, and high energy density, most electric vehicles (EVs) use LIBs as the
main power source up to the paper submission [3–5]. With the worldwide transportation
process, the total number of EVs is expected to exceed 300 million by 2030, and the required
installed capacity of LIBs will reach 3000 GWh [6,7]. Due to the voltage and capacity
limitations of a single cell, we tend to build a battery pack consisting of hundreds of cells in
parallel or series to meet the high power and energy application scenarios demand [8,9]. To
handle these high energy (>100 kWh) and high voltage (>300 V) packs, we need an excellent
design BMS to safely and efficiently control, monitor, and optimize their use [10–12].

As the monitor of the power system, state estimation is one of the core key functions
of a BMS. Commonly estimated battery states include the state-of-charge (SOC) [13], state-
of-health (SOH) [14,15], state-of-power (SOP) [16], state-of-energy (SOE) [17], and state-
of-safety (SOS) [18,19]. As is the case with most electrochemical energy storage systems,
the internal battery states are unable to be measured directly and can only be estimated
and predicted indirectly from limited signals such as voltage, current, and temperature
signals [20,21]. Due to the complex electrochemical reaction inside the battery, the internal
states exhibit a highly nonlinear relationship with the external measured signals, and this
issue becomes severe under complex or extreme working conditions [22–24]. In addition,
the battery degradation during the cycle affects the state estimation reliability and increases
the difficulty of state estimation. Therefore, accurate battery state estimation is still a
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technical challenge, especially since the battery performances could change with aging,
and a stable and exactitude estimation is required for the whole battery life.

By aiming at these issues, we here provide a timely and comprehensive review of the
estimation strategies for commonly used battery states (SOC, SOH, SOE, and SOP), and
the technical challenges and future trends are discussed. This study aims to contribute
innovative ideas to solve the technical bottleneck for BMS. Potential contributions are
as follows: (1) the research status and typical methods of battery state estimation are
summarized and analyzed from more than 200 peer-reviewed journal papers; (2) the
technical problems in battery state estimation are summarized, and the potential technical
frameworks are given; (3) an innovative joint battery state estimation scheme is proposed;
(4) and the development trend of battery state estimation is highlighted.

The rest of this article is organized as follows. In Section 2, the key issues and chal-
lenges of BMS and battery state are summarized. In Section 3, the estimation methods of
typical battery states (SOC, SOH, SOE, and SOP) are outlined and analyzed. The future de-
velopment trend of battery state estimation is highlighted in Section 4. Finally, in Section 5,
some conclusions are provided.

2. Key Issues and Challenges of Battery State
2.1. Overview of the BMS

The primary function of BMS is to effectively control and manage the battery to ensure
the durability, power, and safety of LIBs. Typical functions include signal measurement
of the battery cell and battery pack, state estimation, battery pack consistency evaluation,
battery pack balancing, safe charging, fault diagnosis, and thermal management [1,25–27].
H. Dai et al. [11] divided BMS into four stages: no, simple, advanced, and next-generation
management. Currently, BMS is in the advanced management stage and is developing
into the next-generation BMS. With the increasing number of batteries and the higher
energy density of batteries, the battery state estimation method has poor adaptability under
extreme conditions, and the safety issue of batteries becomes more and more prominent.
Therefore, the development of the next generation BMS characterized by intelligence
is imminent.

Figure 1 shows the development process and basic characteristics of BMS, which can be
divided into the following four generations: (1) Zero management; this is mainly used for
voltage detection and simple charge and discharge control of lead-acid batteries. (2) Simple
management; the main feature is to monitor the battery data (such as current, voltage, and
temperature) of a few LIBs and has a simple control algorithm to prevent overcharge and
over-discharge. (3) Advanced management; it mainly manages the property and safety
of a large number of batteries with a high intelligence level. It has the functions of state
estimation [28], fault diagnosis [29,30], thermal management [31,32], and fast charging [32].
(4) Intelligent management; the intelligent BMS is being developed for the long-term and
accurate management of large-scale batteries under complex conditions. It has the functions
of the above-mentioned advanced BMS, ultrafast charging [33], active safety control [34],
and strong interaction, such as vehicle-to-grid (V2G), vehicle-to-home/buildings (V2H/B),
and vehicle-to-vehicle (V2V) [35,36]; personalization; flexibility; and customization. Some
advanced technologies, such as intelligent sensing [37], big data [38], AI algorithm [39],
digital twin [40], and blockchain [41], have been applied in BMS. In short, BMS will develop
from passive and distributed management to active and cooperative management and
from stage control to full life cycle control.
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2.2. Key Technical Challenges of State Estimation

