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Abstract: As a representative electrochemical energy storage device, supercapacitors (SCs) feature
higher energy density than traditional capacitors and better power density and cycle life compared to
lithium-ion batteries, which explains why they are extensively applied in the field of energy storage.
While the available reviews are mainly concerned with component materials, state estimation, and
industrial applications, there is a shortage of understanding of thermal behaviors and thermal man-
agement systems of SCs, which makes this review a timely aide for fulfilling this gap. This review
introduces the energy storage mechanisms of SCs, followed by descriptions of current investigations
of thermal behaviors. This covers the aspects of heat generation rates for electric double-layer capac-
itors (EDLCs) and hybrid supercapacitors (HSCs), together with reviewing existing experimental
methods to measure and estimate heat generation rates, as well as comparative assessments of
multiple heat generation rate models and research on thermal runaway. In addition, there are also
overviews of current efforts by researchers in air cooling systems, liquid cooling systems, phase
change material cooling systems, and heat pipe cooling systems. Finally, an in-depth discussion
is provided regarding the challenges and future work directions for SCs in thermal behaviors and
thermal management systems.

Keywords: supercapacitor; energy storage mechanism; heat generation rate; thermal manage-
ment system

1. Introduction

The enormous amounts of fossil energy as a result of accelerated economic develop-
ment have led to a series of environmental problems [1,2]. To tackle these challenges, China
has launched carbon peaking and carbon neutrality targets to offset the increasing emis-
sion of greenhouse gases [3,4]. Renewable energy sources, such as tidal, wind, and solar
energy, represent an important solution for this goal [5,6]. However, all these suffer from
geographical shortcomings, intermittent uncontrollable nature, and uncertainty; thus, they
rely more on the power grid for coupling [7,8]. Thus, it is particularly imperative to devise
an alternative technique for clean energy storage with both reliability and flexibility [9,10].
Electrochemical energy storage with superior portability and durability has been widely
recognized as a promising candidate [11,12].

At present, lithium-ion batteries (LIBs) and supercapacitors (SCs) are the two most
extensively employed energy storage devices [13]. LIBs rely on redox reactions to store
electrical energy, but the reaction rate is controlled by electrolyte diffusion or intercala-
tion [14,15]. This results in low power density, large temperature variations during charging
and discharging processes, and a limited number of repeatable cycles [16,17]. On the other
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hand, SCs store energy at the electrode interface to provide a higher energy density than
conventional capacitors and much better power density, energy efficiency, cycle life, and
safety than LIBs [18,19]. SCs have potential large-scale industrial applications in a variety
of fields, including military transportation and power grid systems [20].

As a vital operating parameter for SCs, temperature has a remarkable effect on overall
performance, including capacity, charging and discharging efficiency, reliability, and dura-
bility [21,22]. When the temperature is beyond a certain threshold, irreversible thermal
stress is caused on the electrode during charging and discharging, leading to the oxidation
of the carbon surface and partial damage of the activated carbon (AC). As a consequence,
the performance and lifetime of capacitors is markedly deteriorated and safety concerns
arise in the case of long-time exposure to high temperatures [23,24]. Because of the slow ion
transport in the electrodes and electrolyte at low temperature, capacitors are susceptible
to high polarization and irreversible capacity loss, which causes poor energy density and
power density [25,26]. It is therefore essential to understand and precisely model the heat
generation rate inside the capacitor by properly adjusting its internal temperature under
various operating conditions for system integration in energy storage applications. Besides,
inappropriate temperature distribution between capacitors may also trigger thermal run-
away, which implies that as heat is accumulated, capacitors may generate emissions or even
explode, with severe impacts on the security of automobiles and passengers [27,28]. There
is a great need for cost-effective thermal management systems to keep the temperature of
capacitor cells and modules within the appropriate range [29,30].

A state-of-the-art review of recent literature in this field has been conducted for the pur-
pose of understanding the advanced technology and latest achievements of SCs. The existing
review papers on SCs are primarily focused on the following aspects: electrode materials
and electrolytes [31,32], state of estimation [33], fractional-order models [34], industrial ap-
plications [35,36], and reliability [37–39]. The number of review papers available on thermal
modeling and thermal management systems for SCs is very limited. Sakka et al. [40] presented
a relatively comprehensive paper in 2009. However, this review article does not include the
advances that have been made in recent years. Zhang et al. [33] in 2018 and Naseri et al. [41] in
2022 described some of the thermal modeling advances for SCs. In 2022, Rashidi et al. [42] briefly
mentioned the content of thermal management systems with regard to SCs. In general, there is
still a lack of comprehensive review papers on thermal behaviors and thermal management
systems in the field of SCs.

The goal of this paper is to provide a comprehensive review of thermal behaviors and
thermal management systems for SCs, appropriately filling the gap in this area. Since there
are relatively few reviews on thermal behaviors and thermal management systems for SCs,
the following points distinguish this review from existing review articles. First, as several
types of SCs have distinct electrochemical reaction mechanisms, the different temperature
characteristics between them are compared, and the heat generation mechanisms are further
discussed separately. Second, existing thermal models and experimental measurements for
different types of SCs are review, with a further discussion of the effect of temperature on
SC materials. Finally, a comprehensive review of the efforts is made by the researchers in
developing thermal management systems in the SC field.

Figure 1 shows the key structures of this review paper. The details are listed as
follows: Section 2 presents an initial overview of the fundamental working principles of
SCs. Section 3 discusses and summarizes the thermal behaviors of SCs in detail. Section 4
presents the development of thermal management systems for SCs. Section 5 presents an
outlook on future research challenges and opportunities for heat generation rate models
and thermal management systems. The conclusions are described in Section 6.
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Figure 1. The outline map for this paper.

2. Energy Storage Mechanisms of Supercapacitors

SCs can be classified into the following categories with respect to their physical and
chemical energy storage mechanisms: electric double-layer capacitor (EDLC), pseudoca-
pacitor, and hybrid supercapacitor (HSC) [43,44].

2.1. Electric Double-Layer Capacitor

Their architecture features two active electrodes, an electrolyte and the porous separa-
tor, as shown in Figure 2a [45]. The electrodes of SC are separated by separators saturated
with electrolyte [46]. As the electrode materials of an EDLC are predominantly diverse
carbon materials, the energy storage mechanism is electric double-layer energy storage [47].

Figure 2b shows that the charging layer consists of two layers at the electrode material
interface, with one layer on the electrode side of the interface and the other on the electrolyte
side of the interface. So, it is referred to as the electric double-layer, i.e., the diffuse layer
and Helmholtz layer [41]. Based on the electric double-layer energy storage principle, SCs
store energy as a physical energy storage mechanism without a redox reaction [48]. While
the capacitors are discharged, the electrons flow from the negative terminal to the positive
terminal through the external circuit. The adsorbed cation and anion are released from the
surface of the electrodes, and no charge transfer across the electrode-electrolyte interface
occurs throughout the entire charge/discharge cycle [49].
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principles of an EDLC where black arrows represent ions in the electrolyte and red arrows reflect the
direction of ion movement [45], open access.

The capacitance of the EDLC is normally determined using Equation (1) [50,51]:

C =
ε0εr A

D
(1)

where εr is the dielectric constant with respect to the electrolyte utilized, εo is the dielectric
constant of the vacuum, A is the surface area of the electrode material approachable by the
electrolyte ions, and D is the effective thickness between the electric double-layer (charge
separation distance).

In light of the physical electrostatic process, there is a strong determination of the
formation of the electric double-layer by the effective surface area of polarizable electrode
material, together with the nanoscale charge separation distance. There are various materi-
als among carbon-based porous materials, such as AC [52], graphene [53,54], and carbon
nanotubes (CNTs) [55]. They have a high specific surface area, promising electrical conduc-
tivity, superior electrochemical characteristics, and thermo-stability, which are extensively
applied in the SC field [56].

Equation (2) demonstrates that energy E and power P are intimately related to voltage [38,57]:

E = 0.5CV2 (2)

P =
V2

4RESR
(3)
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where C denotes the device capacitance, V is defined as the device working voltage, and
RESR is the equivalent series internal resistance of the internal elements of the device.
There has been extensive research worldwide to develop stable electrode materials and
high-voltage electrolytes to increase the energy density and power density of SCs [52,58].

2.2. Pseudocapacitor

For the purpose of accumulating energy, pseudocapacitors basically depend on the
rapid and reversible faradaic reaction occurring at the electrode/electrolyte interface, with
several variations of the reaction mechanism, as indicated in Figure 3 [59]. When the voltage
is imposed externally, the redox reaction occurs on the surface of the electrode, yielding the
faradic current, which resembles the charging and discharging procedure of the battery.
In the presence of an external electric field during charging, ions in the electrolyte diffuse
from the solution to the surface and near the surface of the electrode active material [60].
The reversible reaction occurs in the process of discharging, where the ions of the electrode
material again return to the electrolyte by releasing the stored charge through the external
circuit. Pseudocapacitors normally exhibit relatively high energy densities, as the storage
process also includes electrical energy storage in the electric double-layer resulting from
electrostatic adsorption, which increases their capacity to store charge [61]. Despite the
higher energy density of the pseudocapacitor compared to the EDLC, the faradaic reaction
rate is somewhat slower than the electric double-layer formation process, thus reducing its
power density and cycling stability [62,63].
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represent redox-active materials, ions in electrolyte, absorbed atoms, and noble metal respectively.
Yellow and black arrows indicate the direction of ion movement and object marking. Reproduced
with permission from [59] Copyright 2018, American Chemical Society.

