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Abstract: The global promotion of electric vehicles (EVs) through various incentives has led to a
significant increase in their sales. However, the prolonged charging duration remains a significant
hindrance to the widespread adoption of these vehicles and the broader electrification of transporta-
tion. While DC-fast chargers have the potential to significantly reduce charging time, they also result
in high power demands on the grid, which can lead to power quality issues and congestion. One
solution to this problem is the integration of a battery energy storage system (BESS) to decrease
peak power demand on the grid. This paper presents a review of the state-of-the-art use of DC-fast
chargers coupled with a BESS. The focus of the paper is on industrial charger architectures and
topologies. Additionally, this paper presents various reliability-oriented design methods, prognostic
health monitoring techniques, and low-level/system-level control methods. Special emphasis is
placed on strategies that can increase the lifetime of these systems. Finally, the paper concludes by
discussing various cooling methods for power electronics and stationary/EV batteries.

Keywords: EV DC-fast charging; battery energy storage system (BESS); EV charger topology; reliability;
battery; reliability oriented control; BESS cooling; EV battery cooling

1. Introduction

The use of electric vehicles (EVs) is being incentivized globally as a replacement for
traditional internal combustion engine vehicles (ICEVs) [1]. This shift towards EVs is driven
by the limited availability of fossil fuels and the increasing investment in renewable energy
sources such as solar and wind power. The scarcity of fossil fuels has led countries to
invest in these alternative forms of energy, and the same is now happening with EVs [2].
Approximately 17% of all greenhouse gas emissions globally are a result of transportation [3].
This transition from ICEVs to EVs is therefore driven not only by economic considerations
but also by concerns for the environment. However, it should be noted that EVs have a
shorter range than ICEVs, which can lead to “range anxiety” among consumers [4]. The
limitation in the range of EVs is primarily due to the weight of the batteries. In contrast
to ICEVs, where a larger gasoline tank results in a higher range, increasing the size and
weight of the battery in EVs does not necessarily lead to a significantly longer range [5].
Therefore, the need for more frequent charging of EVs compared to ICEVs is a concern
that needs to be addressed in the near future. Additionally, even if it were possible to
replace or supplement all gasoline stations with EV charging stations, the waiting times for
charging, which can range from 15–20 min to several hours, depending on the technology
and power level of the charger, is a potential issue that will have to be addressed [6]. The
long waiting time and the need for more frequent charging of EVs indicate that EV charging
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infrastructure must be distributed throughout cities and towns, or along highways, rather
than concentrated in a few large charging stations, to avoid long lines and wait times. This
approach would provide more convenient and accessible charging options for EV owners,
and help to overcome one of the main barriers to the widespread adoption of EVs.

The integration of renewable energy sources into the conventional power grid presents
a challenge due to the lack of storage units. This makes it difficult to maintain a balance
between supply and demand. As the proportion of renewable energy in the grid increases,
the total grid inertia decreases, leading to higher frequency oscillations during sudden
changes in demand or surplus conditions. This highlights the need for effective energy
storage solutions to ensure a stable and reliable power grid [7].

The commonly recognized phenomenon known as the “duck curve” is illustrated in
Figure 1. This curve represents the fluctuation of demand for electricity on the grid in the
state of California, as reported in reference [8]. While the curve may vary slightly on a daily
basis, on average, it is observed that there is a significant increase in demand between the
hours of 5 p.m. and 9 p.m. As incentives for electrification continue to be implemented in
various sectors, including transportation, household appliances, and industrial machinery,
the use of electrical equipment in daily life is increasing. As a result, when individuals
return home from work in the evening, there is a sudden surge in demand for electricity.
However, if the rate of change of power demand is substantial, it can cause instability in
the grid as conventional coal and gas power plants are unable to adjust their output as
rapidly as required to meet the fluctuation in demand.

Figure 1. A common duck curve in California, USA [8].

Furthermore, as the sun sets, the absence of storage in photovoltaic (PV) generation
leads to an increased reliance on fossil fuels. Additionally, while wind power is a renewable
resource, its unpredictability poses a challenge. It is anticipated that individuals will
likely charge their EVs at home or at fast charging stations prior to or following work.
However, home-installed EV chargers are often slow AC overnight chargers that require a
significant amount of time to charge [9]. To mitigate this issue, researchers have proposed
various smart charging methods to reduce power demand on the grid side, as discussed
in the literature by Kriukov et al. [10] and Hua et al. [11]. Additionally, there has been a
growing focus on utilizing EVs as mobile energy storage systems for vehicle-to-grid (V2G)
operations and storing excess solar power in EV batteries. While these smart charging
methods may help to flatten the demand curve, local energy storage systems are considered
to be the primary solution for reducing sharp changes in power demand.

A representation of the DC-Fast charger with BESS is presented in Figure 2. The idea
behind using DC-fast charging with a battery energy storage system (BESS) is to supply
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the EV from both grid and the battery at the same time [12]. This way the demand from
the grid is smaller. Once the charging is complete and the EV is disconnected, however,
the battery is charged even in the absence of an EV. Therefore, the same amount of energy
is absorbed from the grid over a longer period of time [13]. Another practical reason is
the grid’s capability to supply the demanded power. In rural areas and highways, a weak
grid may not be able to provide the demanded power. Considering that one of the main
problems slowing down the transition from ICEV to EV is “range anxiety”, highways are
especially where fast charging needs to be present. Therefore, having BESS may reduce the
grid infrastructure cost.

Figure 2. A representation of grid-connected DC-Fast charger with local BESS. Light blue arrows
show the direction of the active power flow when EV is connected. Light orange arrow shows the
direction of active power flow when EV charging is finished.

With the incentives towards EVs, R&D on different battery technologies has signifi-
cantly increased. Mass production of batteries, especially Li-ion, significantly decreased
the cost, and stationary BESS is becoming more feasible. Considering [14,15], utility-scale
BESS will be more profitable in the upcoming years even from the point of a conserva-
tive estimation approach. However, depending on the grid strength and system sizing,
batteries may be subject to high C-rates, high number of cycling, and deep discharging
which directly affects the overall lifetime of the battery unit [16]. Similarly, for power
electronics, semiconductor selection, cooling strategy, and capacitor selection are key for
proper design with high reliability [17]. Considering that DC-fast chargers are required
mostly during long journeys in rural areas, maintenance has to be minimized and predictive
to reduce operational costs. Battery diagnostics, and online power electronics predictive
health monitoring [18] are required in order to take action to further improve the lifetime of
the overall system.

In [13], a comprehensive review for DC-Fast chargers with BESS is made where the
focus is topologies, technologies (fuel-cell, battery, flywheel), and comparison of these tech-
nologies in terms of system sizing, efficiency, and volume. In [19], a comprehensive review
of topology and control methods for EV fast charging is made. In [9], additional focus
is given to state-of-the-art standards for EV charging including inductive power transfer.
In [20], EV charging is investigated only for extreme fast charging stations including direct
medium voltage connected chargers. These papers have a broad spectrum in EV charging,
a comprehensive review for DC-fast chargers with BESS focusing on reliability-oriented
control, cooling, and battery technology is missing. This paper aims to include an in-depth
comparison of different topologies and battery chemistries, from the point of view of
industrial application. In the second section, the architecture and the different topologies
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are presented. Later, the battery technologies including second-life batteries are discussed
and compared from operational cost, cyclability, and reliability. In the fourth section, topics
such as failure mechanism and design for reliability are key for an improved lifetime of the
overall charger focusing on prognostics and health management (PHM). Later, both low
and system-level control methods for different topologies including control for reliability
are presented. The paper is finally concluded with thermal management and smart battery
pre-conditioning strategies for both power electronics and stationary BESS.