LIBs have a long-life cycle, during which their states have serious nonlinear char-
acteristics. However, only the signals such as current, voltage, and temperature can be
obtained directly in BMS. Therefore, the technical challenge of the battery state estimation
is to estimate the complex internal state of the battery with limited external signals and
predict the long-term state with short-time test signals. Specifically, the main technical
challenges of battery state estimation lie in signals, models, and algorithms, which can be
summarized as follows:

(1) Online and rapid extraction of key electrochemical characteristics of LIBs. The
electrochemical characteristics of LIBs are the foundation of precise state estimation. At
present, battery models are commonly used to reflect the electrochemical intrinsic charac-
teristics of the battery. The common battery models include the integer-order equivalent
circuit model (IOECM), fractional-order equivalent circuit model (FOECM), electrochemical
model, and neural network model. Among them, the IOECM is extensively used because
of its uncomplicated structure, easy implementation, and low computational load, but
it cannot extract the hidden features inside the battery [42,43]. The FOECM is slightly
stronger than the IOECM in electrochemical feature extraction but brings complicated
computation [44–48]. The neural network model needs many training data to achieve
satisfactory model accuracy [49]. The electrochemical model can accurately describe the
electrochemical characteristics of the battery [50,51]. However, the aging of the battery
will affect the parameters of the electrochemical model, resulting in the cycle dependence
problem, and the complex electrochemical models are difficult to be applied online in actual
scenarios [52]. Before the maturity and large-scale application of the built-in smart sensor
in the battery, it is not easy to measure its internal state. The incremental capacity (IC) and
electrochemical impedance spectroscopy (EIS) curves may be effective in characterizing
internal electrochemical characteristics through external signal measurement [53–55]. How-
ever, the IC curve highly depends on the low noise constant current condition. The EIS
curve is generally measured online by an electrochemical workstation, and the real part and
imaginary part of impedance need to be recorded across dozens of frequency ranges, which
seriously hinders the online application of EIS. Therefore, it may be a solution to develop
a high-precision and low-cost method that can reconstruct the full frequency domain EIS
curve by online measuring a few frequency points and an online extraction method of IC
curve under dynamic conditions.
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(2) Online identification of battery aging pattern and enhancement of aging model.
The online identification and quantification of typical aging mode can essentially consider
the aging mechanism inside the battery. It plays an important role in the high-accuracy
prediction of the SOH estimation and the remaining life of the battery (especially for the
accelerated aging and capacity diving), and the online diagnosis of battery faults [56,57].
However, the existing online aging process evaluation of batteries mostly focuses on the
online evaluation of battery capacity and internal resistance [58,59], where it is difficult
to go deep into the battery and touch the essence of aging. The aging mode is mainly
characterized and analyzed by the offline aging mechanism of the battery [60,61]. Due to
the cumbersome test process or the need for special instruments, it is not easy to quan-
tify and apply the aging mode online. Moreover, the aging model is prone to parameter
mismatch during the degenerative process of the battery, and the description and map-
ping of the long-term electrochemical characteristics of the battery are insufficient [62,63].
Therefore, innovative methods are urgently needed to enhance the long-term and hidden
characteristics of the aging model.

(3) Accurate prediction of battery life-cycle aging trajectory. Battery aging is a long-
term evolution process with high path dependence [64]. The traditional scheme of pre-
dicting battery trajectory by machine learning has the common problems of insufficient
data in the early stage, mismatching of model parameters in the medium stage, and dis-
tortion of characteristics in the later stage. The training data available in the early stage
are insufficient, and the mapping of electrochemical characteristics is limited, resulting in
low global accuracy in predicting aging trajectories. In the medium stage of battery aging,
the parameters of the aging model may be mismatched with the battery aging [65]. At the
later stage of battery aging, the nonlinearity of battery aging is very prominent, resulting in
distortion in predicting some hidden characteristics (such as the knee point effect [66–68]).

3. Status of State Estimation
3.1. SOC Estimation Methods

Battery SOC is generally defined as the proportion of the current remaining capacity
of the battery to the rated capacity of the battery under a specific discharge rate [69], and
its expression is:

SOC =
Q

CN
× 100% (1)

where Q is the current remaining battery capacity, and CN is the rated battery capacity. In
the standard charge and discharge mode, when the battery is completely discharged to
empty, the SOC is 0; when the battery is fully charged, the SOC is 100%.

