
Citation: Zhang, Z.; Sun, Y.; Zhang,

L.; Cheng, H.; Cao, R.; Liu, X.; Yang,

S. Enabling Online Search and Fault

Inference for Batteries Based on

Knowledge Graph. Batteries 2023, 9,

124. https://doi.org/10.3390/

batteries9020124

Academic Editor: Carlos Ziebert

Received: 31 December 2022

Revised: 31 January 2023

Accepted: 3 February 2023

Published: 9 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

batteries

Article

Enabling Online Search and Fault Inference for Batteries Based
on Knowledge Graph
Zhengjie Zhang, Yefan Sun, Lisheng Zhang, Hanchao Cheng, Rui Cao, Xinhua Liu and Shichun Yang *

School of Transportation Science and Engineering, Beihang University, Beijing 102206, China
* Correspondence: yangshichun@buaa.edu.cn

Abstract: The safety of batteries has become a major obstacle to the promotion and application
of electric vehicles, and the use of cloud-based vehicle practical big data to summarize the fault
knowledge of batteries to improve product quality and reduce maintenance costs has attracted
widespread attention from academia and industrial communities. In this paper, a method is proposed
to construct the battery fault knowledge graph which supports online knowledge query and fault
inference. Reliability models for battery undervoltage, inconsistency, and capacity loss are built based
on cloud data, and are deployed and continuously updated in the cloud platform to accommodate
the migration of the models to different battery products. A bidirectional long short-term memory
(Bi-LSTM) neural network was established for knowledge extraction of fault logs, and the results
were imported into Neo4j to form a battery fault knowledge graph. Finally, a fault knowledge online
query front-end interface was built to conduct inference tests on battery faults of a manufacturer,
which proves the feasibility and effectiveness of the proposed method.
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1. Introduction

Lithium-ion batteries have become the first choice for electric vehicle power systems
due to their high power density, low self-discharge rate, and long cycle life. However, in
real operation, the application of lithium-ion batteries is limited by the current development
of electrical, thermal, and safety management system technologies, which are subject to
mechanical, electrical, and thermal abuse (e.g., over-charge, over-discharge, overheating,
etc.) in extreme application scenarios, easily leading to rapid deterioration of battery
performance, and even cause safety incidents such as fire and explosion. Therefore, online
monitoring of the battery’s working conditions is required to ensure that all types of battery
faults can be effectively identified to achieve early warning and improve the safety, stability,
and reliability of the real operation of the battery system.

At present, researchers have conducted a lot of tests and accumulated a lot of experi-
ence in fault diagnosis methods for lithium-ion batteries. There are three main technical
routes: model-based, data-driven, and knowledge-based fault diagnosis, respectively.

The model-based approach simulates the battery’s internal electrochemical reaction
process directly or abstracts it into an equivalent circuit model. Lin et al. completed the
diagnosis of battery faults by constructing a sensor fault model based on the Kalman
filter algorithm [1]; Zhang et al. achieved multiple fault detection and isolation by fusing
entropy methods with fault models [2]; Li et al. achieved fault detection by adding an
adaptive enhancement method to the equivalent circuit model [3]; Qiu et al. constructed an
electro-thermal coupling by using a local anomaly factor model to simulate different levels
of anomalies within the battery [4]. When the error between the model estimation and the
actual value measured by the sensor exceeds the alarm range, the system is considered
faulty. This diagnostic method relies on the accurate modeling of the battery. If the
analytical model does not match the actual situation, it will result in a sizeable diagnostic
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deviation, which is unsuitable for automotive power batteries with complex mechanisms
and variable working conditions.

The data-driven approach analyzes and processes the monitoring data of the cloud
platform in multiple dimensions, extracting the fault features of the equipment and com-
pleting fault diagnosis by mining the relationship between data features and battery status.
Zhao et al. completed fault diagnosis by machine learning algorithm and 3σ multilevel
strategy [5]; Ojo et al. achieved accurate detection of thermal faults by employing LSTM
networks [6]; additionally, residual thresholds of battery short circuit and current leakage
were used to achieve higher accuracy fault detection [7]; Xu et al. proposed a cell difference
model and machine learning based lithium-ion battery multi-type vehicle-cloud collabo-
rative approach for fault diagnosis [8]. This data-driven fault diagnosis method does not
rely on an accurate mechanism model while combining the robust prediction and fitting
capabilities of deep learning with fault diagnosis, which has a certain degree of universality.
However, the diagnostic results obtained using this approach are somewhat limited in their
interpretability due to the lack of fault knowledge and process knowledge to support them.