2. Architectures and Topologies

With the recent progress in EV technology, the charging industry has also developed
flexible charging units. In Table 1, some of the most popular commercial DC fast chargers
are presented. As can be seen in Table 1, the power levels are different to address a wider
segment of customers. As an example, ABB Terra HP is a modular charger capable of
supplying multiple vehicles with variable power. Similarly, EVBox and Heliox provide
their customers with the option to choose the power level. Another important feature of
these chargers is the output voltage range. Most of the state-of-the-art chargers are capable
of supplying the 200–1000 V range. A limit for DC fast charging is the current limit imposed
by the vehicle. Indeed, while the EV charger is capable of supplying high power, that does
not necessarily imply that the EV can be charged with high power. As an example even if
a Nissan Leaf is connected to a 150 kW charger, the power will be still limited to 46 kW,
therefore resulting in a longer charging time [21]. Hence, it is expected that the automotive
industry will shift towards battery pack configurations with higher voltage ratings [22].
The charging industry has already prepared for such a transition. Moreover, the majority of
EV trucks and buses are designed with 800 V batteries [23]. So, the EV chargers presented
in Table 1 are capable of charging both 400 V and 800 V batteries which makes them flexible
and multi-use.

Table 1. State-of-the-art DC fast charging solutions in the industry (NP: not provided).

Manufacturer ABB
Terra HP [24]

ABB
Terra 54 [25]

Siemens
VersiCharge
Ultra 175 [26]

EVBox
Troniq

Modular [27]

Tesla
SuperCharger [28]

Heliox
Rapid

50–300 kW [29]

Power up to 350 kW 50 kW 175 kW up to 240 kW 135 kW up to 300 kW

Input Voltage 400 VAC 480 VAC 380–480 VAC 400 VAC 380–480 VAC 400 VAC

Output Voltage 150–920 VDC 200–500 VDC 200–920 VDC 150–920 VDC 40–410 V 150–500 VDC

Multiport Yes Yes Yes Yes Yes Yes

Efficiency 95% 94% 96% 95% 91% >94%

Time to add 100 km <3 min @350 kW N.P. <6 min @175 kW <4.5 min @240 kW <11 min @135 kW <4 min @300 kW

A conventional charging system consists of a grid, an AC/DC stage, and a DC/DC
stage. The system architecture of a DC-Fast charger station with BESS is presented in
Figure 3. For each stage, different conversion types are denoted from 1 to 10. It is important
to note that not all configurations are possible due to the requirement for isolation of the
batteries, renewables, and the grid [30,31]. As an example for the variable DC-Bus case, 1
can be combined with 5-6-7; while for 4, it is not possible to connect with 5 and 6 due to a
lack of isolation between the grid and the EV/stationary batteries. The different parts of
the system and possible topologies are explained in detail in the following sections.



Batteries 2023, 9, 121 5 of 36

Figure 3. Architecture of a DC-Fast charger with BESS for different cases. Not all cases are compatible
with each other.

2.1. Variable DC-Bus

Regardless of the application of the battery module(stationary or EV), the battery
voltage is related to its state of charge (SoC). Therefore, battery chargers require a variable
output voltage. The idea behind a variable DC-bus is to connect the battery or EV battery
directly to the DC-bus, where the DC-bus voltage is always equal to the battery voltage
(cannot be both due to isolation requirements). Therefore, a DC/DC stage can be omitted
in the design, resulting in a system with lower cost and higher efficiency. However, such
an architecture has lower scalability compared to a constant DC-Bus since no other EV can
be directly connected to the DC-Bus. Moreover, it does not allow the direct connection of
multiple batteries with different chemistries.

Another downside of variable DC-Bus is the fact that isolated DC/DC converters
require a wider input and output voltage range which complicates the design procedure.
As an example, a common topology used in isolated DC/DC is the dual active bridge
(DAB) converter [32]. In order to increase the efficiency the leakage inductor has to be
designed as small as possible. However, a small leakage inductor results in a narrow zero
voltage switching (ZVS) range for a specific voltage transfer ratio and power transfer [33].
Therefore, compared to constant DC-Bus the efficiencies of the isolated DC/DC stages may
be lower.

2.2. Constant DC-Bus

Unlike variable DC-Bus, having constant voltage results in the requirement of a
DC/DC converter for each component. If the isolation is satisfied with the grid side, either
EV or the BESS DC/DC stage can be non-isolated which will result in increased system
efficiency. However, the system will be then non-scalable. Compared to variable DC-Bus,
the input voltage range of the DC/DC converters is narrower. Therefore, the efficiencies of
these converters will be higher. However, if the grid connection is weak (low short-circuit
MVA), the DC/DC converter connecting BESS with the DC-Bus must have a high power
rating. It can even be comparable to the DC/DC for the EV.

2.3. AC/DC Conversion Stage Topologies

Independent of which type of DC-Bus strategy is used the first stage converts the
3-phase AC from the grid to DC. Cases 1, 2, and 4 consist of a non-isolated AC/DC stage
whereas case 3 consists of an AC/DC stage with a high-frequency isolation transformer.
Some of the most common AC/DC topologies are presented in Figure 4.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Different AC/DC conversion topologies connected to a three-phase AC grid. Grid drawings
are omitted for visual clarity: (a) Two-level active front end (AFE); (b) Three-level neutral point
clamped (NPC) AFE; (c) Three-level T-type AFE; (d) Vienna rectifier; (e) Swiss rectifier; (f) Matrix
Converter-based isolated AC/DC converter [34].

The most conventional topology is the 2-level AFE presented in Figure 4a [35]. It
consists of only six switches. Depending on the technology of the switches, it is possible
to transfer power in both directions. In order to comply with grid standards it is often
connected to the grid with an LCL filter (possibly higher order filters). If isolation is
required, the grid side inductor is replaced with a low-frequency transformer [36]. In
Figure 4b,c 3-lvl NPC-AFE [37] and T-type AFE [38] are presented, respectively. These
topologies are superior to 2-level AFE in terms of smaller filter [39], improved THD, lower
semiconductor stress, reduced total inverter loss, and improved cooling due to improved
loss distribution with an increased number of switches. The 3-level NPC-AFE consists of
12 switches and 6 diodes whereas T-type AFE has only 12 switches. Both topologies have a
5-level voltage waveform that reduces the need for filtering hence they both have reduced
filter size [40]. The major difference between the two is the semiconductor voltage stresses.
While the 3-level NPC-AFE has the semiconductor voltage stress of VDC

2 on all switches; in
T-type topology, the line switches are subject to VDC and the common source connected
switches (neutral switches) are subject to VDC

2 . Both topologies require DC-link capacitor
voltage balancing [41].