Battery SOC is the basis of other state estimations, and it is influenced by several
factors, such as charge and discharge rate, cycle times, temperature, and battery aging [70].
It presents obvious nonlinear characteristics, making high-precision SOC estimation a great
technical challenge. SOC estimation has been widely studied [71,72], and the main methods
can be summarized as follows:

(1) Discharge test method. The method can accurately and reliably estimate SOC [73].
In this method, the battery is discharged with a constant current until the discharge cutoff
voltage, and the value obtained by multiplying the current by the time is the battery
SOC. This method needs a long time and is unsuitable for dynamic working conditions.
Therefore, it is generally used in the laboratory.

(2) Impedance method. The battery SOC affects the impedance of the battery, and
there is a certain mapping relationship between them [71,74]. Therefore, SOC can be esti-
mated by using the battery impedance in theory. The impedance method has the following
two obvious disadvantages: (1) The battery impedance needs special instruments to mea-
sure, which is difficult to apply online; (2) AC impedance is very sensitive to temperature
and SOH. Once the temperature fluctuates greatly, the accuracy of the impedance method
decreases [75].
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(3) Ampere-hour (AH) method. The method is to integrate the battery charge and
discharge current, and then the current SOC value is estimated by the initial SOC. The
expression of the AH method is shown in Equation (2). The AH method is simple and
easy to implement, so it is widely used in early BMS [76–78]. However, its disadvantages
are obvious and can be summarized as follows: (a) The AH method is very dependent
on the initial SOC, and the initial SOC accuracy directly affects the estimation results.
(b) The measure errors of the battery current sensors will cause cumulative errors in the
SOC estimation results. (c) For calculation simplicity, the coulomb efficiency is generally
taken as 1. However, it is closely related to temperature and battery aging. Therefore,
the precision of the method is not exact under complex conditions, and the current SOC
algorithm usually combines the AH method with other algorithms.

SOC(t) = SOC(t0)−
t∫

t0

η · I
CN

dt (2)

where SOC(t0) is the SOC at the initial time, I is current, and η is coulomb efficiency.
(4) Open circuit voltage (OCV) method. There is a clear mapping relationship be-

tween OCV and battery SOC [79], and the OCV-SOC can be obtained by the hybrid pulse
power characteristic (HPPC) [80]. Therefore, SOC can be estimated by measuring OCV. The
OCV method is simple and easy to realize with high accuracy. However, before the OCV
measure, the battery needs to be rested for more than two hours, which cannot be used
online and only for offline SOC estimation.

(5) SOC estimation method based on equivalent circuit model (ECM). This method
can be divided into two types: direct estimation based on the battery model and model-
based adaptive filter. The former is an open-loop method, which uses the analog voltage
obtained by the battery model to replace the actual voltage. It overcomes the disadvantage
that OCV cannot be dynamically obtained online and retains the advantages of the OCV
method, which is convenient, intuitive, and less computational. However, the direct
estimation based on the model is greatly affected by the accuracy of the model and the
current measurement. The model-based adaptive filter method is a closed-loop method,
and the frequently reported algorithms are mainly Kalman filtering algorithms and their
derivatives, including extended Kalman filtering (EKF), H∞ observer, synovial observer,
etc. [81–83]. Plett et al. estimated SOC using the EKF as early as 2004 [84]. To overcome the
error caused by the linearization of the EKF model, the unscented Kalman filter (UKF) was
adopted [85–87]. This method can overcome the influence of initial SOC and system noise
on SOC estimation results with strong robustness. However, it depends on model accuracy.

(6) SOC estimation based on an electrochemical model. J. Li et al. and J. Li et al. [70,88]
estimated the battery SOC based on the electrochemical mechanism model and the lithium
content of the positive and negative electrodes. The electrochemical model has high model
accuracy, which is very beneficial to improving SOC accuracy. However, the electrochemical
model involves many parameters and coupled partial differential equations [89], which is
unsuitable for online applications.

(7) SOC estimation based on the black box model. SOC estimation algorithms based
on the black box model mainly include artificial neural networks [90], fuzzy control, and
support vector machines (SVM) [91]. In this method, the relationship between some macro
physical parameters and battery SOC is trained. This method does not consider the inherent
reaction characteristics of the battery and has a strong self-learning ability, which is suitable
for some highly nonlinear systems [92]. However, this method relies on the quantity of
data heavily.