The most promising and expressive advantage of the knowledge-based approaches is
that they can enable more adaptive and targeted diagnostic algorithms by incorporating
the wealth of experience from experts, algorithms, and big data [9]. Knowledge graphs can
summarize large amounts of information, data, and connections into knowledge, allowing
information resources to be more easily calculated, understood, and evaluated. It can
allow for more effective representation, management organization, and utilization of the
vast amounts of heterogeneous and dynamic changing big data available, making mod-
els more innovative and more relevant to human cognitive thinking. Knowledge-based
fault diagnosis methods are well interpretable and do not require the construction of com-
plex mathematical mechanistic models while also allowing for updating fault knowledge.
Knowledge graphs can be divided into generic and dedicated knowledge graphs according
to the scope of knowledge coverage. Generic, large-scale knowledge graphs include Free-
base [10], Wikidata [11], DBpedia [12], and YAGO [13], whereas reliable knowledge graphs
include IMDB [14] and ConceptNet [15]. Generally speaking, the process of building a
knowledge graph can be divided into knowledge representation, knowledge extraction,
knowledge fusion, knowledge inference, and knowledge update.

The knowledge graphs method has been widely used in many fields in recent years.
Hou et al. applied knowledge graphs to question-and-answer systems for military equip-
ment by analyzing the problems and difficulties in data information and management
in military equipment [16]. Guan et al. proposed a knowledge graph with embedded
concepts for knowledge graph representation learning that enhances the communication
of concept graphs [17]. Anna et al. identified the drivers of drug resistance in EGFR
mutant small cell lung cancer by constructing a recommender system on a heterogeneous
biological knowledge graph [18]. Zeng et al. used knowledge graphs in the field of drug
discovery by structuring between multiple entities and unstructured semantic transfor-
mation relationships between entities to achieve unstructured semantic closure of explicit
structures [19].

Furthermore, combining deep learning and knowledge graph technologies can im-
prove fault diagnosis results. For example, Liu et al. proposed a variety of CNN, GRU, and
knowledge graphs to build an ATT-1D CNN-GRU model for the fault diagnosis of mechan-
ical equipment [20]. Han et al. extracted the triad structure by ROMGJCE and added a
reinforcement learning framework to create a knowledge graph of production equipment
and completed fault diagnosis of it [21]. Deng et al. established a joint event-parameter
entity and relationship extraction model with a stacked bidirectional LSTM neural network
used to obtain in-depth contextual features to construct a knowledge map of the robot
that can characterize and complete fault diagnosis [22]. Establishing the knowledge graph
with the existing expert experience can quickly form the fault knowledge system, dig
the potential connection between different faults and causes, and complete the intelligent
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recommendation question and answer system and the fault diagnosis algorithm based on
graph neural network on this basis.

Fault diagnosis technology has been a constraint to the development of lithium-ion
batteries, and the construction of its knowledge graph contains many elements involving
battery failure performance, working conditions, failure modes, and other aspects. For real-
world vehicle applications, it is also necessary to consider the failure relationship between
the individual battery failure mode and the battery module or even the battery pack. There
are currently no cases where a knowledge graph has been applied to lithium-ion battery
fault diagnosis.

This paper implements a scheme to build a knowledge graph in the battery field
based on fault logs from a cloud-based management platform. Firstly, practical vehicle
data and laboratory test data of a vehicle with under-voltage, inconsistency, and capacity
loss faults are analyzed, and reliability models are established. Updates to the reliability
models and cloud-based fault diagnosis are realized based on battery cloud-based big
data. A bidirectional long short-term memory network is then established to extract and
integrate the information contained in the fault logs and analyze the relationships to build
a knowledge graph in the field of in-vehicle power battery faults, designing a front-end for
online fault query of the battery system and testing the fault cause inference in the cloud to
realize intelligent fault diagnosis of the battery system.

2. Battery Big Data Fault Diagnosis

In this section, a battery reliability model based on big data from practical vehicles is
constructed to implement cloud-based fault diagnosis. The failure phenomena of batteries
and the statistical model based on reliability theory is presented in Section 2.1. In Section 2.2,
the data under three typical fault types, including undervoltage, inconsistency, and capacity
loss, are analyzed to design an online fault diagnosis algorithm which can continuously
iteratively be updated in the cloud.