Some of the currently researched pseudocapacitor materials include noble oxides [64,65],
conducting polymers [66], and transition metal oxides [35,67]. However, the majority of
pseudocapacitor materials suffer from relatively inferior cycling stability and are usually
formed into composites with carbon materials to improve cycle life and charge/discharge
performance [68,69].

2.3. Hybrid Supercapacitor

The LIC cell is an important type of HSC. It is conventionally manufactured from
capacitive electrodes coupled with pre-lithiated battery electrodes, as demonstrated in
Figure 4a [11]. The lithium salt LiPF6 is mixed with an organic solvent to constitute the
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electrolyte. The capacitive electrodes contribute high power, while the battery electrodes
feature high energy, so as to ensure optimum equilibrium between power density, energy
density, and cycle life [70,71]. During the operation of LICs, there are separate stages for
the anions and cations in the electrolyte: the intercalation/de-intercalation of Li+ occurs at
the negative electrode, whereas the adsorption/desorption of Li+ and PF6

− ions can take
place at the positive electrode [72,73]. Because of the mixed electrochemical energy storage
configurations in LICs, there are two completely diverse working mechanisms in terms of
open-circuit voltage [74,75].
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Figure 4b describes the charging and discharging curves of both electrodes for an LIC.
In the first stage (I–II) of the charging process from the open-circuit voltage to the maximum
voltage, PF6

− transports towards the positive electrode and adsorbs into the surface of
the AC electrode, while Li+ transfers towards the negative electrode and inserts itself into
the negative electrode material, in which the concentration of Li+ in the negative electrode
is constantly increasing and the ion concentration in the electrolyte is decreasing [77].
For the second stage (II–III), from the peak voltage for discharging to the open-circuit
voltage, there is an increase in the concentration of Li+ and PF6

− in the LIC electrolyte.
Li+ is de-intercalated from the negative electrode, with PF6

− being desorbed from the
positive electrode [78]. In the third stage (III–IV), from open-circuit voltage discharging
to cut-off voltage, the PF6

− does not participate in the reaction process in which the
average concentration in its electrolyte remains constant. Li+ is removed from the negative
electrode, while it is adsorbed into the AC electrode [79]. As a result, there is a steady
average concentration of Li+ as well as PF6

− in the electrolyte throughout the voltage range
of the third stage. In the last stage (IV–V), the charging process is completely contrary to
the discharging process in the third stage (III–IV). From the above analysis, it is evident that
the charging and discharging work mechanism of an LIC as a whole can be categorized
into the electrolyte depletion process and the Li+ intercalation/de-intercalation process of
the pre-lithiated electrode [80].
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The pre-lithiation process, which is depicted in Figure 4c, is essential for LICs. In this
configuration, a three-electrode cell is applied, which consists of an anode, a cathode, and a
lithium foil electrode. The tab of the anode is connected to lithium foil electrode tabs using
ultrasonic spot welding technology. The anode electrode is separated from the lithium foil
electrode through a separator. During the process of discharge, the lithium foil is dissolved
in the electrolyte and Li+ is intercalated into the anode electrode material. The potential of
the lithium storage electrode can be reduced so that it improves the operating voltage and
energy density of the device. Meanwhile, the formation of the solid electrolyte interphase
(SEI) film on the negative electrode surface is used to eliminate the irreversible capacity as
well as the consumption of lithium to the maximum extent possible [76,81].

In summary, Table 1 contains an overview of the electrode materials and energy
storage mechanisms of several common types of SCs, with various materials serving
different working principles. Many manufacturers currently adopt organic electrolytes and
AC-based electrode materials to produce SCs. Table 2 introduces some commercial SCs
that have representative energy and power densities from an application point of view, so
that the performance characteristics can be more comprehensively observed.

Table 1. Summary of various SC electrode materials and energy storage mechanisms, reproduced
with permission from [37]. Copyright 2020, Elsevier.

Type Electrode Material Mechanism of Energy Storage

EDLC AC, CNT, graphene, porous carbon, etc. non-faradaic process

Pseudocapacitor
Metal oxides (e.g., RuO2, MnO2), p-doped

conductive polymers; intercalation host
material (e.g., Nb2O5)

faradaic process

HSC
One metal-ion insertion/desertion

electrode (e.g., Li-ion, Na-ion, Si-C), and
one capacitive electrode

battery-type electrode: bulk redox
reaction or displacement reaction;
capacitive electrode: faradaic or

non-faradaic process

Table 2. Comparison of the performance characteristics of various commercial SCs, reproduced with
permission from [82]. Copyright 2022, Elsevier.

Producer Potential (V) Capacitance
(F) ESR (mΩ)

Energy
Density

(Wh kg−1)

Power
Density

(W kg−1)

Maxwell 2.3 300 13 9.1 3000
Maxwell 2.7 3000 0.23 6.9 25,600
LS Cable 2.8 3200 3.7 3.7 12,400
BatScap 2.7 1680 4.2 4.2 18,255

Apowercap 2.7 590 5 5 23,275
Musashi
Energy

Solutions Co.
3.8 1100 1.2 10 14,000

Musashi
Energy

Solutions Co.
3.8 2100 6.2 24 4000

3. Thermal Behaviors of Supercapacitors

Since the SCs feature a range of internal resistance, they generate large amounts of heat
inside the capacitor that leads to substantial temperature changes during high rates of charging
and discharging processes [83,84]. This can have an essential impact on the parameters related
to temperature-sensitive capacitors. The capacitance of the SC correspondingly increases
with temperature, while the internal resistance decreases with temperature [85,86]. Moreover,
temperature can have a detrimental influence on the self-discharge rate of capacitors [87].
Indeed, ions exhibit much greater migration at elevated temperatures, which results in high
levels of ion release and self-discharge [88]. In addition, the electrolyte can decompose at
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elevated temperatures to yield gas, which can create unusual pressure in the capacitor, thereby
heightening the likelihood of explosion [89,90]. Likewise, this elevated temperature can
facilitate faster decomposition reactions between the electrode and the electrolyte, producing
byproducts that will stick to the electrode/electrolyte interface and thereby diminishing the
effective active area of the cathode electrodes [91,92]. Therefore, it becomes crucial to have an
accurate understanding of the thermal behaviors of capacitors.

3.1. Temperature Characteristics

It has been explained previously that for different operating principles of SCs, the
mobility of ions performs an indispensable role. However, the majority of the literature is
concerned with the energy storage principles of the materials and rarely pays attention to
the differences in temperature properties of different categories of SCs.

Dandeville et al. [93,94] first devised and constructed a non-adiabatic calorimetric
device to evaluate the capacitor heat generation rate by measuring the temperature variation
and applying deconvolution analysis. As can be noticed from Figure 5a,c, the temperature
profile of the hybrid pseudocapacitor (AC//MnO2) during the charging and discharging
cycles is in contrast to the temperature profile of the EDLC (AC//AC). The temperature
drops during the charging process due to the heat absorption reaction, and the temperature
rises during the discharging process when the exothermic reaction takes place. The authors
further analyzed the heat generation rate of the two electrodes, as shown in Figure 5b,d.
It considers that it is the same for the AC electrode of the EDLC and the AC electrode
of the hybrid pseudocapacitor, where the heat generation rate of the AC electrode can
be subtracted from the total heat generated by the hybrid pseudocapacitor to obtain the
heat generation rate of the other MnO2 electrode. The MnO2 electrode is charged as an
endothermic reaction and discharged as an exothermic reaction due to the electrochemical
reaction of the electrode and ion adsorption and desorption reactions [93].
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Figure 6 presents the findings of our group with regard to the temperature variation
of the LIC over time in the charging and discharging processes [95]. It shows that the
temperature declines from ambient temperature as the charging voltage progresses from
an initial voltage of 2.0 V to 3.47 V. The temperature starts to rebound from 3.47 V to the
upper cut-off voltage, where the charging process is characterized by both endothermic
and exothermic properties. In general, the overall temperature tends to increase over time
when the discharge is in progress.
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In summary, the properties of capacitors and temperature are tightly coupled, and the
heat generation mechanisms of several types of SCs are radically not identical; thus, it is
imperative to be aware of the thermal characteristics of capacitors. The next section will
explore the heat generation mechanisms of each component in more detail.

3.2. Heat Generation Mechanism for Supercapacitors
3.2.1. Electric Double-Layer Capacitor

The thermal properties of the EDLC are governed by complicated internal responses
and electro-thermal conversions. Figure 7a illustrates the increase in temperature over
this period of time as an exothermic characteristic during charging of the EDLC as well
as the drop in temperature over this period as an endothermic phenomenon during the
discharging process. The heat generation rate of the EDLC primarily comprises two
distinguishable parts: reversible heat and irreversible heat [96]. During normal EDLC
operation, part of the heat generation rate is the ohmic losses caused by internal resistance.
Similarly, it is possible to generate reversible heat due to the entropy change in the electric
double-layer [41]. Some researchers have suggested that the heat generation rate stems
from the Joule heat of the internal resistance of the EDLC, which is applied to simulate
the temperature curves during the charging and discharging cycles of capacitors [97].
The heat generation rate is the product of the internal resistance and the square of the
current. Although this method can roughly simulate the temperature evolution during the
charging and discharging process, there is no clear explanation regarding the up and down
fluctuations caused during the temperature rise. In fact, reversible heat is responsible for the
temperature fluctuations, as shown in Figure 7b [98]. The dashed line accounts for reversible
heat, which is relatively near the temperature oscillations achieved by the measurement.