In summary, the method of SOC estimation by the ECM has good comprehensive
advantages and is very suitable for SOC estimation at the vehicle end. With the develop-
ment of big data and cloud computing, electrochemical model-based or black box model
methods can be applied individually or jointly to improve SOC estimation accuracy based
on the powerful computing power and abundant data in the cloud.
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3.2. SOH Estimation Methods
3.2.1. Status of Battery Aging Models

There are three main types of the existing LIBs aging models: mechanism model,
empirical and semi-empirical model [93,94] (Table 1). The empirical model is the black box
model, and the mechanism model based on the electrochemical mechanism model is the
white box model [95]. The computational burden of the mechanism model is huge [96].
Although many simplified mechanism models exist, their application in BMS is still limited.
The empirical model is the battery aging model obtained by fitting the battery aging
experiment. It generally considers the effects of temperature, charge, discharge rate, and
cycle times. The frequently reported mechanism model is the Arrhenius model [97,98], and
its expression is shown in Equations (3) and (4).

k =
dQloss

dt
= A · exp(− Ea

RT
) (3)

Qloss = A · exp(− Ea

RT
) · tz (4)

where Qloss is the capacity attenuation, A is a constant greater than zero, Ea is the active
energy, T is the temperature, R is the ideal gas constant, t is time, and z is the time index. It
is noted that A, Ea/R, and z can be fitted according to the battery durability test.

It can be seen that the empirical model relies on a large number of durability aging
data to calibrate the model parameters. If multiple influencing factors need to be inves-
tigated at the same time, the experimental workload will be significantly increased. In
addition, due to the complicacy of the real vehicle working condition and the influence of
many external uncertain factors, the application of the empirical model has the following
problems: (1) how to use the empirical model to predict the battery life with high accuracy
under complex and extreme working conditions; (2) how to solve the model parameter
mismatch of the empirical model. The complicacy of the semi-empirical model is between
the empirical model and the mechanism model. It can partly reflect the battery aging
mechanism [99], but it still needs a lot of experimental data to calibrate the battery models.

Table 1. Typical aging model of LIBs.

Empirical Model Semi-Empirical Model Mechanism Model

Modeling method Fitting by experimental data An empirical model considering the
partial aging mechanism

The side reaction equations
are established based on the
electrochemical mechanism.

Advantages Simple;
Low computational burden

It can reflect some internal
characteristics with less
computational burden.

The depth reflects the internal
state of the battery.

Disadvantages Parameter mismatch many experiments are needed to
calibrate parameters.

The model is complex, and the
calculation is large.

Typical model Arrhenius model [97] Extended equivalent circuit battery
model [100,101] P2D model [102]

3.2.2. Online SOH Estimation Methods

During the long aging cycle of LIBs, the loss of lithium-ion inventory (LLI), loss of
active material (LAM), and loss of electrolyte (LE) are caused by the joint action of many
factors such as electrochemical, thermal, and external mechanical stress [103,104]. In the
external form, aging causes the capacity decline and internal resistance increase in the
battery. Therefore, the SOH can be measured by the ratio between the real battery capacity
and the nominal battery capacity or the ratio between the actual battery impedance and
its nominal impedance [105]. Battery SOH is closely related to battery safety, remaining
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useful life (RUL), SOE, etc. Therefore, SOH estimation has become a hotspot of battery
state estimation [55,106].

The common SOH estimation methods include model-driven, data-driven, and fu-
sion methods [107,108]. From the accuracy and robustness of capacity estimation, the
model-driven method is unsuitable for practical application under complex conditions.
Data-driven methods include the following types: (1) The characteristic-driven method is
where the correlation between the battery characteristics and the battery capacity is estab-
lished. Common characteristics include battery differential voltage [109], charge–discharge
curve [110], and incremental capacity curve [111,112]. In our previous study [113], accord-
ing to the partial charging curve, we proposed a practical capacity estimation method,
which has the advantages of simple calculation and is suitable for online estimation. (2) The
SOC-electric quantity method [114] calculates the battery capacity based on the variation
ratio of the electric quantity to the corresponding SOC, and the expression is as follows:

Cnorm =
∆Q

∆SOC
(5)

where Cnorm is the battery capacity, and ∆Q and ∆SOC are the change in electric quantity
and SOC, respectively.

As can be seen from the above Equation (5), the capacity estimation accuracy is closely
related to the SOC accuracy. Therefore, the joint estimation of SOC and SOH is widely used.
Although data-driven methods may have ideal real-time estimation accuracy, the factors
affecting capacity loss have not been well considered. In recent years, data and model
fusion methods have been developed to enhance capacity estimation accuracy, stability, and
robustness. Figure 2 shows a novel capacity estimation frame that combines data-driven
and model-driven methods [115]. The basic principle and process of this method are as
follows: First, the battery capacity is estimated by model-driven and data-driven methods,
respectively. In the process of battery aging, the capacity estimated by the model-driven
method is stable, but the accuracy is poor due to parameter mismatch. The capacity
obtained by the data-driven method has good accuracy but lacks stability. Second, the
model parameters are closed-loop controlled by using the difference between the capacities
obtained by the above two methods as the feedback signal, the model parameters are
updated in real-time, and the new capacity is obtained by using the model-driven method.
Finally, the new capacity driven by the model and the capacity driven by the data is fused
to obtain the estimated capacity. The proposed framework has the advantages of both
capacity-driven and data-driven methods, and the estimated battery has high accuracy and
high stability [97].
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3.3. SOE Estimation Methods
3.3.1. Definition of SOE