2.1. Battery Big Data Reliability Model

In the case of lithium-ion power batteries, various failure phenomena often occur
during different working conditions. For example, phenomena such as the increase of
internal resistance, power fade, capacity loss, and increase of self-discharge rate indicate
that performance degradation has occurred inside the battery, and there are also phenomena
related to battery safety, such as gas production, electrolyte leakage, volume expansion,
internal/external short circuit, and even fire and explosion. These failures are usually
caused by the interaction of complex electrochemical reactions inside the battery and
external environmental factors.

The curve in Figure 1 is called the failure rate curve, which is drawn with lifetime as
the horizontal axis and the failure rate of the devices as the vertical axis. Its shape is similar
to the shape of a bathtub, so it is also called “bathtub curve”. The failure rate curve is
stage-specific, with the probability of failure changing with lifetime. The reference divides
the bathtub curve into three main stages: (i) primary infant mortality; (ii) useful life; and
(iii) wearout period. Most studies focus on the useful life period [23]. Therefore, failure
rate becomes a constant value which is independent of time.

Reliability is the ability to perform a specified function at the required time and under
the required conditions; this ability is usually expressed in terms of probability. Reliability
modeling and quantitative data analysis can develop evaluation indices for battery per-
formance. For complex nonlinear battery systems, multiple reliability indices need to be
determined for multi-dimensional evaluation. In this paper, the degree of undervoltage
is selected to evaluate the degradation of battery performances, the inconsistency charac-
terizes the overall performance degradation of the battery system, and the capacity loss
function indicates the useful life of the battery. For a practical vehicle, it is difficult to
consider the calendar aging and cycle aging of the battery like the laboratory test, so the
number of cycles is equivalently substituted for the mileage of the vehicle [24].
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Figure 1. Failure rate curve of the devices.

The process of establishing the battery reliability model based on the practical vehicle
data is shown in Figure 2. Firstly, the practical vehicle data from the cloud monitoring
platform and laboratory-acquired data are cleaned, and the abnormal values in data are
removed. Then, the appropriate feature parameters are selected and their mapping rela-
tionship with the failure mechanism is analyzed. The matching distribution type (such as
binomial distribution, normal distribution, exponential distribution, Weibull distribution,
etc.) is selected according to the distribution of data, and the empirical formula is obtained
by fitting the reliability model parameters. Finally, the reasonableness of the selection of
feature parameters and distribution functions is discussed by comparing them with the
real vehicle big data.
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2.2. Reliability Model-Based Fault Diagnosis

The data of the battery management system uploaded to the cloud platform include
battery operation status parameters such as voltage, current, temperature, time, etc., and
vehicle operation parameters such as vehicle speed and mileage. Suitable parameters are
selected as features from the uploaded practical vehicle data to fit the reliability models
corresponding to undervoltage, inconsistency, and capacity loss. The model parameters



Batteries 2023, 9, 124 5 of 18

are continuously updated with the practical vehicle operation data to achieve battery fault
diagnosis by querying the reliability values according to the real-time features.

2.2.1. Undervoltage Reliability Model

Voltage data is one of the important parameters that can directly reflect the internal
reaction of the battery; the extraction of the feature parameters can realize the performance
evaluation more intuitively and clearly. The voltage value will plummet when the battery
has a fault such as internal short circuit or electrolyte leakage, so the fault detection can
be realized by counting the undervoltage range of the abnormal cell. When analyzing the
undervoltage, it is necessary to find a normal reference voltage and select the mode of
voltage with real physical significance as the reference. The voltage signal measured by the
sensor at the board end usually has a noise of 3–5 mV, and the inconsistency between cells
could also bring some errors. Therefore, the undervoltage reliability model constructed in
this paper only considers data with undervoltage values above 5 mV.

The undervoltage situation of cell is counted under all sampling moments of the
vehicle, and the frequency of occurrence of different undervoltage values is obtained. The
highest frequency is the undervoltage value equal to 5 mV, and the probability of occurrence
is lower as the undervoltage value increases, and near the undervoltage value of 40 mV, its
frequency tends to be close to 0, which is more consistent with the actual situation.