In the course of charging, some ions are transformed from their disordered and
random state to the aggregated state with the release of energy. Conversely, during the
process of discharging, the ions in an aggregated state are removed from the electric
double-layer at the solid/liquid interface to again be transformed into the stochastic state.
Therefore, during the adsorption and desorption of ions, or in other state transitions, there
is often some absorption and release of energy, part of which is referred to as reversible
heat [99]. It is therefore valuable to deduce models for further profound analysis in light of
temperature variations.
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In the literature, there is some work that makes the problem easier by assuming a
uniform heat generation rate for ease of calculation. Under the hypothesis of a uniform
heat source, the irreversible heat generation rate Qirrev is defined as follows [100,101]:

Qirrev = I2RESR (4)

where I is the applied current during charging/discharging process. This is an exothermic
reaction, which is always positive.

Another approach based on first-principles can better describe the physical phe-
nomenon inside the EDLC, and the equation is presented as follows [102]:

Qirrev =
j2

σ
(5)

j(r, t) =
2

∑
i=1

ziFNi(r, t) (6)

σ(r, t) =
Dz2F2

RuT
[c1(r, t) + c2(r, t)] (7)

where j(r,t) is the current density and σ(r,t) is the electrical (ionic) conductivity, which
is subject to concentration in electrolyte; zi is the valency of ion species i, where i = 1
and i = 2 indicate cations and anions; Ni (r,t) is the local ion flux vector of species i at
location r and time t; F is the Faraday constant; D is the diffusion coefficient of ions in the
electrolyte; Ru is the universal gas constant; T is the local temperature, and c (r,t) is the ion
concentration. This method of calculation reflects the internal mechanism in much detail
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than the preceding method, but many variables are not very available, which means that
the calculation is more time-consuming [103].

It is clear from the previous diagram (Figure 7b) that the temperature rise of EDLC
during the charging and discharging processes did not manifest a smooth curve, but rather
superimposed fluctuations on the rise. In response to this wave of temperature fluctuations,
Schiffer et al. [101] performed the first analysis of the EDLC’s reversible heat. It is proposed
that the reversible heat may be from the chemical reaction among the electrodes/electrolyte
during the charging and discharging process, the Peltier effect, and the entropy change. As
a result of the analysis, the presence of a minor electrochemical reaction on the surface of
the EDLC electrode is deemed ignorable, and the Peltier effect also induces the temperature
change to be of a very small order of magnitude, which therefore eliminated the first
two possible causes, i.e., the chemical reaction and the Peltier effect [104]. The ions in
the EDLC electrolyte are close to the electrodes during the charging process and diffuse
into the electrolyte again during the discharging process; consequently, the entropy may
be explained as a measure of disorder, which tends to be a proper interpretation. The
reversible heat generation rate Qrev is given as follows:

Qrev = −2
Tκ

e
ln
(

VH
Vo

)
i(t) (8)

where T is the average EDLC temperature, κ is the Boltzmann’s constant, e is the elementary
charge, VH is the volume of the Helmholtz layer, i(t) is the transient current, and Vo
represents the volume of the EDLC electrolyte. This approach requires fewer parameters
and has a certain level of precision.

In light of the surface Gibbs free energy for the electrolyte solution at the elec-
trode/electrolyte phase interface and the use of energy conservation law, an alternative
computational model is deduced for the reversible heat of the EDLC in the course of
constant current charging and discharging processes as follows [98]:

Qrev = −2
Tκ

ze
ln
(

a±2

a±1

)
i(t) (9)

where T is the average EDLC temperature, κ is the Boltzmann’s constant, e is the elementary
charge, z represents the chemical valence of the anions and cations in the electrolyte, a± is
the mean activity of the electrolyte in the electric double-layer, where subscript 1 and 2 are
various states, and i(t) is the transient current.

A comparison of Equations (8) and (9) reveals that the discrepancy comes from the
logarithmic parameters of the equation. The former is for the ratio of the volume of the
electric double-layer to the total volume of the electrolyte solution across the solid/liquid
interface of the capacitor electrode. The latter is related to the ratio of the activity of the
electrolyte in the electric double-layer at the electrode/electrolyte interface within the EDLC
either before or after charging or discharging. The porous electrode and separator inside the
EDLC can be estimated in terms of pore volume. The volume inside the capacitor is difficult
to evaluate beyond the components, such as the electrodes and separator [105]. Indeed, the
volume of the electrolyte solution at the solid/liquid interface double-layer on the electrode
is likewise difficult to compute precisely. Equation (9) compares the ratio of activity before
and after charging or discharging, where the volume at the electric double-layer can be
approximately removed. It improves the precision of the calculated reversible heat values
with respect to Schiffer’s reversible heat equation.

Moreover, based on first principles, d’Entremont et al. [106] deduced the reversible
thermal model on EDLC by taking into account ion adsorption during charging and
discharging, ion diffusion that occurred in the desorption process, steric effects, and changes
in mixing entropy related to other variables (such as temperature, electrochemical potential),
as shown below:

Qrev = qE,d + qE,s + qs (10)
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qE,d(r, t) =
DzF

σ
j·∇(c1 − c2) (11)

qE,s(r, t) =
DzFa3NA(c1 − c2)

σ[1− a3NA(c1 + c2)]
j·∇(c1 + c2) (12)

qs(r, t) =
n

∑
i=0

Ni∇
[

T2Ru
∂lnγi

∂T

]
(13)

where qE,d is ion diffusion generated reversible heat, qE,s is the steric effect produced
reversible heat, qs is the heat of mixing, D is the ion diffusion coefficient in the electrolyte,
z is the valency of ion species, F is the Faraday constant, σ is the electrical conductivity,
j is the current density in electrolyte solution, a is the effective ion diameter, NA is the
Avogadro constant, Ni is the local flux of species i, Ru is the universal gas constant, T is
the local temperature, and γi the activity coefficient of ion species i. This reversible heat
calculation model is generally accurate, but this method is time-consuming and makes the
calculation more complex because of some of the more relevant parameters considered.

In light of the intricate nature of practical porous electrode structures, it is found that
the prediction of the temperature domain in real EDLC devices with Equation (10) above
involves extensive amounts of computational expenditure. d’Entremont et al. [107] further
explored the development of an uncomplicated thermal model to quickly determine the
thermal performance of EDLC. Such models are employed with the lumped-capacitance
parameter method and the relevant empirical equations to deduce the semi-empirical
equation for the temperature fluctuations of the EDLC exposed to reversible heat, as
shown below:

f (x) =

{
± αIs

Cth
(t− nctc), nctc ≤ t ≤ (nc + 0.5)tc

± αIs
Cth

[(nc + 1)t− t], (nc + 0.5)tc ≤ t ≤ (nc + 1)tc
(14)

α = 2
Cth∆Trev

Istc
(15)

where α represents a semi-empirical parameter with regard to a certain EDLC, Is is the
current, nc is the quantity of charge/discharge cycles, Cth is the heat capacity of EDLC, and
tc the cycle period. The positive and negative signs refer to the charging or discharging
phase. The bulk of the variables are quite accessible from the experiment, but the crucial
parameter α is a semi-empirical parameter based on reversible heat and temperature
evolution. The empirical values vary for different compositions of the electrolyte, so it
cannot be widely available.

3.2.2. Pseudocapacitor

There are also irreversible heat generation rates and reversible heat generation rates in
pseudocapacitors. Of these, irreversible heat generation rate is derived from the resistance
of the electrodes, current collectors, and electrolyte, and reversible heat generation rate
is induced by the ions’ entropy change, faradaic reactions, and non-faradaic reactions.
d’Entremont et al. [108] further extended the first-principles continuum thermal model
to hybrid pseudocapacitors. It explains the partially reversible and irreversible heat gen-
eration rates induced by the formation of electric double-layer at the interface between
the pseudocapacitor electrode and the electrolyte, redox reactions, and Joule heating. The
irreversible heat generation rate can be expressed as:

Qirrev =
j2

σp
+

jFη

H
in the pseudocapacitive electrode (16)

Qirrev =
j2

σE
in the electrolyte diffuse layer (17)
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Qirrev =
j2

σc
in the carbon electrode (18)

where σ is the local electrical conductivity, jF is the faradaic current density, H is the Stern
layer thickness, and η is the surface overpotential.

The reversible heat generation rate can be expressed as:

Qrev =
jFΠ
H

in the pseudocapacitive electrode (19)

Qrev = qE,d + qE,s + qs,c + qs,T in the electrolyte diffuse layer (20)

where qE,d is ion diffusion generated reversible heat generation rate, qE,s is the steric effect
produced reversible heat generation rate, qs,c and qs,T refer to the heat of mixing arising from
concentration gradients and from temperature gradients, and Π is the Peltier coefficient.
Moreover, the carbon electrode of the pseudocapacitor displayed identical thermal behavior
to that of the EDLC carbon electrode, so that both the electric double-layer formation and
faradaic reaction states were combined in the thermal model [93]. The irreversible faradic
reaction and reversible electric double-layer heating dominate most of the heat generation
rate at small current densities and slow charging, where the Joule heat accounts for the
dominance in the capacitive state, which correlates to high current densities and fast
charging. This is due to the faradaic reaction, which results in the asymmetric variation of
ion concentration across the pseudocapacitor electrode [108].