SOE is reflected as residual energy of the battery [116], which is related to the amount
of charge that the battery can discharge and the voltage during the battery discharge.
Compared with SOC, SOE is more suitable for estimating the driving range of EVs [117,118].
SOE is divided into two types. The first defines SOE as the theoretical residual energy
(TRE) of the battery, and the second defines SOE as the residual discharge energy (RDE)
of the battery [119]. TRE is the energy that can be released when the battery is discharged
to SOC = 0 with a very small discharge current. RDE is the energy that can be released
by the battery when it is discharged to the cutoff voltage under a certain load condition
and at a certain ambient temperature. The difference between the two is shown in Figure 3.
It can be seen that the TRE of the battery is a state value inside the battery, indicating the
energy currently stored in the battery, independent of the temperature, load condition,
etc. The RDE of the battery can be expressed by the shaded area of the solid red line in
Figure 3, which is related to the discharge rate, load condition, ambient temperature, and
other factors [120]. In conclusion, the estimation of battery SOE, whether for TRE or RDE,
is the important significance for optimizing the energy management strategy of BMS and
improving the accuracy of estimation of EV driving range.
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3.3.2. Status of Theoretical Remaining Energy

The methods for estimating the battery TRE mainly include the direct calculation
method, power integration method, OCV method, model-based filtering algorithm, ma-
chine learning method, and joint estimation method. They are briefly described as follows:

(1) Direct calculation method. The voltage is averaged in a certain way and set at a
constant value, and the SOE is obtained from the current SOC, the total battery energy,
the capacity, and the average voltage. The common calculation expression is shown in
Equation (6). The direct calculation method is simple and practical. However, because the
average value of the battery voltage is approximated, a large error will be caused, and the
SOE estimation is affected by the SOC accuracy. If there are large errors in SOC, the errors
will be transmitted to SOE.

SOE = SOC ×
OCVavg × CBat

EBat
(6)

where OCVavg is the average value of OCV, CBat is the standard capacity, and EBat is the
maximum energy.

(2) Power integration method. This method is similar to the AH for estimating SOC
in principle, as shown in Equation (7). This method is simple and does not need to estimate
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SOC. However, the initial error cannot be eliminated, and the accumulated error will be
caused due to the insufficient accuracy of the sensor.

SOE(t) = SOE(t0)−
∫ t

t0
(pe + qh)dt

Ebat
(7)

where pe is the electric power of the battery and qh is the thermal power of the battery.
(3) OCV method. The method utilizes the correlation between OCV and battery SOE.

However, the OCV of the battery can only be obtained after a long time of standing. It
is difficult to obtain stable OCV when the battery is in a dynamic working environment.
Therefore, the OCV method is limited to SOE estimation.

(4) Model-based filtering method. This method uses the power integration method
to estimate the SOE and then uses some filtering algorithm to correct the SOE based on the
battery model, which has self-convergence. Common filtering algorithms include the KF
algorithm [84,121], particle filter (PF) algorithm [122], and H-infinity algorithm [123,124].
KF algorithm is a closed-loop correction of SOE using Kalman gain and is widely used
to estimate SOE [20,118,125–130]. Wang et al. [131] used the recursive least square (RLS)
method to identify the model parameters offline and then the EKF algorithm to estimate the
SOE. Dong et al. [132] used the EKF algorithm to determine the battery model parameters
online and used the PF algorithm to estimate the SOE, realizing online SOE estimation. The
model-based filtering algorithm has high accuracy and can avoid the cumulative error of
SOE. This method corrects SOE based on the OCV and SOE. However, this relationship is
only determined when SOE is defined as the TRE. In addition, the estimation accuracy of
the method is influenced by the battery model accuracy [133].

(5) Machine learning method. In the late years, the machine learning method has
been generally used to estimate SOE [134–137]. Liu et al. [134] used current and temperature
as training inputs to build an inverse neural network to estimate the battery SOE. Heraldo
et al. [137] used long-term and short-term ways to predict the future voltage and then
estimated the battery SOE e through Monte Carlo sampling. The SOE estimation accuracy
based on machine learning depends heavily on training data.