The exponential distribution is chosen as the fitted model based on the statistical data.
Its probability density function is expressed as follows:

f (t) = λe−λt (1)

where 0 ≤ t < ∞, 0 < λ < ∞, λ is the failure rate of the exponential distribution. The
corresponding exponential distribution function has the following form:

F(t) = 1− e−λt (2)

The expression for the reliability function of the exponential distribution is:

R(t) = 1− F(t) = e−λt (3)

Due to the mean value of the exponential distribution being E(T) = 1/λ and the
variance is Var(T) = 1/λ2 , the failure rate λ of the exponential distribution is a time-
independent constant, and can correspond to the bottom part of the failure rate curve for
battery reliability assessment and fault diagnosis.

The exponential distribution probability density function is fitted to obtain the param-
eter λ = 0.11 at a fitting accuracy of 0.9957. The corresponding probability density curve
and the reliability function curve are obtained in Figure 3.
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2.2.2. Inconsistency Reliability Model

The inconsistency between cells in the battery pack is due to the slight differences in
the initial battery performances after production, and these differences are continuously
expanded in the useful life, coupled with the battery pack structure and other reasons that
cause large differences in the actual environment, which eventually accelerate the battery
aging and even cause failure. The index of battery pack inconsistency evaluation is the
standard deviation of all cell voltages at each sampling moment. It is generally believed
that there is only one cell with serious outliers in an EV battery pack. In order to make
the inconsistency index better evaluate the performance of most of the normal cells in the
battery pack, the effect of the maximum and minimum voltage will not be considered when
fitting the inconsistency model.

The statistical results of the sampling moments of the voltage inconsistency index
with the value greater than 0.002 are shown in Figure 4a. In this paper, the index is divided
into 12 intervals according to the interval value equal to 0.001, and the frequency of the
inconsistency index in each interval is counted as shown in Figure 4b. The corresponding
probability density curve of probability density curve and the reliability function curve are
shown in Figure 4c,d.
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2.2.3. Capacity Loss Reliability Model

The loss of active electrode material, loss of active lithium ions, SEI formation, and
other side reactions inside the battery can cause capacity degradation, and capacity is one
of the important indicators for battery performance evaluation. Under the cycle aging test
conditions, the relationship between battery capacity and the number of charge/discharge
cycles can be expressed as Equation (4):

Q = θT

(
a0 + a1 × t

1
2

)
(4)

where Q is the relative capacity of the battery with a maximum value of 1, θT is the
temperature correction factor introduced by the Arrhenius formula, a0 and a1 are the
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parameters that need to be calibrated according to the laboratory test data, and t is the
number of cycles of the battery. The expression of θT is illustrated as follows:

θT = exp
[
−a·Ea

Rug

(
1

T(t) −
1

Tre f

)]
(5)

where a is the parameter to be determined, Ea is the battery reaction activation energy,
Rug is the universal gas constant, T(t) is the operating temperature of the battery, and
Tre f is the reference temperature, typically 273.15 K. In the subsequent calibration process
of a, −a·Ea/Rug can be fitted as a constant. Finally, the capacity loss for a battery can be
obtained by Equation (6):

Q = θT

(
1.059− 0.00469× t

1
2

)
= exp

[
188
(

1
T(t) −

1
298.15

)](
1.059− 0.00469× t

1
2

)
(6)

The results of fitting the battery capacity and the number of cycles obtained from the
test data are shown in Figure 5a. Based on the practical vehicle data, the number of cycles
in the horizontal coordinate is replaced by the vehicle mileage to obtain Figure 5b. In this
paper, the relative capacity is considered as the reliability parameter of the battery capacity.
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2.2.4. Cloud Platform Application

The performance of a lithium-ion battery module is consistent with the “barrel effect”,
i.e., the overall performance of the entire lithium-ion battery module depends on the single
cell with the worst performance in the module, and the life of the module also depends on
the single cell with the shortest life in the module. Once its life is over, the battery connected
to it is also scrapped. The reliability model developed in this paper assumes that there is
only one short cell in the battery module or system, at which point the cell with the most
severe undervoltage and capacity loss reaches a warning level, and the battery module
needs to be alarmed. The inconsistency parameter describes the performance distribution
of all cells in the battery module and can be used to troubleshoot the system.

After calibrating the reliability model with single-vehicle data as the baseline, grad-
ually add multi-vehicle operation data on the cloud platform and continuously fit and
modify the single-vehicle model. With the continuous access to the cloud platform data, the
model parameters will be gradually stabilized, and the reliability model has the ability to
describe the battery performance accurately. As shown in Figure 6, the vehicle undervoltage
reliability parameter after platform data iteration converges at 0.22 and the inconsistency
reliability parameter converges at 3.05. For the capacity model, 0.75 or 0.8 is usually selected
as the capacity threshold when the vehicle is retired. Hence, the outlier screening and
threshold alarm method based on the 3σ criterion can be established to realize the fault
vehicle diagnosis.
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determined after iteration.