3.2.3. Hybrid Supercapacitor

The thermal characteristics of LIC cells can also be attributed to complicated electro-
chemical processes and electro-thermal exchange back and forth [109]. The heat generation
rate is composed of the following primary constituents: irreversible heat, reversible entropic
heat, heat of side reaction, and heat of mixing. The irreversible heat is associated with the
intrinsic resistance of the capacitor, which can be calculated using the EDLC method [110].
The reversible heat is predominantly linked to the adsorption/desorption of anions/cations
from the electrolyte on the positive electrode surface and the intercalation/de-intercalation
of Li+ into/from the negative electrode; therefore, it cannot be ignored. The side reaction
heat is triggered by the aging of the capacitor, which can either be positive or negative. The
mixing heat describes the variation in the concentration gradient of the internal ingredients,
which is induced by the diffusion of the solid active substance into the porous electrode
and the electrolyte. To facilitate much simpler simulations, a simplification of the model,
based on the Bernardi equation, is shown below [111]:

Q = I(V −Uocv) + IT
∂Uocv

∂T
(21)

where V is the cell operating voltage, Uocv is the open-circuit voltage, I is the current, which
is positive or negative, and T and ∂Uocv/∂T represent, respectively, the temperature and
the entropy coefficient, which relies on electrochemical reaction. While the model does
not contain a detailed interpretation of the electrochemical phenomenon that occurs, it has
found extensive application, as the parameters are fairly easy to measure. Zhou et al. [112]
used this model to investigate the thermal characteristics of LIC pouch cells at transient
high rates for 1C to 550C discharging. Figure 8a depicts the discharge curves of the LIC
cell from 1C to 550C with various discharge rates. As the discharge rate increases, the
discharge capacity retention rate is over 83% at 50C. When the discharge rate increases to
550C, the capacity retention rate drops directly to 17%. The temperature characteristics
are illustrated in Figure 8b. Because of the limited discharge capacity at high discharge
rates, the end of the discharge temperature curve exhibits a parabolic trend as the discharge
rate increases from 1C to 550C at ambient temperature 23 ◦C, with a maximum value of
33.68 ◦C at the end of discharge for 200C. To further explain the temperature phenomenon,
the heat generation characteristics of the cell at a variety of discharge rates are presented in
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Figure 8c. Total heat generation and irreversible heat generation show the same parabolic
trend as the end of the discharge temperature. Figure 8d demonstrates the contribution of
reversible heat, irreversible heat, and other heat to the total heat at different discharge rates.
As the discharge rate increases, irreversible heat accounts for nearly 80% of the total heat at
550C. Moreover, since a significant percentage of the total heat generated at low rates is
reversible, more than 50% of the reversible heat should not be neglected when computing
the total heat of a cell. Finally, other heat below 10% should not be discarded at a high rate.
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Figure 8. (a) Discharge voltage curves of LIC cells at different rates, (b) maximum temperature at the
end of discharge as a function of C-rate, (c) heat generation of pouch cells at diverse discharge rates,
and (d) the percentage contribution of each type of heat in the cell heat distribution, reproduced with
permission from [112]. Copyright 2022, Elsevier.

In summary, Table 3 outlines the previous thermal model evaluation approaches
for SCs. The selection of equations is essential for determining the thermal behavior of
SCs. In the case of an inhomogeneous hypothetical heat generation rate, the internal
electrochemical reaction rates can be better depicted by partial differential equations based
on first-principles. However, this method is time-consuming, and the parameters are not
readily available for detailed mechanism research. Under the assumption of a homogeneous
heat generation rate, the electrical model is adopted to simplify heat generation as well as
the measurement of parameters from experiments, which is more appropriate for research
in the field of energy storage.
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Table 3. Summary of thermal model equations for SCs.

Type of SC Heat Generation
Mechanism Equations Advantages Disadvantages Ref.

EDLC

Irreversible heat

I2RESR
Parameters easily accessible,

low computation cost Not enough precision [100,101]

j2/σ
High precision, detailed

description of heat generation
rate

Parameters not easily
available, high computation

cost
[102,103]

Reversible heat

−2 TK
e ln

(
VH
Vo

)
i(t)

Precision, low computation
cost

Parameters not easily
available [101]

−2 Tk
ze ln

(
a±2
a±1

)
i(t)

Precision, low computation
cost

Parameters not easily
available [98]

qE,d + qE,s + qs

High precision, detailed
description of heat generation

rate

high computation cost, hard
to obtain parameters [106]

± αIs
Cth

(t− nctc)

± αIs
Cth

[(nc + 1)t− t]
Parameters easily accessible Not widely applicable [107]

HSC Irreversible heat
I2RESR Parameters easily accessible,

low computation cost
Not enough precision

[113]
I(V −Uocv) [95]

Reversible heat IT∂Uocv/∂T [110]
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3.3. Measurement Approaches
3.3.1. Heat Generation Rate Measurement

In order to obtain a more precise insight into the heat generation rate of capacitors,
many researchers have investigated their heat generation rates by means of calorime-
try [114]. Munteshari et al. [115,116] developed an isothermal calorimeter, as depicted
in Figure 9a, to obtain valuable information about the complicated physicochemical phe-
nomenon occurring at each electrode of the capacitor. They discovered that the positive
electrodes generate heat in different ways during charging and discharging processes, as
shown in Figure 9b. The reversible heat of the positive electrode during charging and
discharging is exothermic and endothermic, respectively [114].
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Figure 9. (a) Isothermal calorimetry apparatus disassembly diagram; (b) the reversible heat Qrev,+ at
the positive electrode vs. the dimensionless time for various cycles where Device 1 with 1 M LiPF6 in
ethylene carbonate: dimethyl carbonate with 1:1 volume, Device 2 with 1 M citric acid in deionized
water, Device 3 with tetrabutylammonium tetrafluoroborate in acetonitrile solvent, reproduced with
permission from [115]. Copyright 2017, Elsevier.

3.3.2. Temperature Measurement Techniques

In addition, in order to detect the spatial temperature in the capacitor, thermocouples
and thermal imagers are available for precise measurements [40,117,118]. The surface
temperature of the capacitor can be easily measured by arranging thermocouples on
the surface of the capacitor, but obtaining the internal temperature of the capacitor is
somewhat more challenging. Gualous et al. [117] reported the internal temperature of the
capacitor with K-type thermocouples embedded in the capacitor, with the sensors located
as shown in Figure 10a,b. Their findings indicate that the discrepancy between the inner
and outer surface temperatures of the capacitor showed an increase trend over time, as
seen in Figure 10c, due to the air cooling on the surface of the device reducing the outer
temperature [40]. Indeed, there is a variation of 3 ◦C from the peak temperature of the
capacitor to the minimum temperature during charge/discharge cycles, as a result of the
heat accumulation of SCs during the charging and discharging processes, which causes
this temperature to increase over time. Moreover, to achieve better comprehension of
the temperature variations of the capacitor during operation, as illustrated in Figure 10d,
thermal imaging can also be used to characterize the capacitor [118]. This allows the actual
temperature distribution that occurs to be more perfectly described for studying the thermal
characteristics of the capacitor [119].



Batteries 2023, 9, 128 17 of 40Batteries 2023, 9, x FOR PEER REVIEW 18 of 43 
 

 
Figure 10. (a) SC construction with embedded thermocouple, (b) geometric diagram of thermocou-
ple positions, (c) plots of internal and external temperature of SC versus time, reproduced with per-
mission from [117], copyright 2011, IEEE, and (d) thermal image of capacitor temperature change , 
reproduced with permission from [118]. Copyright 2016, Springer Nature. 

3.4. Thermal Modeling of Supercapacitors 
The drastic reactions that take place inside SCs during charging and discharging pro-

cesses can have an influence on the thermal behavior of capacitors [120]. The mechanism 
of heat generation in capacitors is rather complex, with many researchers seeking to iden-
tify the reasons behind it and the relationship among the various components within their 
capacitors. The thermal models of SC can be classified into zero-dimensional (0D), one-
dimensional (1D), and three-dimensional (3D) models based on their dimensions. 

3.4.1. Zero-Dimensional Model 
The 0D model treats SC as a point of mass equilibrium and presumes that its interior 

material is uniform and isotropic. This type of model is widely available in circuit models. 
The equivalent circuit model, without taking into account the internal physical reactions 
of SC units, offers a category of easy constructions to describe the input/output properties 
of SCs. It generally involves common electrical circuit variables (capacitance, impedance, 
and so on) to denote the electrical behavior of capacitors. A variety of models display 
different levels of accuracy, based on the electrical circuit profile and the number of com-
ponents, where increasing the complexity of the circuit is beneficial for improving the 
precision of the model. It is necessary to couple the thermal model with the electrical 
model to produce a computationally productive electrical model. Soltani et al. [121] pro-
posed an electro-thermal model for LIC cells that was suitable for an extended tempera-
ture range and high current situations, as shown in Figure 11a. In light of the fact that a 
first-order model is unable to simulate the voltage characteristics of LIC cells with two 
distinct electrodes and various energy storage mechanisms, a second-order model is nec-
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Figure 10. (a) SC construction with embedded thermocouple, (b) geometric diagram of thermocouple
positions, (c) plots of internal and external temperature of SC versus time, reproduced with permission
from [117], copyright 2011, IEEE, and (d) thermal image of capacitor temperature change, reproduced
with permission from [118]. Copyright 2016, Springer Nature.

3.4. Thermal Modeling of Supercapacitors

The drastic reactions that take place inside SCs during charging and discharging
processes can have an influence on the thermal behavior of capacitors [120]. The mechanism
of heat generation in capacitors is rather complex, with many researchers seeking to identify
the reasons behind it and the relationship among the various components within their
capacitors. The thermal models of SC can be classified into zero-dimensional (0D), one-
dimensional (1D), and three-dimensional (3D) models based on their dimensions.