In Figure 4d, the Vienna rectifier is presented [42]. Compared to 3-level T-type and
NPC-AFE, the Vienna rectifier uses six diodes and six switches. It is hence cheaper and
requires fewer active-controlled switches. It has all the advantages of a 3-level. However,
a downside of this topology is the fact that it is uni-directional and the need for active
control for DC-link voltage balancing. Moreover, for a 400 Vl−l grid, 1200 V diodes are
required whereas the switch voltage stress is VDC

2 . Compared to other topologies in Figure 4,
Swiss rectifiers are buck-type AC/DC converters [43]. They consist of eight diodes and
eight active switches. A fast charger is most commonly connected to a 400 V 3-phase
grid and a small passenger EV with a 400 V battery is often charged using a fast charger.
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Therefore, the Swiss rectifier is suitable for low-voltage EV charging. If a wide output range
is required it is recommended to use a series-connected DC/DC stage. Compared to other
topologies, the switches are subject to less voltage stress; therefore, 400 V grid-connected
Swiss rectifiers can use 900 V rated switches and diodes [44]. Finally, in Figure 4e, a matrix
converter-based single-stage isolated AC/DC converter is presented. It consists of 16 active
switches and a high-frequency transformer. Compared to other topologies it does not
require a low-frequency grid-connected transformer or a series-connected isolated DC/DC
stage. However, a downside of this topology is the number of active controlled switches
and the requirement for complex control. The efficiency of matrix converters is significantly
affected by the control methodology. In Table 2, the investigated AC/DC topologies are
listed and compared according to their merits (best colored in green, worst colored in red.).

Table 2. Comparison of AC/DC Topologies. The excelling topology for the specific feature is colored
green: best, red: worst.

Topology Type #of Switch Power Direction Isolation
Semiconductor Voltage

Stress
Filter Size Power Density Control

2-Level AFE Boost 6 Active + 0 Passive Bi-directional No Vdc Large Low Simple

3-Level NPC AFE Boost 12 Active + 6 Passive Bi-directional No Vdc/2 Small High Moderate

T-Type AFE Boost 12 Active + 0 Passive Bi-directional No Vdc, Vdc/2 Small High Moderate

Vienna Rectifier Boost 6 Active + 6 Passive Uni-directional No Vdc, Vdc/2 Small High Moderate

Swiss Rectifier Buck 8 Active + 8 Passive Uni-directional No Vdc,Vdc/2 Smallest High Complex

Matrix Converter Variable 16 Active + 0 Passive Bi-directional Yes Variable Variable Highest Complex

2.4. DC/DC Topologies

Regardless of any architecture, both the batteries and the EVs are often connected to a
common DC-bus using a DC/DC converter. Clearly, the DC/DC stage connected to the BESS
has to be bi-directional. However, there is no such need for the EV stage. In the literature, the
feasibility of using EV batteries as local storage units is often investigated [45,46]. The aim is
to store the extra energy generated by the renewables in the EV battery and absorb it back to
the grid when there is increased power demand, and hence flatten the duck curve presented
in Figure 1.

Considering that DC-fast chargers are used in rural areas, highways, and fast charging
stations, it is unlikely for any vehicle to stay overnight and provide grid service. Because
the aim of increasing the charger power is to decrease the charging time. However, as also
stated in this paper before in Table 1, the companies are trying modular structures capable
of charging both passenger EVs and public buses or trucks. In many cities, a lower amount
of buses are working after certain hours. Considering an average electric public bus has
150 kWh of battery installed, they have great potential for BESS providing grid service [47]. In
conclusion, if only a small passenger EV will be charged it is unnecessary to use bi-directional
DC/DC converters on the EV to DC-bus connection. However, if grid service is expected from
the system, it may also be bi-directional provided that the AC/DC stage is also bi-directional.

In Figure 3, if the isolation is satisfied in the AC/DC stage, non-isolated DC/DC
converters can be used as shown in cases 9 and 10. It is common knowledge that non-
isolated DC/DC converters have higher efficiency and power density compared to isolated
DC/DC converters due to the lack of high-frequency transformers which as a rule of thumb
often contributes as much as total semiconductor loss [44,48]. Therefore, in this section,
DC/DC converters will be investigated in two parts.

2.4.1. Isolated DC/DC Converters

In Figure 5, common isolated DC/DC topologies employed in EV/battery charging
are presented.

With the recent development in semiconductor technology such as GaN and SiC,
the conduction and switching losses decreased significantly [49]. Moreover, with the
improvement in micro-controller capabilities and new magnetic material, dual active bridge
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(DAB) became an industry favorite due to its simplicity, a low number of components,
high efficiency, and high power density [50]. It consists of four bi-directional switches on
both the primary and secondary sides. The coupling is achieved using a high-frequency
transformer. DAB power is controlled by controlling the phase shift between the primary
and secondary side voltages [51]. The phase shift control of the power is bi-directional
and assuming the fundamental harmonic of voltage waveforms the equation is the same
as the active power flow equation. DAB converter can also achieve ZVS that results in
a high efficiency without any resonant LC-tank structure. However, depending on the
value of the leakage inductance, the ZVS range is significantly affected. For small leakage
inductance, the ZVS range is narrow meaning, any deviation in the transferred power or
voltage gain may result in hard switching. If the leakage inductance is large, the ZVS range
can be extended for a wider gain and power. Though, a large leakage inductor will result
in higher reactive power circulation, and switch RMS current stress will increase and the
efficiency will be lower. Moreover, since EV batteries have a wide range from 250–450 V for
400 V batteries and 500–900 V for 800 V batteries, optimal selection of leakage inductors
requires significant effort.

(a) (b)

(c) (d) (e)

Figure 5. Isolated DC/DC converters. The secondary side of 3-level FC-DAB and NPC-DAB are
omitted due to visual clarity. Similar structure as in (c,d) or (a) can be used to rectify the AC voltage
during grid-to-vehicle (G2V) operation: (a) Dual Active Bridge (DAB); (b) CLLC converter; (c) 3-level
flying capacitor(FC) DAB; (d) 3-level NPC-DAB; (e) LLC converter.

Another bi-directional topology is the CLLC topology [52,53]. Similar to DAB, it has
eight switches and a high-frequency transformer. Two series LC resonant structure is
present in both primary and secondary sides. The series LC structure acts as a band-pass
filter and hence the current flowing in the whole circuit is highly sinusoidal. The elimination
of high-frequency current components reduces the loss of magnetic elements. Therefore,
the magnetic elements are smaller compared to DAB Moreover, compared to DAB the
required leakage inductance is smaller, and hence a smaller reactive power flows through
the circuit [54]. Although it is possible to achieve high efficiencies for a certain power and
voltage ratio, the light load operation of CLLC is problematic. Another major element
often neglected is the use of a series-connected capacitor directly on the high-frequency AC
current. To increase the efficiency of CLLC converters high intrinsic quality is necessary.
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This is achieved by having a high L/R ratio on the inductor and the transformer. Therefore,
less capacitance is needed to achieve the same resonant frequency. However, the smaller
capacitance also means higher voltage stress across the terminals of the capacitor [55].
Combined with high voltage stress coupled with high currents results in the derating
and aging of the capacitance. According to [56], capacitors come second to critical power
electronics system failures.