(6) Joint estimation method. Zheng et al. [138] first estimated the battery SOC, then
estimated the SOE through the relationship between SOE and SOC, and estimated the
battery total energy using the moving sliding window method. The joint estimation method
usually has higher accuracy than the single SOE estimation method. The key to estimating
SOE by joint estimation is finding a clear relationship between SOE and other states.

3.3.3. Status of Remaining Discharge Energy

The battery RDE is closely related to future operating conditions, ambient temperature,
battery health, and other factors [138,139]. Therefore, the coupling effects of these factors
need to be considered when estimating the RDE. Prediction-based methods are usually
used [140–143]. Liu et al. [140] predicted the current sequence, SOC sequence, model
parameter sequence, and voltage sequence of the battery in the future time series. Then,
the RDE was calculated by the current and voltage sequences in the prediction domain.
Mona et al. [143] performed Gaussian mixture clustering on the historical conditions of
the battery and obtained the hidden Markov model to predict the future conditions of the
battery through supervised learning. Then, the battery RDE was estimated. Ren et al. [119]
used the moving average method to collect the historical power of the battery to predict the
future SOC, model parameters, and voltage sequences and then estimated the RDE. The
technical difficulty of RDE is the accurate prediction of future working conditions.

The characteristics and application scope of common SOE estimation methods are
listed in Table 2. The SOE estimation method considering complex working conditions
and multiple factors needs to be further studied. In our previous study [144], an RDE
estimation framework for future load forecasting and considering battery temperature and
aging effects was proposed, which is illustrated in Figure 4. Its basic principle and process
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are as follows: First, a hidden Markov model (HMM) is implemented to predict the future
load of batteries. The capacity test is then performed at different temperatures to determine
the limiting SOC. Third, a forgetting factor RLS algorithm identifies and updates battery
model parameters online to solve the problem the parameter mismatch issue. According to
the predicted current, SOC, and voltage sequences, the RDE is estimated under different
operation conditions.

Table 2. Characteristics and application scope of SOE estimation methods.

Estimation Method Characteristics
Definition of SOE
TRE RDE

1 Direct calculation method Simple with large error 3

2 Power integration method Simple with a cumulative error 3

3 OCV method Simple with limited use conditions 3

4 Model-based
filtering method

Accurate; it can avoid cumulative
error; complex 3

5 Machine learning method Need a lot of data for training 3

6 Joint estimation method
High precision; need to find the

relationship between
different states

3

7 Prediction-based method High accuracy but accurate future
working condition is the key 3
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3.4. SOP Estimation Methods

SOP is generally characterized by peak power. The specific meaning is maximum
battery power that can absorb or release within time under the limit of voltage, current,
SOC, etc. During the driving process of EVs, the SOP is updated by the BMS in real-time to
evaluate whether the battery can meet the power demand when the vehicle is accelerating
or uphill [145]. Common SOP estimation methods are summarized as follows:

(1) Experimental method. The experimental method is to obtain SOP by conducting
experiments according to the battery standard power test procedures, such as the USABC
test in the United States [146], the JEVS test in Japan [147], and the standard battery test
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in China [4]. The experimental method is accurate and easy to realize, but the operation
process is long and cannot be applied online.

(2) Characteristic mapping method. The static correlation between the battery power
and some parameters can be obtained by a standard battery test, which is called the
characteristic map. Then, the SOP can be obtained through table lookup or interpolation
according to the current battery parameters. The hybrid pulse power characterization
(HPPC) test is the most commonly used map extraction method. Xiong et al. [148] proposed
a method to calculate the battery peak power using the HPPC test. The main drawback of
the method is that it is not suitable for dynamic working conditions, and the characteristic
map needs to be calibrated continuously with the battery aging.

(3) Limiting conditions method. In this method, battery peak current is calculated
by considering the current, voltage, SOC, and other limitations. The peak power equals
the product of the peak current and the OCV. The basic principle and flow of this method
are shown in Figure 5, in which Idch

max is the peak charging current; Icha
min is peak discharging

current; Icha,vol
min is minimum chargeable current; Idch,vol

max is maximum dischargeable current
limited by the terminal voltage; Idch

max and Icha
min are the peak charging current and peak

discharging current, respectively; and Ut(t) is the terminal voltage. This method has three
core technologies: (1) Establishing which battery model is used to estimate the battery
voltage and SOC. (2) How the parameters of the battery model are obtained to improve
the SOC estimation accuracy. (3) How the peak power under the boundary limit zone
is determined.
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In previous studies, the IOECM is the most used in SOP estimation [149–153], followed
by the FOECM [46]. There are two methods of model parameter identification: offline
and online. The adaptability of offline identification is poor, so the online identification
method is the future trend. The common online identification method is RLS and forgetting
factor RLS (FFRLS) [144]. In previous studies, voltage, current, and SOC limitations
are commonly used limiting conditions for the SOP estimation [154–157]. In addition,
temperature limitations are additionally considered to ensure the SOP estimation accuracy
at extreme temperatures [158,159].