3.4.1. Zero-Dimensional Model

The 0D model treats SC as a point of mass equilibrium and presumes that its interior
material is uniform and isotropic. This type of model is widely available in circuit models.
The equivalent circuit model, without taking into account the internal physical reactions of
SC units, offers a category of easy constructions to describe the input/output properties of
SCs. It generally involves common electrical circuit variables (capacitance, impedance, and
so on) to denote the electrical behavior of capacitors. A variety of models display different
levels of accuracy, based on the electrical circuit profile and the number of components,
where increasing the complexity of the circuit is beneficial for improving the precision
of the model. It is necessary to couple the thermal model with the electrical model to
produce a computationally productive electrical model. Soltani et al. [121] proposed an
electro-thermal model for LIC cells that was suitable for an extended temperature range and
high current situations, as shown in Figure 11a. In light of the fact that a first-order model
is unable to simulate the voltage characteristics of LIC cells with two distinct electrodes
and various energy storage mechanisms, a second-order model is necessary to perform
electrical performance simulations [33]. The results demonstrate that the coupled second-
order electrical model and the thermal model are capable of exhibiting good precision
for both concentration differentiation and electrochemical polarization, with errors in the
model under 5% at high currents (300 to 500 A). Indeed, the lumped parameter thermal
model is relatively straightforward and computationally more time-efficient than other
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models [122]. In this type of model, when the SC is considered to be a lump body, it is
identical in every direction in the process of heat transfer at a temperature.
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Lystianingrum et al. [123] developed thermal models as shown in Figure 11b for multi-
ple SC strings using this approach, which was verified experimentally. The identification of
the thermal model variables is discussed, and a closed-loop observer is devised for assess-
ing the temperature on the basis of the verified model. The findings confirm that a basic
closed-loop observer can provide potentially reliable information on transient temperature
estimation. In addition, other researchers have proposed some general thermal network
models to analyze SC thermodynamics. Berrueta et al. [124] proposed a combination of
electrical and thermal models to describe the thermal characteristics of SCs as governed by
temperature in the case of equivalent circuits. The electrical model elaborately considers
ionic variations in the electrolyte and the process kinetics within the pores of the electrode
and the electric double-layer, and the thermal model assumes that heat is generated evenly
throughout the process. The precision of the model is verified by an extensive series
of experimental tests in a practical operating environment. Sarwar et al. [125] coupled
a pseudo-3D thermal model with an electrical model to forecast the inner temperature
and variation pattern of SC under high current charging/discharging processes. These
pertinent data on the thermal gradient is then used to define the temperature-related
electrical properties.
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3.4.2. One-Dimensional Model

The electrochemical model starts from the explanation of the double charge layer at
the electrode/electrolyte interface, constructing the corresponding interface model through
the deduction of interfacial charge separation and the theory of idealized electrodes, which
can accurately represent the reaction process occurring inside the capacitor [126,127].

On the basis of porous electrode theory, Kundu et al. [104] proposed a 1D electrochem-
ical model, as illustrated in Figure 12. The model is constructed from porous electrodes
and separators, as well as the 1D transportation of ions across the separator from the anode
to the cathode electrode. This model reduces the number of dimensionless parameters by
simulating the variation of the heat generation rate inside the capacitor over time during
cycling in comparison to previous results. Li et al. [97] combined the 1D electrochemical
model and the 3D thermal model to provide an entropy generation analysis of SC. In it,
there is an accurate quantification of the irreversible factors caused by heat transfer, mass
transfer, and ohmic losses for SC. The results of this model are in very good accordance
with the experimental values, with an error of 0.159% under adiabatic conditions and
0.182% under natural convection conditions, respectively. Li et al. [128] further refined this
type of model optimization to analyze the heat transfer irreversibility and fluid friction
irreversibility of SC cells. They investigated the influence of physical variables such as
structural geometry, cooling fluid, inlet temperature, current, and inlet water velocity on
the SC blocks. It was observed that the SC module with larger longitudinal spacing results
in lower entropy generation under the demand of compactness. In contrast, if the cooling
requirements are satisfied, increasing the coolant inlet temperature leads to a decrease
in entropy.
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3.4.3. Three-Dimensional Model

In order to gain a better visualization of the internal temperature distribution of SC
over time, as shown in Figure 13, a 3D geometric model could be established with the
finite element method, as well as solving the equations for the simulation to obtain the
desired parameters [129,130]. Wang et al. [131] developed a 3D thermodynamic finite
element model of stackable SCs and analyzed the temperature evolution of capacitors
as well as the regularity of the internal temperature profile during cycling procedures.
During operation, the maximum temperature of the capacitor is found at the core [132].
Moreover, the temperature rise of the capacitor is below 15 ◦C in the 3 A constant current
charge-discharge cycles, which proves the robustness of the model for a more realistic
response to the actual situation.
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Lee et al. [133] also investigated the influence of ambient temperature and service
conditions on the thermal behavior of the 3500 F SC with the 3D model. It was found that
the temperature of the SC consistently elevates for the first 50 cycles, thereafter attaining a
stable value with higher capacitor temperatures as the ambient temperature increased. This
type of approach facilitates a theoretical basis for the thermal management system, thus
assuring that the entire system remains within a safe range [110,134]. Hamza et al. [135]
presented a 3D multi-scale SC thermal model that precisely forecasts heat generation rate
and temperature rise and provides a more detailed physical explanation of heat generation
rates. The numerical heat generation and temperature curves are similar to the experimental
findings, with an uncertainty of less than 15% in prediction. The temperature is consistent
throughout the cell, but displays a primary decrease over the air gap.

Table 4 concisely summarizes the heat transfer modeling approaches mentioned above
for SCs. In some cases, 0D models can be derived from experiments where the parameters are
relatively simple to measure. In addition, their parameters have no physical expression, so
there is no explicit internal information. However, they are extensively employed for their
structural simplicity and adequate modeling precision. 1D models and 3D models allow
for authentic reflection of the internal heat generation phenomenon, but many microscopic
parameters need to be extracted, which consumes considerable computational resources.

Table 4. Summary of various SC thermal modeling methods by researchers.

Category Variable
Considered Advantages Disadvantages Ref.

0D model
Current, voltage,

resistance,
capacitance

Parameters easily
accessible, simple

structure

No detailed
dynamic

information
available

[121–125]

1D model
Mass charge,

elec-trochemical
kinetics

High precision,
detailed

descripti-on of the
actual

phenomenon

Heavy
computation,

model complexity
[104,108,126]

3D model

Physical structure,
temperature

locate-on
dependent

conv-ection and
radiation

Good in
temp-erature

gradient depiction

Heavy
computation, mesh
size and boundary

conditions
sensitive

[129–133]

3.5. Effect of Temperature on Supercapacitors

The working temperature of SCs has a considerable impact on their components and
performance properties. At ambient temperatures above 25 ◦C, the lifespan of SCs is
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reduced by 50% for each 10 ◦C exceeded. As the temperature rises further, this leads to a
decrease in the power and capacity of SCs. This section provides an overview of the effects
of temperature on electrode materials.

3.5.1. Effect on Electrolyte

The electrolyte temperature range is usually from 233 to 343 K. As the temperature
increases, the ions move more randomly, which increases the electrolyte’s ionic conductivity.
In addition, there is a reduction in the viscosity of the electrolyte as the temperature
increases and an opposite relationship with ionic conductivity. Finally, the temperature
also influences the reliability of the electrolyte. When the normal operating temperature
range is exceeded, the electrolyte’s ionic conductivity drops significantly or decomposition
occurs in the electrolyte, inducing a degradation in electrochemical characteristics.

3.5.2. Effect on Separator

The separators are located between the anode and cathode electrodes and permit the
rapid transportation of ions between them. It is prone to melting at higher temperatures,
which require high stability. Besides, it also needs to have an automatic shutdown function.
When the temperature exceeds a certain level, the separator melts, which blocks the ion
transport path by eliminating pores and ultimately avoiding thermal runaway.

3.5.3. Effect on Electrodes

SCs operate at high temperatures, exacerbating the reaction of the interfacial film
between electrolyte and electrode. The pores can be blocked by solid particles generated
between the carbon electrode and the electrolyte, which can result in a reduction in capacity
due to the loss of the active material. Moreover, it is possible to use carbon black and AC at
elevated temperatures with no difficulties. Binders (usually PTFE) are relatively inert and
pure fluoropolymers. Hence, the working temperature scope of the electrodes is restricted
by the melting point of binders.

3.5.4. Thermal Runaway

The fact that excessive cell temperatures can result in disastrous fires or explosions has
made thermal runaway a critical scientific concern in the study of battery safety [136,137].
Many studies have shown that the thermal runaway mechanism in cells is the result of a
chain reaction induced by an uncontrollable elevation in temperature [138,139]. During
regular operation, some heat is generated by electrochemical reactions within the cell. With
time and external heat dissipation, cell heat generation will be gradually reduced so that
the temperature will remain in a controlled range. If the cells are subjected to abnormal
conditions (such as mechanical abuse, overcharge/over-discharge and thermal abuse), the
internal temperature can increase significantly, which leads to the temperature rise of the
cell at an uncontrolled rate and consequently to thermal runaway [140]. Smith et al. [141]
assessed the thermal runaway behavior of LIC cells and the thermal properties of the
elements using two types of calorimeters. The result, as shown in Figure 14a, indicates that
the temperature profiles of the LIC cells with two distinct types of electrolyte exhibited
similar trends. At temperatures of 90 ◦C to 100 ◦C, the LIC cells were subject to continuous
chemical reactions in which the SEI film formed on the anode started to decompose. The
sharp increase in cell temperature from 120 ◦C to 200 ◦C is attributed to the reaction of
the pre-lithiated electrodes with the electrolyte and the binder, in which these reactions
tend to yield gases. At 400 ◦C, the temperature of the LIC cells reached its peak. Figure 14b
illustrates the temperature versus time curve for EDLC (1.2 Ah) in the Accelerated Rate
Calorimeter (ARC). No exothermic reaction was found across the entire curve change. The
calorimeter is the only heat source for the constantly rising temperature of the EDLC. At
approximately 169.6 ◦C, the EDLC vented towards the outside with the pressure set in
advance. Overall, it can be found that the EDLC does not show the same self-heating and
thermal runaway as the LIC and LIB. Oca [142] evaluated the security of LIC cells under
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overcharge and over-discharge situations in a post-mortem analysis. In the case of the
over-discharged cell, there is no appreciable internal degradation, of which some bubbles
occur in the separator as the only indication of degradation. By contrast, the overcharged
cell suffers noticeable deterioration in all components, as shown in Figure 14c. Of these,
there are small regions of separator meltdown, as well as a certain degree of degradation of
the active substance of AC and graphite electrodes. In general, LIC cells are found to be
safe under abuse conditions, with no dangerous cases of fire or explosion.
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Figure 14. (a) The temperature vs. time curve for LIC pouch cells’ thermal characteristics where
lowercase letters a and b represent two distinct types of electrolyte, (b) the temperature vs. time curve
for EDLC (1.2 Ah) pouch cells’ thermal characteristics, reproduced with permission from [141]. Copy-
right 2021, Elsevier. (c) Inner constituents of LIC cells after the electrical abuse tests, reproduced with
permission from [142], copyright 2019, Elsevier and (d) LIC nail-penetration test [143], open access.