The last two bi-directional systems are 3-level flying capacitor (FC) [57] and neutral
point clamped (NPC) DAB converters [58,59]. For visual clarity, the secondary sides are
omitted in Figure 5c,d. For systems connected to a 400 V grid, the DC-link voltage is often
set to be between 700–800 V. Therefore, including the overshoot during switching minimum
1200 V rated semiconductors are required. While SiC is already commercially available and
also became feasible for the industry, GaN with high blocking voltages is still not available.
If the aim is to use GaN or 650 V Si-based MOSFET, three-level topologies are also a suitable
option. The 3-level FC DAB converter is such an option. It consists of eight switches on the
primary side with a voltage stress of Vdc/2 on each semiconductor. Compared to 3-level
NPC-DAB, FC-DAB does not need additional clamping diodes. Additionally, FC-DAB
does not have the issue of voltage balancing on the neutral point. The only downside of
FC-DAB is the necessity of a pre-charge circuit for the FC. Both of these topologies are quite
rare since GaN technology is not still as cost-effective as SiC for a high-voltage application.
Therefore, these topologies are not selected for an 800 V DC-link voltage. However, in
the literature, 3-level structures are used to connect the EV chargers directly to a 3-phase
medium voltage grid.

A conventional LLC converter is often employed in the literature when bi-directionality
is not mandatory. Similar to the CLLC converter it has an LC resonant tank structure and
the drawn current is hence highly sinusoidal [60,61]. LLC converters have excellent effi-
ciency for the designed gain and power transfer. Due to the smaller inductor compared
to DAB, a low reactive current is drawn from the system and ZVS/ZCS are achieved on
primary/secondary, respectively. If designed properly, the required leakage inductor and
transformer can be combined into a single magnetic element that reduces the cost/size and
hence increases overall power density. LLC converter has inherent short circuit protection
and a wide voltage range for light loads. However, satisfying the ZVS operation under
different loading conditions for a wide voltage gain is problematic [62]. Moreover, similar
to the CLLC converter, the series capacitor is subject to high voltage and current stress.
Therefore, accurate lifetime calculation of the capacitor is necessary.

2.4.2. Non-Isolated DC/DC Converters

When isolation is achieved in the AC/DC stage, non-isolated DC/DC converters can be
used to connect EV batteries or BESS to the DC-bus. In Figure 6, the non-isolated DC/DC
converters are presented. All of the presented topologies are bi-directional but can easily
be converted to uni-directional using a diode instead of active switches. Considering, the
DC-link voltage is often set to 800 V, a step-down converter is required to match the EV battery
voltage. From Figure 1a, conventional buck converter topology is presented. Compared to
other topologies, buck converter topology is superior in terms of output side current ripple.
Due to its low number of components and recent development in magnetic core materials,
high power density can be achieved. However, practical buck converters designed for the EV
charger often have large inductors to reduce the current ripple even further. This is because
battery lifetime decreased significantly when the current ripple is high. A method to reduce
the current ripple is to increase the switching frequency. Although, then the limiting factor
is the switching loss of the semiconductors. To reduce the current ripple without increasing
the switching frequency, interleaved DC/DC converters can be used [63]. In Figure 6b, an
interleaved buck converter is presented. It consists of 2N semiconductors where N is the
number of interleaved converters. The current ripple can be reduced or even eliminated
completely depending on the duty cycle. Another benefit of using interleaved buck converter
is to achieve redundancy and/or modularity in the system. However, a downside of having
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a high number of modules is that the current sharing between the modules becomes more
sensitive to duty cycle fluctuations and small variations.

If the system will be connected to a DC-bus with high voltage, then multi-level converters
are a viable option. The most common topologies are NPC [64] and FC [65,66] buck converter.
Both topologies have the same upside of three-level converters which are decreased voltage
stress on the semiconductors, frequency doubling on the inductor (meaning less ripple or
smaller inductor), high system efficiency, and improved cooling (the cooling area increased
due to an increased number of semiconductors.) However, similar to NPC-AFE and NPC-
DAB, the NPC topology suffers from neutral point voltage oscillations. Moreover, the FC
topology requires an external precharge circuit to charge the FC to Vdc/2 at the startup [67].

Finally, when a wide voltage range is desired, a buck-boost topology may be necessary.
In Figure 6e, non-inverting buck-boost topology is presented [68]. A benefit of this topology
is that when operated only in buck or boost mode (two of the switches are always off),
high efficiency can be achieved just as conventional buck or boost converter [69]. However,
this also means two of the switches will not be used. If the operation times and thermal
stress on the switches are not properly analyzed, high thermal cycling on a specific switch
may result in a significant drop in reliability and lifetime. The same is true for all PWM
duty-cycle controlled non-isolated DC/DC converters.

(a) (b)

(c) (d) (e)

Figure 6. Non-isolated DC/DC converters: (a) Conventional buck converter; (b) Interleaved buck
converter; (c) 3-level NPC buck converter; (d) 3-level FC buck converter; (e) Non-inverting buck-boost
converter.
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3. Battery Types

Lithium-ion batteries (LiBs) are a diverse array of technologies that are available on the
market, including an increasing number of second-life modules that are emerging from the
EV sector. The LiB cells are primarily identified by the names of their cathode materials,
such as lithium cobalt oxide (LCO), lithium manganese oxide (LMO), lithium iron phosphate
(LFP), lithium nickel cobalt aluminum oxide (NCA), lithium nickel manganese cobalt oxide
(NMC), and lithium titanate oxide (LTO) [70]. These cells have distinct characteristics, such
as cell voltage, energy density, cycle life, and cost, due to variations in their internal structure
and material composition in the cathode and anode formation [71]. Furthermore, there are
ongoing efforts to improve Li-ion battery cathode chemistry and material composition to deliver
better performance, such as higher energy density, lower specific costs, and the removal of
other bottlenecks, such as the dependence on cobalt. Table 3 contains the most important
cell technology parameters. It can be observed that those containing cobalt have high power
densities and energy densities, but also have disadvantages related to reduced safety and
shorter longevity [72]. In contrast, those lacking cobalt (primarily LFP and LTO) have excellent
cyclability and are considered quite safe, despite their low energy and power densities, with
LTO being the most expensive one. LMO would be the poorest chemistry in terms of operational
properties, while NMC would be the compromise chemistry that can be applied to any use or
requirement [15]. Therefore, the selection and sizing of ESS must take into consideration the
specific application and parameters of any LiB cell technology in the table. The optimal sizing
routine is applied to find the best optimal solution, considering the performance parameters
and cost of the ESS. It is found that the sizing and selection of ESS vary in terms of the total cost
of ownership. Additionally, it is important to consider the lifetime parameters that affect the
battery calendar and cycling lifetime, such as state of charge (SoC), C-rate, and temperature [73].

Table 3. Parameters of lithium iron phosphate (LFP), lithium nickel manganese cobalt oxide (NMC),
lithium titanate oxide (LTO), lithium manganese oxide (LMO) and lithium nickel cobalt aluminum
oxide (NCA) batteries using popular chemistries (based on [74–76]).