3.5. Joint Estimation Methods

From the above analysis, the battery state estimation methods are very rich. There
is no major technical difficulty in realizing a single battery state estimation, and many
algorithms can achieve high theoretical estimation accuracy. However, considering that
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the measurement signal is very limited under the actual complex vehicle conditions, this is
a problem that is badly in need to improve the actual estimation accuracy of the battery
state. In addition, the relationship between battery states is mutually coupled and affected,
which can be described as follows. The capacity and internal resistance used to characterize
the battery SOH are essential parameters for battery SOC estimation, directly affecting
SOC estimation accuracy. SOC and model parameters are the critical parameters for SOP
estimation. The SOC, capacity, and internal resistance directly affect the SOE estimation.
These relationships can be illustrated in Figure 6.
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Therefore, joint estimation methods are being developed and widely used to improve
the accuracy of battery estimation. They can generally include the following types: (1) Joint
estimation of model parameters and a single state [160–162]; Q. Yu et al. [163] proposed
a joint estimation method of model parameters and SOC, in which the H-infinity filter is
used to estimate battery model parameters online, and the unscented KF is used to estimate
SOC. (2) Joint estimation of two battery states; the joint estimation of SOC and SOH is the
most studied [164–168], and the joint estimation of SOC and SOP [16,169–171], SOC, and
SOE [131,172–174] are widely reported. (3) Combined estimation of three or more battery
states; P. Shrivastava et al. [175] proposed a joint estimation framework of SOC, SOE, SOP,
and SOH. P. Shen et al. [114] proposed a combined estimation scheme of battery model
parameters, SOC, SOH, and SOP. The process of the framework is as follows: First, SOC is
estimated to be resolved by EKF. Then, the FFRLS algorithm can realize online identification
of battery model parameters. Finally, SOH and SOP estimations are conducted based on
the updated parameters.

Based on our previous studies [25,144], a joint frame of SOC, SOH, SOE, and SOP is
proposed, as shown in Figure 7. The main principle of the proposed frame is as follows:
First, the model parameters and OCV curve are updated in real-time using the FFRLS
algorithm. Then, the SOC is updated using the EKF or UKF algorithm by the updated
model parameters and the battery capacity. Third, the SOC-electric quantity method is
used to estimate the SOH in real-time based on the updated SOC, and the SOE-SOC
curve and the total energy are updated in real-time using the ordinary least squares (OLS)
algorithm [25]. Fourth, SOC and SOE-SOC curve is used to estimate SOE using the UKF
algorithm. Finally, the limit condition method is used to estimate the SOP in real time.
The above algorithm framework cooperatively estimates multiple battery states with high
accuracy and robustness, which can adapt to battery aging and environmental temperature
changes better.
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4. Future Directions

With the development of big data, intelligent algorithms, and cloud platforms, a trend
of smart and networked BMS is becoming increasingly obvious, which will effectively
improve the battery state estimation accuracy and thus improve the life and safety of
batteries. As shown in Figure 8, the critical future development trends of the battery state
estimation can be summarized as follows:

(1) Intelligent sensing. Intelligent sensors are implanted in the battery to collect the
internal signals in the battery to enrich the key signal input of BMS. Y. Yu et al. [176]
monitored the internal structure deformation and temperature of LIBs in real time through
embedded distributed optical fiber. J. Schmitt et al. [177] integrated a small pressure sensor
into a battery to measure the internal gas pressure. However, these built-in sensors have a
single function and may affect the energy density and durability of LIBs. It is a significant
future development direction to develop a small intelligent sensor that integrates multiple
sensors and is safely built into the battery. It will effectively detect the complex signals
inside the battery and thus improve the battery state estimation accuracy and battery
safety. In addition, thermal management is crucial to battery safety, and the new thermal
intelligent sensors will also play an active role in the future. In this context, battery state
estimation will become more abundant, and the existing state estimation methods will be
completely improved.

(2) Model and signal enhancement. LIBs have a long-life cycle, in which the model
parameters change with the battery aging, resulting in insufficient accuracy of battery state
estimation in the whole life cycle due to a mismatch of model parameters and adequate
signals. Migration learning brings feasible solutions for battery models and signal en-
hancement [178–181]. X. Thang et al. [182] restored large-scale battery aging data sets by
combining industrial data with accelerated aging tests through migration-based machine
learning, reducing the cost of aging tests. Y. Li et al. [183] migrated the convolutional neural
network model pre-trained on the extensive battery data set to the small data set of the
target battery through transfer learning technology to improve the capacity estimation
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accuracy. Generally, the following resources can be used for the transfer learning in battery
state estimation: (a) simulation model; (b) battery public data set; (c) battery experimental
data set.