Omonayo et al. [143] performed a related nail-penetration test on LIC pouch cells,
and the experimental result is shown in Figure 14d. At the beginning when the nail
starts pinning, the voltage transient drops as the conductive nail connects the positive
and negative terminals with the internal short circuit. The temperature rises rapidly to
90 ◦C within 40 s, while the cell produces excessive gas. When the nail is removed, the cell
temperature is dropped and no violent explosions occur because the nail provides the gap
for the gas products to be released, thus reducing the pressure inside the cell.

4. Thermal Management System
4.1. The Necessity for Thermal Management

As some degree of electrochemical reactions constantly taking place is SCs, they are
susceptible to their own temperature rise and temperature fluctuations caused by their own
heat generation, besides the ambient temperature [144]. When the temperature rises, the
electrolyte conductivity increases for a corresponding reduction in internal resistance [85].
A moderate increment in temperature has a certain virtue, but the electrolyte is essentially
formulated from mixtures of organic solvents, of which evaporation begins at an ambient
temperature of 20 ◦C, where higher temperatures have a tendency to induce gas yield [145,146].
At ambient temperatures above 25 ◦C, the lifespan of SCs is reduced by 50% for each 10 ◦C
exceeded [101]. In addition, in the case of relatively elevated ambient conditions or high rate
discharging, the irregular distribution of the internal temperature field in the SC modules for
a long duration will consequently lead to the uneven performance of the modules and the
individual units, especially in the area with high temperature distribution. The degradation
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rate of capacitors will be markedly quicker than that of the low-temperature component.
Consequently, with the accumulation of time, the physical differences among capacitors will
be more apparent, which causes the coherency between capacitors to deteriorate even if
premature failure occurs [109]. Therefore, it is necessary to ensure that the corresponding heat
dissipation measures are taken together with the limitations of the charging and discharging
power so as to control the temperature rise level. Otherwise, the capacitor may overheat
to the extent that the performance deteriorates or even causes thermal runaway [40]. This
is worth noting because the low temperature performance of SCs is relatively good and no
supplementary heating system is available when the temperature falls below −40 ◦C [42].

Thermal management systems for SCs are adopted to keep the temperature in the
appropriate range using technical methods [147,148]. Based on the available exterior energy
to be consumed, thermal management systems are categorized into active cooling systems
and passive cooling systems. Of these, there are active cooling systems that depend on
the movement of pump- and fan-powered working fluids, which are normally seen in
air and liquid cooling applications. In this regard, the impetus for the fans and pumps
is determined by the interference of external energy, where there is mutually exclusive
interaction between the cooling effect and the overall efficiency of the system [134]. As for
passive cooling systems, specific configurations are placed on the surface of the device. The
temperature is regulated by the intrinsic features of the component to facilitate the heat
exchange on the device and the external environment, such as phase change material (PCM)
cooling and heat pipe (HP) cooling [149]. There are external energy sources for thermal
management systems with more sophisticated equipment and consume more energy to
achieve more intense heat dissipation. Moreover, the thermal management system, which
has no additional energy consumption, permits certain goals of balanced temperature
dispersion and flexibility of response.

4.2. Air Cooling System

It appears that the air is not appropriate as one of the heat transfer intermediates
in the thermal management system because of its low thermal conductivity. However,
given the outstanding combination of ease of installation, economic efficiency, and design
feasibility, the air cooling system has been successfully developed in the business field to
some extent in Chinese and Japanese automakers’ vehicles [150]. In this way, the modules
are cooled through convection heat transfer with the surface of the capacitors as the air
moves through the SC modules. There are two primary categories of air cooling systems:
natural air convection and forced air convection.

A typical cooling strategy for the use of air as a heat transfer medium is the natural
convection cooling method [151]. When air from the exterior environment or the electric
vehicle accesses the flow channels of the thermal management system, it is in direct contact
with the interface of the SC module. The objective of cooling the capacitor is accomplished
by convection heat transfer from the air to the device, the device cabinet, and that of the
thermal conductive constituents [29]. The convective heat transfer factor in this manner is
smaller, as well as the natural convection movement being weaker, inducing the poor heat
release efficiency of conventional natural cooling. Therefore, it is rather confined to actual
implementation and investigations [152].

Forced air convection is the most accessible approach in this category, as it only
involves fans to circulate the air [153]. The wind created by the movement removes
the heat from the capacitors inside the cabinet through the exhaust fan. As air volume
increases, the peak temperature decreases. The forced air convection system intensifies the
convective heat transfer coefficient to regulate the temperature of the capacitors by means
of enforced airflow. Forced convection is the more prevalent method of cooling capacitors
as it is considerably better than natural convection in terms of reliability and considerably
improved heat dissipation [150]. However, these systems are very exacting with regard
to the design of air ducts, which appear to have difficulty in attaining a homogeneous
flow field, giving rise to the usual issue of uneven temperatures between capacitors. In
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order to tackle the discrepancies between capacitors, investigators in different countries
have carried out various alternative paths to enhance temperature homogeneity, focusing
primarily on such research as the spacing between capacitors [154], the direction of air
conduction [27], and the position of fans [155].

Xia et al. [156] have developed cooling channels for capacitor packs that contain both
parallel and series connections, as shown in Figure 15a. The capacitor packs consist of 6 modules,
each of which is composed of 15 capacitor individuals, for an overall number of 90 individuals
to be linked in series. The entrance to capacitors is positioned in the center of the top face of
capacitors, while the exits are placed towards their left and right sides, with six capacitor blocks
arranged symmetrically at the entrance. The heat dissipation structure with air intake in the
center and air exhaust in both directions allowed sufficient air to pass over every single side of the
capacitors to remove the heat produced by them [157]. Their results demonstrate that the largest
temperature variation in capacitor packs could be limited to 5 ◦C, guaranteeing uniformity of
capacitor operating temperatures. Hybrid cooling methods prevent the arrangement of too
many devices in one row, as it is common to have several dozen units in electric vehicles. In
addition, the temperature inhomogeneity problem can be mitigated due to the much shorter
coolant movement routes. This is also noted in Ref. [158].
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Voicu et al. [29] devised the staggered layout of different horizontal and vertical
distances in SC modules to achieve various degrees of compactness. At a particular
ventilation power, it is indicated that a horizontal distance across two successive SCs offers
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superior cooling properties at the equivalent of 1.25 times the diameter. This layout not
only cuts down on spatial demands but also reduces the amount of power available to
transfer the cooling air. Ionut et al. [154] further researched the thermal management of
modules featuring air cooling with this capacitor arrangement, as indicated in Figure 15b.
Forced air convection research is conducted on nine SCs arranged in a module for charging
and discharging with 70 A current. Experimental and simulation results demonstrate the
relatively good cooling performance of the second column, regardless of its position in
the heart of the module. At inlet speeds up to 0.36 m s−1, the first column is the least
cooled, but its temperature is nearly the same as that of the last SC column. A minimum
temperature in the second column relative to the first is due to the additional turbulence
caused by the airflow passing through the first column. As a consequence, heat exchange is
enhanced in the second column. There is less significant impact of incremental turbulence
and partial heat transfer factor on the SC temperature in the third column, as the air elevates
in temperature over the duration of its transit across the first two columns. There is also
less cooling in the third column than in the second, as it is the last column of the module
and lessens partial heat transfer. In other words, it is possible that the maximum surface
temperature is situated in the last column of the SC module.

Zhang et al. [27] developed an innovative air cooling system, as illustrated in Figure 16a,
for the SC cabin of an electric bus. The impact of exterior ventilation on the air circulation inside
the cabin is taken into account by modifying the construction and placement of the cabin air exit,
namely inserting a deflector at the front side of the air exit. In view of the aesthetic requirements
of the vehicles, the deflectors are adopted for each surface area of 138 mm× 48 mm. Figure 16b
presents the velocity vector diagram of the cooling air moving from the passenger cabin to the
SC block cabin, which subsequently exhausts through the air vents positioned on the underside
of the vehicle. The outcomes of this design demonstrate that at a speed of 30 km h−1, the
temperature of the components inside the modified capacitor cabin changed from 27 ◦C to
41 ◦C, which is a reduction of 10 ◦C [27]. This is an indication that the optimized capacitor
module compartment is up to the high current working state.