LFP NMC LTO LMO NCA

Specific
Energy

(Wh/kg)
90–120 150–220 50–80 100–150 100–170

Specific
Power

(mAh/g)
200–1200 110–340 3000–5100 110–340 110–200

Nominal
Voltage (V) 3.3 3.6 2.2 3.8 3.6

Cost
(€)/kWh 260 200 500 - 166

Cycle-Life at
80% DoD
and 25 ◦C

2000–10,000 3000–7000 2000–14,000 300–700 2000–3000

C-rate
(Charge-

Discharge)
1/1 0.7–1/2 1/10 0.7–1/1 0.7–1/1

Despite forecasted reductions in the cost of Li-ion battery technology, the high cost
of BESS has been a topic of ongoing discussion in recent years. One potential solution
to mitigate the cost of energy storage systems is the use of second-life batteries (SLBs)
from electric vehicles. The primary advantage of using SLBs is demonstrated in Figure 7.
With the first batch of retired EV batteries in China in 2020, the use of SLBs for stationary
applications is already being tested in a number of pilot projects. The net present value
of 1 kWh of SLB price ranges from 40 to 240 euros/kW based on economies of scale [77].
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However, the management of large numbers of retired batteries remains unclear, and
the techno-economic analysis of SLBs has become a new challenge, requiring accurate
quantification of their state of health and remaining lifetime. It has been found that small
variations in the second-life depth of discharge (DoD) can have a significant impact on
the health of SLBs. Additionally, the cost for reusing SLB can be as low as 20 euros/kWh
if vehicle diagnostic data are available to support SLB purchases [78]. Moreover, it is
estimated that the available SLB will surpass the demand from the utility LiB storage
as given in Figure 8 in year of 2030. This means there is a significant potential for SLB
applications in the utility.

Figure 7. Advantages of second-life batteries used in stationary storage applications.

Figure 8. Estimated SLB from passenger car supply and utility demand change between 2020–2030 [79].

Finally, because of the extremely high number of SLBs, battery recycling will be a
profitable business. Thus, how it is still conserved as a new value chain in ESS applications
is presented in Table 4.
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Table 4. Examples of battery second-life pilot and commercial projects, edited from [80,81].

OEM Service Provider EV Model Capacity Application Country

Daimler GETEC Smart 13 MWh Renewable Germany
Nissan - Leaf 400 kWh/600 kWh Renewable Japan

Mitsubishi & PSA EDF & Forsee
Power Peugeot Ion N/A Renewable France

BMW UC San Diego Mini-E 160 kWh/100 kWh Renewable USA
BMW Vattenfall&Bosch ActiveE & i3 2.8 MWh/2 MWh Renewable Germany
BMW Vattenfall i3 12 kWh/50 kWh Fast Charging Germany

Renault Connected Energy Zoe 50 kWh Fast Charging UK

4. Failure Mechanism and Design for Reliability

Power electronics converters (PECs) are used in a variety of applications, such as wind
farms and off-board chargers, and operate continuously in different environments. Any
interruption in their operation can result in significant economic loss. Therefore, there is a
need to meet safety requirements, such as functional safety, and to minimize the number of
failures over the lifetime of the PECs.

One approach to achieving this is to consider reliability aspects in the design stage
of PECs. This allows for the selection of different topologies, control systems, semicon-
ductors, and modularity to improve reliability, in addition to efficiency, size, and cost
criteria. It is important to note that reliability analysis can only be provided if the loading
and environmental conditions are known. Therefore, a comprehensive understanding of
semiconductors, including materials, packaging, failure mechanisms, and lifetime models
is essential [82].

Even after the design of the PEC is completed, it is still possible to improve its lifetime
through online methods. This can be achieved by using real-time measurements to identify
any deviations from the healthy PEC baseline. This information can then be processed
to further improve the lifetime of the PEC. This process of identifying potential issues is
referred to as condition monitoring [83], while the actions taken to address them can be
categorized as health management [84].

In this section, the materials and stages for reliability assessment and improvement of
PECs are discussed in detail. The focus is on explaining the methods and techniques used
to evaluate and improve the reliability of PECs throughout their lifetime, including both
design-stage and online methods.

4.1. Failure Mechanism

In the SiC MOSFET, failure mechanisms can be divided into two different groups: chip-
level and package-level. The reasons for these mechanisms include wear-out, electrical
and mechanical shock, and thermo-mechanical loading. Typically, in PECs, wear-out
mechanisms degrade the switch gradually over time, while electrical and mechanical shock
may result in an instant failure [85,86]. Additionally, these degradations can be identified
by monitoring certain parameters, such as ON-state voltage or thermal resistance, which
are referred to as failure identifiers.

At the chip level, time-dependent dielectric breakdown (TDDB), latch-up, and hot
carrier injection are well-known failure mechanisms. In TDDB, electrons are trapped and
accumulated in the gate oxide layer, ultimately leading to the formation of an unwanted
conduction path. The failure identifiers for TDDB are typically the gate leakage current
and gate threshold voltage [87–90]. In latch-up, a high voltage slew rate (dv/dt) during
the turn-OFF instant can cause the MOSFET to lose control of the drain-source/collector-
emitter current [91–93]. Finally, in the hot carrier injection mechanism, electrons and holes
gain kinetic energy and overcome barriers to penetrate other layers, such as the gate oxide
and starting degradation mechanism [87,94].

In package-level failure mechanisms, the primary focus is on the degradation of solder
interconnects, wire bonds, and die attaches. One of the most significant sources of harm
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within the package is thermo-mechanical stress, caused by the difference in coefficient
of thermal expansion (CTE) among the various materials. This stress can result in the
formation of cracks in both solder interconnects and wire bonds.

Thermal cycling, which is caused by changes in power losses in semiconductors, is
one of the major types of thermo-mechanical stress [95–97]. Solder layers play a crucial
role in connecting various layers within the package, such as the die, die attach, and direct
bonded copper (DBC).

The initial stage of degradation begins with the formation of cracks and voids in the
solder. This leads to an increase in resistance and, over time, a decrease in the maximum
heat dissipation capability. The increase in resistance also results in a rise in die temperature,
which can put wire bonds at risk [98–101].

Bond wire fatigue encompasses wire bond heel crack and wire bond lift-off. As with
solder interconnect fatigue, the primary cause of failure is the difference in CTE between
the wire bond and the die. Wire bond heel crack arises from continuous flexion and the
formation of cracks in the heel [102]. Wire bond lift, on the other hand, is caused by voids
in the interconnect [103,104].

4.2. Design for Reliability

Several lifetime models have been proposed in the literature to account for the effects
of junction temperature and its swing on the ultimate lifetime of semiconductors. Some
important lifetime models are presented in Table 5. In these models, the variable N f
represents the number of cycles that the semiconductor is subject to a certain stress before a
failure occurs. It is noteworthy that the Bayer and Semikron models incorporate additional
parameters such as the wire bond diameter (D) and wire bond aspect ratio (ar), in addition
to pulse duration and heating time.

Table 5. Lifetime Models in the Literature.

Failure Model Failure Site Equation Variables Authors

Coffin-Manson Bond-wire N f = α × (∆T)−n ∆T [105]

Coffin-Manson-
Arrhenius Bond-wire

N f =

α × (∆T)−n × e

Ea

kTm

∆TJ , Tm [106]

Norris-Landzberg Solder
N f = A × f n2 ×

(∆T)−n1 × e

Ea

kTm

∆Tj, Tm, f [86]

Bayerer Bond-wire

N f = k × (∆Tj)B1 ×

e

B2
Tj,max × tB3

on × IB4 ×
VB5 × DB6

∆Tj, Tj,max, ton, I, V, D [107]

SEMIKRON Bond-wire

N f =

A0 × AB
1 × (∆Tj)−B ×

(∆Tj)
α × (ar)

B1∆Tj+B0 ×

(
C + (ton)γ

C + 2γ
)× e

Ea

kTm

∆Tj, ton, Tm [108]

During the design for reliability (DfR) stage, consideration is given to the reliability
aspects of the design, and various metrics such as mean time to failure (MTTF) and mean
time between failure (MTBF) are integrated into the optimization process. This information
is of great value to designers, as it provides insight into semiconductor, capacitor, and
inductor selection, the implementation of appropriate control strategies, and the use of
series and parallel combinations of modules. In this stage, various types of stress, such as
thermal, electrical, and mechanical, as well as environment-related factors such as humidity,
are typically taken into account [109–111].
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To effectively implement DfR, it is necessary to follow a stepwise procedure that
begins with identifying an appropriate mission profile. For example, as presented in [112],
a wind profile for a year is essential for the reliability assessment of photovoltaic energy
systems in wind farms. Additionally, a solar radiation [112] and sea elevation profile [113]
have been defined. In the case of electric vehicle applications, which are subject to different
environments and loading scenarios, mission profiles have been defined taking into account
parameters such as torque, speed, battery status, and coolant temperature [82,114,115].