(3) Cloud-to-edge-based state estimation. With the development of cloud technology
and the internet of things, battery state estimation is developing towards the cloud to
edge [184]. The edge side collects the voltage and current data in real time. The cloud has
strong computing power and can run the electrochemical model and intelligent algorithms,
and the application of big data in the cloud is more flexible [185]. The cloud side cooperates
to improve the exactitude of battery state estimation. The cooperation between cloud and
edges can enhance the accuracy and stability in battery state estimation.

(4) Battery state estimation under vehicle network interaction. In recent years, smart
energy systems have been booming. The fast charging, V2V, V2G, V2H/B, and other
advanced technologies of EVs have established the information exchange between batteries
and other physical systems, bringing new challenges and opportunities to battery state
estimation. For example, V2G may accelerate battery aging, but the information exchange
between the vehicle and the charging pile during charging provides rich information for
battery state estimation.

(5) Life cycle intelligent management. The intelligent algorithm can deeply mine
the internal and intrinsic characteristics of the battery and improve the state estimation
exactitude and robustness. Therefore, battery state estimation integrated with advanced
intelligent algorithms will be an eternal theme. Artificial intelligence and cloud network
are reshaping and upgrading traditional battery state estimation methods. Advanced
intelligent algorithms (deep learning and migration learning) are widely used in battery
state estimation. Sun, Q. et al. [186] proposed a battery state estimation method based
on metabolic even GM (1,1). The proposed method can achieve the goal that the overall
error of power battery SOC estimation under different temperatures is less than 1%. Falai,
A. et al. [187], based on an artificial intelligence algorithm, proposed to realize accurate
onboard SOH estimation by identifying the best SOC window during battery charging,
with an error of 0.4%. Ma, L. et al. [188] proposed a novel data-driven method estimation
of SOC and SOE simultaneously based on long and short-term memory (LSTM) deep
neural network, which can achieve the mean absolute error (MAE) of SOC and SOE
estimates of 0.91% and 1.09%, respectively. In addition, the state estimation of the battery
will run through the whole life cycle of LIBs, such as defect prediction during battery
production [189] and residual value estimation during battery echelon utilization [190,191].
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5. Conclusions

State estimation is one of the most basic functions of BMS. Accurate state estimation
can prolong the battery life and improve battery safety. This paper comprehensively
reviews the research status, technical challenges, and development direction of typical
battery state estimation (SOC, SOH, SOE, and SOP). Specifically, limited measurable signals,
mismatch of model parameters, severe nonlinearity, and time variability of battery state
are the main challenges of battery state estimation. Accordingly, intelligent sensing, cloud
computing, big data, and intelligent algorithms are feasible solutions. The accuracy and
stability of battery state estimation are steadily improving through intelligent sensing to
obtain more abundant signals, advanced intelligent algorithms to strengthen the model and
signal characteristics, cloud computing, and big data to mine characteristic signals deeply.
The accurate co-estimation of battery states under complex and extreme working conditions
is challenging research, and intelligent batteries and advanced technologies are reshaping
the battery state estimation methods. By adopting multi-dimensional, multi-level, and
multi-scale signal information mining and state estimation representation, combined with
the characteristics of discontinuous and continuous information, the combined optimal
joint estimation method can solve the problem of battery state estimation accuracy under
complex and extreme working.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial intelligence
LIBs Lithium-ion batteries
EVs Electric vehicles
BMS Battery management system
RLS Recursive least square
FFRLS Forgetting factor recursive least square
ECM Equivalent circuit model
RDE Residual discharge energy
TRE Theoretical residual energy
SVM Support vector machine
SOC State of charge
OCV Open-circuit voltage
SOH State-of-health
SOP State-of-power
SOE State-of-energy
SOS State-of-safety
V2G Vehicle-to-grid
V2H/B Vehicle-to-home/buildings
V2V Vehicle-to-vehicle
IOECM Integer-order equivalent circuit mode
FOECM Fractional-order equivalent circuit model
EIS Electrochemical impedance spectroscopy
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IC Incremental capacity
AH Ampere-hour
EKF Extended Kalman filtering
UKF Unscented Kalman filter
LLI Loss of lithium-ion inventory
LAM Loss of active material
LE Loss of electrolyte
RUL Remaining useful life
LSTM Long and short-term memory
MAE Mean absolute error
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