Soltani et al. [155] conducted experimental and simulation research on the air cool-
ing system of the LIC module, comprising 12 LIC cells coupled in series, as shown in
Figure 17. To facilitate better precision of air cooling systems, achieve improvements in
temperature homogeneity, reduce peak temperatures, and diminish energy expenditure,
it is possible to combine a variety of functioning and designing variables, such as fan
location, air speed, and interval between capacitors [109]. The results proved that in this
layout, with the fan placed on the right and the air vent on the left part of the block, the air
movement is relatively more in touch with the faces of the capacitors, since the air moved
parallel to the largest part of the cells, which promotes greater heat transfer and cooling
characteristics [159]. The balance between cooling efficiency and energy expenditure can be
reached when the speed is 5 m s−1 and the capacitor interval is 5 mm. The simulation and
experimental results match relatively well with an inaccuracy of under 2 ◦C that justifies
this approach as the perfect proposal.
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identical flow velocities described next, there is difficulty eliminating the heat generation
by air cooling at adequate flow rates. Besides, there should contain just a handful of
capacitors in the capacitor pack for the wider clearances between capacitor groups, which
are necessary to sustain active heat exchange via air cycling, which restricts the amount of
energy available for storage in the capacitor groups. One further negative aspect of this
system is that the several fans or blowers employed in electric automobiles can create much
noise. These weaknesses constrain the availability of air cooling, as it severely hampers the
reliability of capacitors as well as the range of electric automobiles. However, the equality
of the forced air cooling system is dramatically constrained by exterior energy consumption,
which in turn adversely impacts thermal management properties.

4.3. Liquid Cooling System

A liquid cooling system is a type of conventional active cooling system, typically em-
ploying mineral oil, water, and so on as the working medium [160]. What it does depends
on the movement of the fluid in the surrounding cell to deliver heat. It is more efficient
than air cooling as a result of the relatively strong coefficient of diffusion of heat from the
liquid [161]. There are also categories of direct contact and indirect contact according to the
contact pattern, as shown in Figure 18a,b [157,162]. This is the direct contact cooling of cells
by submerging them completely into an excellent working solution with higher thermal
conductivity, so that their heat is dissipated by the flow of the solution. The whole body face
of the cell may be cooled in this way, which facilitates greater temperature homogeneity by
reducing the partial heating impact of the positive and negative terminals [163]. In short, it
is possible to obtain high thermal management capabilities with direct cooling applications
because the surfaces of the cells have adequate exposure to the heat exchange fluid. Yet, the
direct contact approach extends the expense of keeping the coolant and cell serviced, while
the rigorous sealing and pressure demands impose extra complications on the structure,
preventing such cooling from being implemented in practice. By means of indirect contact
heat transfer, it is assumed that the heat produced by the cells is absorbed into the working
medium through radiators, which are subsequently recycled by the working medium [164].
The thermally conductive components, such as liquid cooling plates and fins, are fabricated
from aluminum or copper plates that have excellent heat exchange capabilities. This estab-
lishes an optimal heat flow route between the cell units and the cooling medium in cold
plates to achieve the minimum necessary thermal resistance [134]. Moreover, if there is no
flow rate constraint, it is advisable to opt for a liquid with superior thermal conductivity
as well as better heat dissipation. For example, for prismatic SCs, their regular geometry
and smooth faces permit the insertion of liquid cooling plates between successive units for
heat dissipation.

Karimi et al. [165] conducted research on both cooling plates wrapped around the
liquid cooling system for the LIC cell to probe factors that influence the capability of the
thermal management system. Figure 18c illustrates the evolution of the LIC cell superficial
temperature as a function of time under various cooling conditions. It is seen that the
surface temperature of the LIC for the liquid cooling scenario is much lower than the other
two air cooling scenarios. Therefore, the liquid cooling system is the optimum cooling
option for the above three cooling scenarios. This is further explored in terms of inlet fluid
velocity and the inlet cooling temperature of the liquid cooling process. The temperature
profile of the LIC for a variety of coolant flow speeds is shown in Figure 18d, where it
can be observed that the temperature of the cell is reduced with an increase in the inlet
flow rate. The increased speed of the cooling medium induces corresponding growth in
convective heat transfer, which in turn causes variations in cell temperature. In light of
the nonlinear dependence of the coolant inlet velocity and pressure drop, the temperature
could be regulated at the flow velocity of 100 mL min−1. Furthermore, Figure 18e presents
comparisons of the effect of various inlet liquid temperatures on the LIC cell temperature.
The results indicate that the apparent temperature varies with the duration of discharge.
As the secure functioning limit of LIC is below 40 ◦C, the ambient temperature above this
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is prone to overheating influences, thus undermining performance [42]. As the relatively
low intake temperature necessitated a vigorous radiator to keep it at a consistent threshold,
it is opted for an approximate inlet temperature of 30 ◦C, which remains within the secure
service range for the peak operating temperature.
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Figure 18. (a) Direct contact liquid cooling system, reproduced with permission from [162], copyright
2014, IEEE, (b) indirect contact liquid cooling system, (c) graphs of temperature versus time under the
following three laboratory tests: natural air convection (NC), forced air convection (FC), and liquid
cooling (LC) for LICs, (d) temperature trends over time at various flow rates, and (e) temperature
variation trends over time for a variety of inlet cooling medium temperatures, reproduced with
permission from [165]. Copyright 2020, Elsevier.

In summary, despite widespread concern for liquid cooling systems, there are several
underlying weaknesses that should be addressed. In contrast to air cooling systems, the
overall system has become much more sophisticated as a result of extra parts (such as
water pumps and radiators) and intricate flow channels. Moreover, it is important to create
a compact construction to eliminate leaks as well as to facilitate the circulation of fluids,
while also maintaining excellent heat conductivity and the absence of erosion of SCs. In
light of these above potential parameters, it may be that liquid cooling is less investigated
in the field of SCs.

4.4. Phase Change Material Cooling System and Heat Pipe Cooling System

The thermal management system employing air and liquid for the cooling transport
medium involves extra equipment and the consumption of exterior energy so that the over-
all system becomes complex and entails relatively substantial expenditure on maintenance.
However, there has been much discussion about the particular qualities of PCM as the
solution for thermal management systems, in terms of its uncomplicated nature, ease of
implementation, and superior temperature management features [166]. PCM is one type of
material that can take part in the absorption or distribution of thermal resources for the
system by means of its latent heat of phase change. In the course of its physical phase
change, it can absorb heat from the exterior world or release power to the external sur-
roundings in order to attain the objective of energy conversion to regulate the temperature
of surroundings as well as the exploitation of energy [167]. When the PCM is applied to
thermal management systems, the devices or units can be submerged immediately in the
PCM, as depicted in Figure 19a. The latent heat feature of the PCM may be adapted to
preserve the operating temperature of cells within the desired scope. The latent heat reserve
is primarily based on the energy extraction and exhaustion of energy by the material in
the context of phase change. It is common for PCM to shift from one phase regime to the
other, while a significant volume of heat is simultaneously taken up or removed from the
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surroundings when the temperature is elevated or dropped to a specific temperature [160].
Of the diverse PCMs, paraffin wax is extensively used in thermal management systems for
the sake of its affordability, excellent chemical consistency, and durability. However, there
is a principal drawback to the employment of paraffin waxes in view of some of their poor
thermal properties [168]. To address these challenges, some researchers have carried out
investigations on how to strengthen heat transfer.
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Figure 19. (a) Diagram of the thermal management system with LIC units and PCM. (b) The LIC
units covered by aluminum mesh. (c) The temperature versus time plots for the various tests below:
forced convection, PCM, and the PCM and aluminum mesh (PCM-Al) for LICs, reproduced with
permission from [169]. Copyright 2020, Elsevier. (d) The HP cooling system for the LIC cell [170],
open access.

Joris et al. [171] investigated the employment of paraffin as the cooling medium for
the PCM within a module made up of two LIC single cells for its thermal management
system. To boost the heat conduction of the paraffin, extra constituents (such as aluminum
mesh) are attached together with the LIC module to transfer the heat flow from the PCM
towards the LIC module, as shown in Figure 19b. The experimental and simulation results
are presented in Figure 19c, where the cooling system with paraffin and aluminum mesh
(PCM-Al) in the LIC module is observed to be lower in temperature than the pure PCM
cooling system. This suggests that the specially positioned aluminum mesh that surrounds
the capacitor offers excellent electrical conductivity and suppresses the heat of the module
very well. For the purpose of ensuring greater homogeneity and reducing system costs
to some extent while simultaneously preserving the system’s excellent heat distribution
characteristics, Danial et al. [169] carried out the relevant adjustments to the LIC module
with the identical research procedure. Through the optimization of the PCM with a range
of thicknesses, the aim is to identify the perfect thickness to capture the heat generated
as a result of the LIC module, as well as to retain the temperature inside a secure range.
They discovered that the terminal temperature is rather high for relatively thin PCMs,
which severely hampers the service life of the LIC. Although the greater thickness added
to its expense and heaviness, the approximate thickness of 7 mm is rather desirable to
accommodate these balances.