As previously discussed, the main failure mechanisms in semiconductors are related
to fluctuations in junction temperature. Therefore, after applying the mission profile, it is
necessary to process the junction temperature resulting from cyclic thermal loads. This process
includes extracting features such as dwell time, mean value, and numbers of full and half
cycles, which can be accomplished through the use of counting algorithms [116]. To date,
several counting algorithms have been proposed, such as peak counting and level crossing
counting. However, the rain-flow counting algorithm is the most widely used [117,118]. It
should be noted that the results of different counting algorithms may vary, as they are based
on different definitions of temperature cycles.

In addition, components in PECs are subject to various types of stress that may change
during operation. Consequently, the effects of all these stresses must be accumulated in
order to estimate the final end of life (EoL) of the components. The Palmgren–Miner rule
is an accumulation method that estimates EoL based on a linear equation, taking into
account the stress experienced by the PECs and the maximum stress they can tolerate.
In Equation (1), D represents accumulated damage, Nj represents the maximum cycles that
components can endure for a specific stress level, and nj can be calculated using counting
algorithms for a specific stress level [111,119,120].

D =
m

∑
i=1

nj

Nj
(1)

4.3. Condition Monitoring and Health Maintenance

In actual operating conditions, PECs may still experience reliability issues and it is
possible to improve the lifetime of semiconductors. One way to achieve this is through
the implementation of a program called condition monitoring, which aims to monitor
the online health status of the components and subsequently the entire system. This can
be used for diagnostic and prognostic activities. Additionally, the data obtained from
condition monitoring can be utilized for another program called health maintenance, which
is responsible for controlling system performance and manipulating the stress experienced
by semiconductors. The combination of prognostics and predictive health maintenance
has led to a new research area known as prognostics and health management (PHM).
One of the signals that can be used for PHM is junction temperature and its fluctuations.
However, measuring this parameter can be challenging and advanced strategies may
be required. Additionally, various approaches have been proposed for implementing
health maintenance, and these are heavily dependent on the application. The challenges of
junction temperature measurement and an overview of health maintenance approaches are
discussed in this section.

Junction Temperature Estimation Methods

The initial method for determining the junction temperature involves the utilization
of thermal cameras. However, this technique is not cost-effective in practical systems.
Additionally, measuring the junction temperature of power modules necessitates their
decoupling, further exacerbating the situation. In the alternate method, temperature sensors
such as NTC or p-n diode are installed on the direct bond copper (DBC) within the package
to determine the junction temperature [121,122]. However, this approach is not able to
provide a fast and accurate estimation of the junction temperature due to the presence of
external impedances between the sensors and the die. Additionally, the time-dependent
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degradation of the device necessitates the need for calibration [116]. Additionally, some
commercially available modules do not have internal temperature sensors.

Another strategy is to calculate the switching and conduction losses to input into
electrothermal models [123]. This typically involves using a resistor-capacitor (RC) structure
to model the thermal impedance between the junction and ambient [124,125]. A popular
approach is to use one-dimensional (1-D) electrothermal simulation models. These models
require less computational time, however, their accuracy is relatively low [126].

One-dimensional (1-D) models can be classified as the Cauer and Foster model, as
depicted in Figure 9. The parameters for the Cauer model are calculated by considering
material properties, and thus it can be inferred that each RC branch represents the internal
temperature of a specific layer. However, the parameters for the Foster model are obtained
through experimentation and do not provide insight into the internal temperature, but
they are relatively easier to implement [127]. An attractive approach for temperature
estimation in less than 100 microseconds is the use of electrical signals. This method
employs parameters such as ON-state voltage, gate threshold voltage, and body diode
forward voltage for temperature estimation [128,129]. One limitation of this temperature-
sensitive electrical parameter (TSEP) measurement is that it only measures the average
temperature of the chip and cannot accurately measure other areas such as wire bonds
and solder interconnects [130,131]. Furthermore, commissioning tests are required to map
electrical parameters to junction temperature, which are usually performed in controlled
situations, and thus ignore device self-heating which may lead to a mismatch between the
real junction temperature and the results of the commissioning tests [132]. Additionally, in
actual conditions, the dynamic and static characteristics of semiconductors may change,
thus regular calibration is required [101,133,134]. Moreover, measuring some TSEPs may
disrupt the normal operation of the converter, such as measuring the gate threshold voltage,
which can result in a reduction in the switching frequency [135].

Figure 9. Cauer model representation for power electronics temperature estimation.

5. Control Methods for DC-Fast Chargers with BESS

With the recent development of computational power, control of power electronics
become more sophisticated resulting in higher efficiency, high power quality, smaller
component size, and even higher lifetime. In Section 4, design for reliability and PHM
subjects were investigated. In addition to the passive calculation of consumed lifetime,
active control methods can be applied to increase the lifetime of equal aging of different
power electronic modules and battery packs. In this section, firstly the low-level control
methods for both AC/DC and DC/DC stages will be presented. In addition, low-level
control methods for lifetime improvement will be shared. Then, the system-level control
methods including data-driven methods for improved battery/power electronics lifetime
will be presented.

5.1. Low-Level Control

In Section 2, the architectures were presented. Generally, an EV charger with local
BESS has two different stages, mainly the grid-connected AC/DC stage and isolated/non-
isolated DC/DC stage. However, there are exceptions such as in case-3 in Figure 3 where
both isolation and AC/DC rectification are achieved by matrix converters. Therefore, in
this section, the control methods will be separated according to the power conversion stage.
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5.1.1. AC/DC Rectifier/Inverter Low-Level Control Methods

Consider the control method presented boost type inverters (Figure 4a–c) in Figure 10.
The given control method is called decoupled current control. The grid voltage and rectifier
currents are converted to a synchronous frame by using a phase-locked loop (PLL) structure.
It is so common practice to lock the d-axis to phase-A. Therefore, in the case where phases
are balanced the Q-axis grid voltage becomes 0. According to the d-q axis active and
reactive power formulation given in Equations (2) and (3), it becomes possible to control
both active and reactive powers independently from each other by controlling the d and q
axis current, respectively.

P =
3
2
(Vd Id +���Vq Iq) (2)

Q =
3
2
(���Vq Id + Vd Iq) (3)

In EV charging, the q-axis current reference is often set to operate at unity power factor
since the aim is not to provide grid service. Moreover, if the converter is bi-directional V2G
services can also be made by only changing the sign of the d-axis current. However, for the
V2G application, the d-axis current reference should be generated from the active power
equation given in Equation (2) by considering the demanded power from the grid. The
additional subtraction and addition of ωLIq, ωLId are feed-forward terms related to the
voltage drop across the inductors. Finally, the d-q reference signals are normalized and
converted into actual PWM signals.