A thermal runaway vehicle was selected from the cloud platform for testing, as shown
in Figure 7, which occurred at the moment of “15 September 2021 17:58:05”, when the
voltage data had obvious outliers. The calculation shows that in the “14 September 2021
17:57:58” moment, 24 h before the thermal runaway is detected by the traditional threshold
algorithm, the undervoltage reliability is 2.78 × 10−10 and the inconsistency reliability
is 0.959; at this time, the vehicle’s mileage is 63,871 km, corresponding to the capacity
loss reliability of 0.9126. At this time, although it has not reached the capacity warning
threshold, it has triggered the platform to set the undervoltage reliability lower than the
0.1 limit, so it has realized the early warning for the faulty vehicle.

Batteries 2023, 9, x FOR PEER REVIEW 9 of 19 
 

 
Figure 6. Cloud update of the reliability model. (a) Convergence process of the characteristic pa-
rameters of the under-voltage reliability model; (b) reference values of the under-voltage model 
parameters determined after iteration; (c) convergence process of the characteristic parameters of 
the inconsistency reliability model; (d) reference values of the inconsistency model parameters de-
termined after iteration. 

 
Figure 7. The last 100 days of the thermal runaway vehicle battery cell voltage curve. (The purple 
curve is the voltage data of the abnormal cell, the others are the voltage data of the normal cell) 

3. Battery Failure Knowledge Graph 

Figure 7. The last 100 days of the thermal runaway vehicle battery cell voltage curve. (The purple
curve is the voltage data of the abnormal cell, the others are the voltage data of the normal cell).



Batteries 2023, 9, 124 9 of 18

3. Battery Failure Knowledge Graph

The reliability model can realize real-time monitoring and fault diagnosis of vehicles
on the cloud platform, and the causes of vehicle faults could be recorded by after-sales
and maintenance. In this section, information from fault logs is summarized and a battery
fault knowledge graph is constructed as shown in Figure 8, which can provide the basis for
efficient fault diagnosis and interpretable fault inference in the future.
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3.1. Knowledge Extraction Based on Bi-LSTM Neural Network

Fault logs are alarm messages that record battery fault information, fault codes, and
fault descriptions. Since the data used in this paper come from a wide range of sources
and the content of the format is not uniform, the knowledge and relationships need to be
extracted to provide the basis for knowledge graph construction. In the field of natural
language processing (NLP), in most cases, words in a sentence become features and provide
the basis for semantic recognition, classification, and other functions of the whole utterance.
The semantics of words and the semantic correlation between words have been a hot topic of
research in the field of NLP and information retrieval; for example, “abnormal voltage value
in data affects battery performance” and “abnormal current value in data affects battery
performance”, the “voltage value” and “current value” in these two sentences express
similar meanings; thus, they should have high correlation. The correlation is reflected
not only in the correlation of words, but also in the semantics of sentences. Therefore,
using the neural network to generate a vector for each word, each dimension in these
vectors represents an attribute whose value is closer indicates have stronger relevance. The
similarity between two words can be calculated using Equation (7), where ϕ is the angle
of the vector and the similarity is 1 when the two words are exactly similar. Using these
word embeddings as parameters of the model, the implicit semantics can be inferred by
continuously updating the learning in the model:

Similarity(wrod1, word2) = qword1·qword2 =
qword1·qword2

‖qword1‖·‖qword2‖
= cos(ϕ) (7)

An LSTM (long short-term memory) neural network is a classical deep learning model
which is commonly used in the field of NLP; its treatment of long-term and short-term
memory solves many shortcomings of RNNs (recurrent neural networks), including gradi-
ent explosion, gradient disappearance, and poor long-term information storage capacity.
Compared with the original RNN model, the LSTM model adds forgetting gate, input gate,
and output gate in the hidden layer. The calculation process is as follows:
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f (t) = σ
(