Furthermore, HP is one of the main metals with superior thermal conductivity, where
the heat transfer process is facilitated through the phase change of the inner substance [172].
The HP cooling system for the LIC is shown in Figure 19d. While HP is in action, the liquid
medium inside the pipe is subject to heat evaporation, with the liquid medium inside
undertaking the phase change to become steam and absorbing the majority of the heat [157].
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Afterwards, the steam enters the condenser side, where it condenses into the liquid through
the phase change procedure. The heat is delivered to the external world through thermal
convection to attain heat dissipation, and the liquid medium is eventually returned to
the evaporator terminal under the function of gravity. In other words, the process of
heat dissipation can be circulated to constantly transfer heat to the environment, thereby
permitting the transfer of significant heat flow with minimal temperature fluctuations,
thus decreasing the temperature of SCs. Karimi et al. [170] explored the influence of
diverse environmental constraints on LIC cell performance in order to manage the LIC
cell temperature with an HP cooling system. In the course of evaluating the temperature
evolution of the LIC in the presence and absence of an HP cooling system, it was discovered
that an HP cooling system could achieve temperature reductions of between 7.5% and
11.7%. Under an identical number of cycles, the capacity retention of the LIC is boosted
by roughly 2.1% with an HP cooling system versus natural convection cooling. This is
attributed to the HP cooling system consistently absorbing the heat generated, alongside
the instant migration of such absorbed heat to the surroundings.

While the HP cooling system provides significant improvements in thermal conductiv-
ity and the absence of danger of leakage, it also suffers from the drawbacks of incompatible
space configuration, service constraints, and particular demands on the cell shape [168].
For practical implementation, this is frequently integrated with PCM thermal management
techniques as a way of eliminating the deficiencies of poor thermal conductivity and too
much heat accumulation from the PCM [173]. A hybrid thermal management system
(HTMS) is introduced for LIC cells that employs PCM and HPs, as shown in Figure 20a, to
avoid heat damage and equilibrate the temperature homogeneity of cells over the cycle
measurement period [174]. Their experimental and simulation findings reveal that there is
a tremendous cooling system in the HTMS in that it achieved a 35% decrease in cell tem-
perature as well as an 86% reduction in temperature deviation versus that of the research
undertaken without the cooling system. This is attributed to the heat conversion process
where the PCM and the HPs concurrently conduction the heat loss from the cell.
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open access.

In the case of the PCM, there is a shortage of sufficient latent heat for high working
temperatures or high power operation, which is supplemented by the incorporation of
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active cooling methods [176]. It was designed by Karimi et al. as an innovative thermal
management system containing the PCM and heat sink for the LIC cell [175]. The exterior
configuration of the heat sink is illustrated in Figure 20b. The radiators enhance the heat
flow away from the power supply by providing more surface area for the equipment. Not
a promising option for high-performance systems when acting as a primary cooling source,
the heat sinks exhibit excellent properties for secondary cooling. Their discovery also
validated this, with a reduction of 16.4% relative to a simple PCM cooling system.

While the PCM cooling system is currently subject to investigation, as well as having
to encounter certain technical challenges in actual use, for instance in terms of encapsula-
tion and poor heat conduction, it possesses distinct benefits than other forms of thermal
management systems [177]. For instance, in contrast to HP cooling systems, the costs are
considerably cheaper, with much improved cell temperature evenness [178]. In addition,
the PCM offers the merits of better efficiency and the absence of exterior power sources.
Thus, there are very promising applications for cooling systems based on PCM medium.

In summary, Table 5 presents a summary of the benefits and drawbacks of passive and
active thermal management systems for capacitors. Each of the above-mentioned types of
thermal management systems has not yet achieved complete technical sophistication, so
that a powerful modular thermal management system will be a mixed system, via the joint
design of no less than two distinct thermal management systems, in the future evolution of
a capacitor cooling system.

Table 5. Advantages and disadvantages of various thermal management systems.

Thermal
Management

Systems
Types Advantages Disadvantages Ref.

Active systems Air cooling system

Simple
configuration, ease

of installation,
light weight

Low efficiency, low
specific heat [27,29,154–156]

Liquid cooling
system

High efficiency,
high thermal
conductivity

Leakage possibility,
complicated

structures
[162,165]

Passive system
PCM cooling

system

Uniform
temperature

distribution, high
efficiency

Low thermal
conductivity,

Leakage problem
[169,171,173,178]

Heat pipe cooling
system

High thermal
conductivity, no

leakage

Expensive, difficult
to maintain [170]

5. Discussion

The heat generation rate of SCs under various service conditions is of vital importance
for project design and administration in the field of energy storage. Currently available
SC models pay less regard to extended working environments and complicated operating
conditions, for instance in electric truck-associated applications. Indeed, the heat generation
rate models in existence appear to be either excessively simple or complex in terms of actual
applications, while the accuracy of the simulation results is to some extent reliant on the
measurement of material parameters. Future research into the modeling of heat generation
from EDLCs and HSCs in real situations must particularly focus on how to develop
models that capture the principles of heat generation and heat transfer with simplicity
and reasonableness. Moreover, although the prevailing calorimetric technologies have
measured the heat generation rate at each electrode of the EDLC and the pseudocapacitor,
there is less clarity in the interpretation of the specific heat generation principle at each
electrode. For the time being, no further research has been carried out in the literature on the
underlying mechanisms behind this phenomenon, which involves both endothermic and
exothermic reactions in the LIC charging process. Furthermore, SCs have currently been
studied in a relatively limited way with respect to thermal safety, with only phenomena
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observed to occur during thermal safety processes. To promote better commercialization
of SCs, the detailed runaway mechanism should be analyzed. In short, there is no overall
multi-physics field-based model to describe the thermal characteristics and runaway of SCs.
The model in this way should account for the thermo-physical properties of all materials
for usage and the heat generation rate by all origins, which in turn can promote the design
of innovative and productive cooling systems to prevent overheating as well as minimize
the related issues associated with aging and performance degradation.

Thermal management systems play an essential role in eliminating the thermal effects
of SCs, which enhances temperature homogenization between capacitors, extends capacitor
life, and boosts the security of capacitor modules. The air cooling system features attractive
industrial applications with lower manufacturing and maintenance costs, along with
simplicity in implementation. However, owing to the poor thermal conductivity and
specific heat capacity of the operating fluid, the cooling system can restrict applications of
capacitor packs for driving over long distances and high power requirements. In addition,
relevant optimization algorithms are less commonly used for air cooling systems. Hence,
improving the efficiency of air cooling systems without sacrificing available area and power
in electric vehicles necessitates additional innovative designs in terms of capacitor pack
layouts and airflow paths. Together with advanced algorithms, such as machine learning
algorithms and advanced genetic algorithms, this makes computing more convenient when
there is not enough computing power and time. Liquid cooling systems have greater
compactness and heat conductivity, which enables the temperature of the capacitor to be
homogeneously distributed. In addition, the cooling effect progressively deteriorates in
the order of the fluid flow, so the improvement of the design of the structure and quantity
of flow channels will be an important field of research. The system has less research in
the area of capacitor modules at present, and future systems should be expanded from
individual units to capacitor modules with consideration of whether the suggested cooling
solution can manage the temperature of capacitor modules. PCMs have been found to be
quite appealing for absorbing the heat caused by capacitors, but when the test changes
from single capacitors to capacitor groups, they are unable to pick up the whole amount of
heat. It would be the next research trend to fabricate innovative composite PCMs for high
thermal conductivity and latent heat, as well as coupling them with active cooling methods
(air cooling or liquid cooling) to form a hybrid thermal management system that assures
high cooling performance. The condensers of HPs require immediate cooling to maintain
proper function, which is why they are often applied in thermal management systems in
conjunction with active cooling approaches, including forced air cooling or liquid cooling,
to boost dissipation capabilities.

6. Conclusions

SCs are superior to batteries because of their high power density and particularly
high charge/discharge rates, which have received extensive attention. However, their
utilization is still influenced by performance and safety concerns. Moreover, SCs have
certain requirements for their operating temperature, so the thermal phenomena around
SCs need to be understood and regulated. The objective of this review is to provide insights
for researchers to establish a connection between past and future. This review paper
first describes the principles of energy storage, internal heat generation mechanisms, and
research on thermal runaway for several distinct types of SCs. Then, it also reviews the
latest research advancements made by a variety of investigators in the development of
thermal management systems that employ air-based systems, liquid-based systems, PCM-
based cooling systems, and hybrid cooling systems. Several of the concluding observations
of this review are outlined below:

1. The working principle of SCs is not the same for various structures. The energy storage
mechanism of EDLC is purely a physical process. Pseudocapacitors utilize redox
reactions on the surface of the electrode material for the purpose of accumulating
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energy. LICs feature both electric double-layer energy storage and a faradaic reaction
for energy storage.

2. The temperature varies between various kinds of SCs during the charging and dis-
charging process. Therefore, a series of models have been derived to account for
temperature changes. For practical situations, the appropriate model is selected to
compute the temperature distribution in accordance with accuracy and calculation
time. In addition, SCs have been less studied in the area of thermal runaway, concen-
trating on thermal failure and overcharge/over-discharge and nail-penetration tests.

3. Air cooling systems primarily employ airflow to alter capacitors’ surface temperature.
The air flow rate is changed by additional devices, which influences heat dissipation.
However, the forced air cooling system is constrained by the design of air ducts, which
makes it impossible to guarantee temperature uniformity in capacitors. Liquid cooling
systems require better sealing, where high demands are made on waterproofing,
which is typically more complicated to devise than air cooling systems. In general,
liquid cooling systems are relatively less researched in the field of SCs.

4. PCMs do not require additional energy consumption, thus suppressing the tempera-
ture rise of capacitors. Nevertheless, the low thermal conductivity of materials proves
to be a problem. By adding an aluminum mesh to the PCM for capacitors and com-
bining it with other thermal management systems, the heat between components is
better transferred so as to decrease the temperature of capacitors. Furthermore, with
the rather new usage of heat pipes in thermal management systems, there is a need
to further investigate the potential of integrating heat pipes with active or passive
cooling systems.
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