Figure 10. Decoupled current control for boost type active rectifier/inverters. The T-type inverter is
given as an example. It can be any boost-type inverter.

From Figure 10, it can be seen that there are two loops. The faster inner loop is the
current set-point and the slower outer loop is the DC-link voltage control. Therefore, the
type of controller is also a topic needing attention. In [136], different controllers such as
PI, Lead-Lag, proportional resonance, and modified proportional resonance are compared.
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In [137], the phase compensated proportional controller (CPC) is presented. It is said that
CPC is superior to PI controller in terms of computational burden due to the lack of park
transform in CPC control. In [138], a quasi-proportional-resonant controller is proposed for
a multi-functional inverter.

In [139], sliding mode control is presented for both the DC-link voltage and neutral
point voltage control. The method is said to be superior to conventional methods in
terms of computation since similar to CPC control it also deals with abc voltages/currents
directly instead of stationary frame voltages/currents. Another important topic in AC/DC
inverters is pre-charging. Assume a boost type AFE and all gate signals are pulled low.
Then, the DC-link capacitors are directly connected to the grid through the body diodes of
the semiconductors. Till the DC-link is fully charged (VDC ≈ 560 for 400 Vl−l) an in-rush
current is drawn. To eliminate it startup strategies are presented in [140] for 3 phase 6
switch boost type inverter where all steps are explained in detail. Similarly, in [141] a
minimum inrush start-up of a single-phase PFC is presented. Although there are control
strategies, often inrush current is limited by the use of series connected resistors where they
are shorted using relays after the desired voltage level is achieved.

Finally, it is important to discuss neutral point voltage balancing techniques for NPC-
AFE and T-type AFE. In [142], a method called “hybrid variable virtual space vector” is
proposed and said to be superior balancing properties for medium and large space vectors
compared to conventional methods in [143,144].

Conventional Vienna rectifier control is almost the same as decoupled current control.
The only difference is that compared to other 3-level NPC topologies, the Vienna rectifier
has only one zero state. Therefore, the difference occurs for space vector PWM generation
and the switching sequence [145]. In [146], a method to suppress the harmonic resonance
occurring due to parasitic capacitances of transmission cables in EV chargers is presented.
In [147], a voltage-oriented control is proposed. In [148], a finite set model predictive
control is presented. In [149], the Vienna rectifier is modeled analytically and a sliding
mode control method is described.

The fundamentals of the Swiss rectifier are presented in [150]. A PWM control strategy
for the Swiss rectifier is shown in Figure 11 whose details are presented in [151]. In [152],
a full bridge-based Swiss rectifier and its control for lower THD and ZVS operation is
described. In [153], a non-linear control for lower THD is presented. In [154], fuzzy logic is
implemented. While both fuzzy logic and PI control methods are stable, less overshoot and
better dynamic response is observed for the fuzzy logic.

Figure 11. PWM control strategy for Swiss rectifier, edited from [151].
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5.1.2. DC/DC Converter Low-Level Control Methods

In this section, the control for isolated DC/DC topologies will be presented.

1. DAB Converter:
The DAB converter is an isolated, bidirectional topology with a low number of passive
elements. The power flow direction and magnitude are controlled by the phase
difference between the primary and secondary side AC voltages with the leakage
inductance as the power transfer element. The most common control method is the
single phase shift control (SPS) whose power equation is given in Equation (4) where P
is the transferred power, VpVs are fundamental components of primary and secondary
voltages, θ is the phase difference, ω is the angular frequency and L is the leakage
inductance. An important aspect of Equation (4) is that if θ is negative, the power
flow can be achieved in the opposite direction.

P =
VpVssin(θ)

ωL
(4)

In SPS control, the primary side legs are always inversely operated and theoretically,
the power flow can be achieved between Pθ = 90◦ and zero. Moreover, the DAB
converter can achieve soft switching on both sides during its operation which signif-
icantly increases the efficiency and reduces EMI and converter size. However, soft
switching is only achieved for certain power levels and voltage transfer ratios. A way
to increase the range of soft switching is to increase the leakage inductance but it also
increases the current stress on the switches due to higher circulating current. In order
to increase the light-load efficiency for a wider voltage transfer ratio, other phase shift
methods such as double phase shift(DPS) or triple phase shift (TPS) are presented. By
optimizing both the internal phase shifts and the voltage phase shifts, it is possible
to improve efficiency, improve voltage gain, and lower transformer loss. In [155],
the asymmetric phase shift (APS) method is presented and the light load efficiency
is improved significantly. In [156], the double band peak current control method is
used to improve the light-load efficiency by extending the ZVS range. This method
limits the switching current by indirectly changing the switching frequency. In [32],
modulation schemes were investigated for a 5-level DAB converter for Ultra-Wide
input voltage range applications.

2. CLLC Converter:
Compared to the DAB converter, CLLC converters have a wide output voltage range
with an improved light load efficiency due to ZVS operation. In [53], dead-band con-
trol with soft-starting capability is presented. In [157], a sliding mode control method
is proposed and it is said that the settling time is 0.9 ms shorter than conventional
PI control strategies where the SMC settles in 1 ms. In [158], extended phase shift
control (EPS) is presented and said to be superior to the pulse frequency modulation
method in light loading conditions. In [159], a synchronous rectification(SR) scheme
is presented resulting in a reduction in conduction losses by using a MOSFET channel
instead of lossy body diodes. It is said that SR is especially critical for SiC applications
since the body-diode of SiC MOSFET has a significant voltage drop across its junction.

3. LLC Converter:
Similar to CLLC converters, LLC converters are often controlled by changing the
frequency or changing the phase shift or using a combination of both methods [160].
By changing the frequency the reflected impedance is controlled [161] and by changing
the phase-shift the power flow is controlled and governed by the same equation
presented in Equation (4). However, a downside of the LLC converter is the light
load efficiency due to increased switching frequency. To solve the issue magnetic
control methods are presented in [162]. The main idea in all magnetic control methods
is to intentionally saturate the external leakage inductance to achieve higher light-
load efficiencies [163]. This method is similar to phase shift control since instead of
changing the phase difference the inductance is changed in Equation (4). In [164], a
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secondary side phase-shift method is presented, and compared to frequency control,
the nominal efficiency is increased and the circulating current is decreased. In [165],
an asymmetric duty cycle control is proposed and it is said to decrease the resonant
current and the conduction losses of the semiconductors compared to frequency
control. In [166], a hybrid PWM and pulse frequency modulation (PFM) is given.
Compared to the conventional PFM method, it decreased the current spikes and
enhanced output voltage regulation.

5.1.3. Low-Level Reliability Oriented Control Methods

1. Output Power Control
In this approach, in case of any increment in junction temperature and its fluctuation,
the PEC starts decreasing processing power. However, in the normal case, PEC can de-
liver rated power while ATC does not have any impact on normal operation [167,168].
Moreover, in PV application, by manipulating the MPPT procedure, the junction
temperature of the semiconductors can be controlled [169].