W f ht−1 + U f xt + b f

)
(8)

i(t) = σ(Wiht−1 + Uixt + bi) (9)

o(t) = σ(Woht−1 + Uoxt + bo) (10)

c̃(t) = tanh(Wcht−1 + Ucxt + bc) (11)

where xt means the input at moment t, ht−1 means the state value of the hidden layer
at moment t − 1, xt is equal to the input at moment t, c̃(t) is called the candidate state
of the LSTM cell, tanh is the tangent hyperbolic function, and σ denotes the Sigmoid
function. W f , Wi, and Wo are the weights of ht−1 for forgetting gate, input gate, and output
gate; U f , Ui, and Uo are the weights of xt for forgetting gate, input gate, and output gate;
b f , bi, and bo are the biases of forgetting gate, input gate, and output gate. The cell state
c(t− 1) at the previous moment is calculated by the forgetting gate and the input gate to
obtain the cell state value c(t) at moment t, illustrated as the following equation:

c(t) = c(t− 1)⊗ ft + it ⊗ c̃(t) (12)

where ⊗ is the Hadamard product.
The final output ht is derived from o(t) and c(t):

h(t) = o(t)⊗ tanh(c(t)) (13)

The Bi-LSTM neural network consists of two independent LSTM networks, with
data fed into two separate models in forward and reverse order. In a natural language
processing field, the outputs of the two network structures are spliced and used as the
final representation of each word vector. As shown in the structure of the Bi-LSTM neural
network in Figure 9, the bidirectional input allows the features to contain both previous
and future information, and has better efficiency in feature extraction, as well as word
information representation, compared to a single LSTM memory network [25].
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shows how the key information in the sentence is extracted into the output).

The fault log of a vehicle contains information such as vin code, GPS location, manu-
facturer, fault type, fault alarm level, and fault time. Fault logs with a uniform format can
be treated as semi-structured data for knowledge extraction work, for which with a mixed
format will have error information, redundant information, interference information, etc.
Taking a fault log with a uniform log format for example, in which the format is like “one
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level over voltage at ‘8 November 2021’ ‘18:29:03’”, the fault logs with mixed formats may
appear to include connection noise words, name noise words, orientation noise words,
confusing noise words, etc. Types of noise and typical examples are shown in Table 1.

Table 1. Examples of different types of noise.

Noise Type Example

connection noise words ‘and’, ‘or’, ‘not’, etc.
name noise words ‘soc’, ‘voltage’, ‘temperature’, etc.

orientation noise words ‘over’, ‘under’, etc.
confusing noise words ‘dfa’, ‘gfaer’, etc.

In this paper, the knowledge extraction model is mainly divided into five parts, with
the bottom layer labeling the lexical properties of each character in the text according to the
policy and serving as input to the model; the second layer is the word embedding layer,
where the input characters are converted into a vector for word embedding expression,
and each dimension of the vector represents different semantic information of the word;
the third layer is the Bi-LSTM layer, where the bi-directional LSTM sequences are spliced
to obtain the final output sequence to realize the operation of feature extraction, and the
probability of corresponding label for each character is output; the fourth layer is the
conditional random field (CRF) layer, which combines the output sequence of the Bi-LSTM
layer with the custom annotation information and obtains the training result of adding
constraints to the whole text [26]; the last layer converts the computation results into labels
for output. Based on more than 6000 fault logs stored by the platform, the training set and
test set are divided with a ratio of 7:3, and artificial noise is mixed in the training set to
improve the generalization ability of the model. Examples of training set sentence mixed
with noise are shown in Figure 10.
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The optimal combination of parameters for the neural network is found by optimizing
the learning rate, hidden layer dimension, word embedding dimension, and number of
iterations. For the model built in this paper, the optimal combination of parameters is that
the learning rate is 0.1, the hidden layer dimension is 100, the word embedding dimension
is 5, and the iterative training number is 110.

3.2. Battery Fault Knowledge Graph Construction

The knowledge graph is a graphical structure that describes the development and
structural relationships of knowledge based on graph databases and visualization tech-
niques. Graph databases are based on graph theory for data storage and query functions
and are mainly used to store more relative data. The graph database stores data as nodes
and connects nodes to neighboring nodes through relationships, making it easy to retrieve
and traverse data in this way. Neo4j, an open-source NoSQL graph database, is one of the
most advanced graph databases in the world [27]. The query language is the efficient and
intuitive Cypher language [28]. Compared with other databases, Neo4j has the advantages
of transparent node relationships, agile and efficient data query, simple and readable query
language, and a simple and stable model. Main elements of Neo4j include nodes, attributes,
labels, and relationships.
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• Nodes are fundamental elements in a graph database, usually representing entities,
similar to records in a relational database.

• Nodes are connected by relationships, and multiple labels can exist for each node to
describe the node’s role within it, as well as various attributes to represent the node’s
fundamental values.

• Attributes are used to express further the critical content of a node, expressed as a
string, and can also be indexed.

Using the knowledge and relationships already acquired, a knowledge graph of the
battery fault domain is constructed following data collection, knowledge extraction, and
knowledge fusion. The pandas’ library in python is used to perform data processing on
the data and text of the fault logs, in which the table headers are usually used as labels
for the nodes, and the contents of the tables constitute the nodes, forming a triad that can
be processed by the software. The knowledge graph constructed in this paper includes
more than 600 entities, which mainly have the positive and negative electrode materials,
diaphragm, electrolyte, failure phenomena, failure mechanism, operating environment,
failure causes, thermal runaway preventive measures, battery manufacturers, location
information and the impact of internal short circuit, overcharge and over-discharge on the
battery, and much more other knowledge in the field of battery fault detection from multi-
dimensional knowledge to develop a more comprehensive summary. The knowledge map
in the field of lithium-ion battery fault diagnosis is shown in Figure 11. The bi-directional
long short-term memory network classification model established in this chapter enables
the automatic extraction of knowledge and relationships from fault logs. It can also be
combined with the constructed knowledge graph to be applied in an intelligent question-
and-answer system for fault maintenance to extract keywords and provide support and
assistance in the areas of after-sales and consultation.
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4. Applications and Analysis

Based on the battery fault knowledge graph constructed in the previous section, this
chapter uses py2neo as the driver module and the force-oriented diagram in Echarts as
the visualization module to realize the front-end visualization interface query function
for battery fault diagnosis and to provide users with relevant domain knowledge to assist
maintenance personnel in fault reasoning.
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4.1. Battery Fault Knowledge Search Online

The front-end interface built in this paper is based on the flask, an open-source,
efficient, and lightweight framework, and the connections of front end, back end, and
database follow the MTV software model [29]. The construction process is shown in
Figure 12. The connection of front end and database is based on the MTV software model,
where “M” stands for “Model”, which is used to write the functions of the program and
is responsible for the graph of business objects to the database; where “T” stands for
“Template”, which is responsible for how the visual page is presented to the user; and “V”
stands for “View”, which is responsible for the business logic and for calling the model and
template when appropriate. The three parts are interrelated and form the query page of the
knowledge graph.
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According to the division of labor in the MTV architecture, the model part is responsi-
ble for the management of data; that is, interacting with Neo4j’s graph database, connecting
with the database to access the database, and obtaining data according to the relevant
requirements. The view part mainly contains logic code, whose primary role is to match
the corresponding view function according to the user’s request, and the model layer can
obtain the response data, and return the response results to the template part directly,
providing the user with a front-end web page that can be viewed now. Its primary role is
to render the query results from the view module into the web page for the user to view.
The specific steps are as follows:

1. Submit the query via a form on the front-end page;
2. The back office receives the request message, disassembles it, and assembles the

Cypher statement;
3. Query node and relationship information in the Neo4j graphical database by executing

cypher statements;
4. Processing and filtering of the query results by the back end once the results have

been obtained;
5. Finally, the processed information is used to render the front-end interface, together

with the Echarts chart library, to visualize the knowledge graph.

As users enter information in different formats on the front-end pages, different results
should be returned for various input formats as the Cypher language rule for querying
in the Neo4j database is “MATCH (n1:A {name: “B”})-[relation: C] -> (n2:D{name: “E”})
RETURN n1, rel, n2”, where A, B, C, D, and E represent the label of entity one, the node
name of entity one, the relation, and the label of entity, respectively. In the actual query
process, there is no restriction on the input of these five parts, but if there is a node name,
then the label of that node needs to be added to the search as well. When the user enters
a form that matches a view function, the information structure is analyzed and checked
against the different view functions. Taking “Signal abnormal. Sampling failure Include
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Sampling failure. Current sampling failure” as an example, the query logic is shown in
Table 2, and the results are shown in Figure 13.

Table 2. Query logic in the example.

A B C D E Example of Input

1 Yes Yes Yes Yes Yes “Signal abnormal. Sampling fault”, “Include”, “Sampling fault. Current sampling fault”
2 Yes Yes No Yes Yes “Signal abnormal. Sampling fault”, “”, “Sampling fault. Current sampling fault”
3 Yes Yes Yes Yes No “Signal abnormal. Sampling fault”, “Include”, “Sampling fault”
4 Yes Yes No Yes No “Signal abnormal. Sampling fault”, “”, “Sampling fault”
5 Yes No Yes Yes Yes “Signal abnormal”, “Include”, “Sampling fault. Current sampling fault”
6 Yes No No Yes Yes “Signal abnormal”, “”, “Sampling fault. Current sampling fault”
7 Yes No Yes Yes No “Signal abnormal”, “Include”, “Sampling fault”
8 Yes No Yes No No “Signal abnormal”, “Include”, “”
9 Yes No No Yes No “Signal abnormal”, “”, “Sampling fault”

10 No No Yes Yes No “”, “Include”, “Sampling fault”
11 Yes No No No No “Signal abnormal”, “”, “”
12 No No Yes No No “”, “Include”, “”
13 No No No Yes No “”, “”, “Sampling fault”
14 No No No No No “”, “”, “”
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Figure 13. Battery fault diagnosis knowledge graph query result. (Nodes in pink represent entity 1,
nodes in other colors represent nodes included by entity 1 (cause of failure)).

4.2. Battery Fault Reasoning and Decision Making

The traditional manual verification of vehicle faults is less efficient. With the assistance
of knowledge graphs, more efficient and accurate fault reasoning and decision-making
can be achieved, as shown in Figure 14. The human–computer interaction fault inference
system is mainly divided into the data layer, building layer, and application layer [30].
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Figure 14. Schematic diagram of overall framework of lithium-ion battery fault diagnosis aided
decision-making system based on knowledge graph.

The function of the data layer is to collect data from lithium-ion battery fault logs
and knowledge on the internet, and complete data processing by cleaning the confusing
data to provide data support for the construction of the lithium-ion battery fault diagnosis
domain. The tool layer includes the process of knowledge extraction, knowledge fusion,
and knowledge calculation, and the data collected are stored in Neo4j in a triad format to
provide support for the subsequent realization of fault traceability and auxiliary decision-
making functions. In the application layer, human–computer interaction is carried out by
combining the knowledge graph and expert experience, and the actual fault phenomena
are combined with the knowledge graph to carry out fault tracing, providing information
support for the expert’s decision-making solutions, and realizing the function of assisting
decision-making through the relevance of knowledge in the knowledge graph [31].

Based on the battery cloud platform for a fault alarm, through the algorithm of the
initial analysis of battery data, you can also start through other information of the battery if
you cannot intuitively and clearly distinguish the type of battery failure and the cause of
failure. For example, typical failure types of a battery manufacturer plant are known. In
the knowledge graph query entity: “battery company name” and the relationship: “typical
failure phenomenon”, the corresponding failure phenomenon can be obtained as shown
in Figure 15. After obtaining “leakage” as a typical failure phenomenon, more targeted
analysis and judgment can be made based on the manifestation and failure characteristics
of the leakage, and the online fault diagnosis function of the battery can be realized more
efficiently according to different analysis results.
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5. Conclusions

This paper constructs domain knowledge graphs for the fault logs stored in the cloud-
based battery management platform and implements online search and fault inference
for battery fault knowledge. Firstly, based on actual vehicle data, reliability models are
established to extract features, including undervoltage, voltage inconsistency, and capacity
loss of lithium-ion batteries, respectively. Real-time data in the cloud are used to achieve
model update iteration and fault online detection. Then, based on the fault logs of the
cloud platform, a knowledge graph for battery fault diagnosis was established by using bi-
directional long short-term memory neural network for knowledge extraction and semantic
understanding, following the process of “data collection, knowledge extraction, knowledge
fusion, graph database modeling”. Finally, based on the MTV model, the front-end visual
query interface of the knowledge map is constructed to realize online fault knowledge
search, fault reasoning, and decision-making. The battery fault knowledge graph proposed
in this paper is not only for the electric vehicle field, but it can also be directly migrated
to other industries and professions that use batteries, such as energy storage and electric
aircraft. However, the current knowledge graph technology still relies on more upfront
technical investment and the deep understanding of experts, and it is difficult to replace
humans in the function of inference and learning. Furthermore, an extensive knowledge
graph will be built for more comprehensive platform fault logs. Attempts will be made to
trace the cause of faults down to the micro level, combined with graph neural networks to
complete battery fault inference and prediction.
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