2. Cooling System
In this method, by manipulating cooling effort (i.e., cooling liquid flow rate, fan speed),
the junction temperature is controlled [170–172]. In [170,171], both feed-forward and
closed-loop controllers are used to increase the dynamic response of the system and
minimize the temperature variation. Moreover, the ambient temperature in addition to
power losses is considered for controlling the cooling system. In [172], by producing a
thermal model and tuning the control system around it, junction temperature can be
adjusted.

3. Switching Frequency Control
In this approach for reducing junction temperature swings and also controlling its
mean and maximum value, the switching frequency of PECs is manipulated. Basically,
switching frequency changes are associated with switching loss change. To smooth
temperature swings, switching frequency should be increased resulting in decreasing
efficiency [123,167,173–176]. However, by using the new generation of power semi-
conductors such as WBG, efficiency reduction will be less in comparison with normal
Si-based semiconductors [177]. Moreover, for controlling mean and maximum value,
switching frequency should be decreased [167,178–181] to reduce losses in the semi-
conductors. However, due to the dependency of passive components on switching
frequency which results in overdesign issues, this approach might not be practical.

4. Modulation Strategy
In [182], by utilizing reactive power circulation between paralleled PECs, temperature
fluctuation can be smoothed. In [183], using the condition monitoring program and
estimating the remaining useful lifetime of the semiconductors, to increase the lifetime,
other paralleled PECs will be requested to process more power. Authors in [184–186],
implemented new space vector modulation strategies in 3-level neutral clamped
PECs to change thermal distribution among power modules and thus manipulate
thermal loading. In [187], via applying carrier-based modulation and redundant
switching states, thermal stress can be reduced while healthy semiconductors will
not experience more stress and pressure. In [188,189], by utilizing discontinuous
modulation (DPWM), switching losses are decreased, and thus, thermal stress can
be controlled. In [190], by switching between space vector pulse width modulation
(SVPWM) and DPWM strategies in addition to manipulating switching frequency,
power dissipation and consequently thermal stress are reduced.

5. Active Gate Drive Control
Controlling gate-drive circuits is one of the hopeful methods for implementing active
thermal control. The goal of this method is modifying conduction and switching
power losses through controlling the turn ON and turn OFF transition and also the
ON-state voltage of MOSFET/ IGBT [191]. In [192], multi-level gate-drive can smooth
junction temperature fluctuation by forcing power semiconductors to work in the
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saturation region. In [177], a two-step gate-driver was proposed which can control
rise/fall time during switching instants in GaN HEMTs. Moreover, it was shown that
the proposed approach has impacts on conduction losses in case the switching transi-
tion exceeds a certain duration. In [193–196], Wang et al. proposed an ATC method
that can impact conduction losses by manipulating gate voltage and consequently
drain-source resistance. However, in low gate voltage, the switch might get damaged
because of a thermal runaway that can limit its applicability in a vast range of gate
voltage. Moreover, in [197], a variable gate voltage methodology was employed to
impact switching losses and smooth junction temperature fluctuations. In [198], by
using a resistor network and switching between them, the ON/OFF switching transi-
tion can be modified according to the output load. In [199], authors could modulate
switching losses via employing adaptive gate-drive in addition to controlling switch-
ing frequency. Adaptive gate drive can be implemented by changing effective gate
resistance. The authors in [200], by using the gate voltage variation method and gate
resistance manipulation instantaneously and also measuring junction temperature
and making a comparison with the reference value, could modify switching losses
and thus control junction temperature variations.

A summary of all low-level control methods for reliability is presented in Table 6.

Table 6. Low-Level Control Methods for Reliability.

TSEP Device Reference

Gate resistance MOSFET/IGBT [201–203]
Threshold voltage MOSFET/IGBT [204–207]

Turn-ON/OFF delay MOSFET/IGBT [208–214]
Rise time MOSFET/IGBT [212–215]

Gate drive peak current MOSFET [216]
Drain-source resistance MOSFET [217–219]

Miller capacitance MOSFET [220]

5.2. System-Level Reliability Oriented Control

In the industry, the OEMs are trying to achieve flexible solutions which are presented
in Table 1. To achieve flexibility, modular structures are used. Therefore, different power
allocation methods are investigated both in the industry and literature. In [221], a review
is presented for both AC/DC and DC/DC stages for series/parallel connected module
power/voltage/current sharing methods. In [222], efficiency-based droop control is pre-
sented. In [223], a resistor-based power-sharing algorithm is presented. While these
methods are well developed and improved in the industry, they are not directly lifetime
oriented. Having a lifetime-oriented control method reduces operational expenditure
which is one of the main optimization criteria during converter sizing [15].

In [224], a reliability-oriented droop control is presented. The consumed lifetime is
calculated using the rainflow counting method. The temperature swing is calculated by
measuring the heatsink temperature and estimating the junction temperature using the
thermal equivalent model of the converter. In [225], a similar approach is used. Consid-
ering a remaining useful life (RUL) power-sharing method, it will utilize the modules
with higher RUL more and hence improve the overall lifetime. However, this also means
an increase in the operational cost of the overall system. In [225], the method presented
in [224] is improved to consider both lifetime and operational costs during power allocation
between modules. In [226], a lifetime-oriented power sharing is applied for electric aircraft
where lifetime and reliability are related to safety. Similar to [224,225] the consumed life
is calculated using the rainflow algorithm. In [224–226], the consumed life is calculated
considering the semiconductor lifetime. However, capacitors are also one of the main ele-
ments resulting in system failure. In [227], the lifetime calculation is made for a solid-state
transformer having parallel connected DAB converters, including the capacitor lifetime.
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Although reliability-oriented power-sharing methods for PECs are discussed, battery
lifetime is just as important. Firstly, in [16], battery SoC and SoH online estimation methods
based on a semi-empirical aging model and sigma-point Kalman filtering are presented. A
method to obtain these semi-empirical aging models is to use accelerated lifetime testing
as in [228]. In [229], the effect of SoC, C-rate, and temperature on the consumed life of
the battery is presented. Moreover, a stochastic model is used to predict capacity loss
accurately with an RMSE smaller than 1%. Therefore, it may not be the most ideal method
to draw/supply the maximum power from/to the local BESS in a DC-fast charger during
EV charging or off states. In [230], a method high-level for improved battery lifetime for
micro-grid applications is presented. According to the authors, the proposed method
increases the battery lifespan from 6.3 years to 9.2 years. The base value is obtained using a
similar approach as in [224–226].

6. Power Electronics and Battery Cooling Methods

In this paper, a review of the design for reliability has been made. There are many
methods to calculate the consumed life in the literature as previously presented in Table 5.
Regardless of which method is used, it is always related to the magnitude and the rate of
change of the semiconductor junction temperature. Moreover, from all equations in Table 5,
a higher lifetime is achieved if the junction temperature is kept low and stable throughout
its operation. Although a lifetime-oriented design will have better cooling, it also means
either/both a larger size and a higher cooling cost. Therefore, especially for applications
where high power demand is made in a short period of time such as DC-fast chargers,
dangerously high junction temperatures may be reached. Similar to power electronics,
batteries also require cooling to improve their lifetime and to avoid thermal runaways that
may result in irreversible events [231].

6.1. Power Electronics Cooling Methods

Regardless of which architecture is selected a DC-fast charger consists of a grid-
connected power filter, AC/DC AFE stage, DC/DC stage, and isolation stage. Therefore,
a power electronics system cooling consists of cooling the power semiconductors, power
inductors [232] and transformers [233,234] and capacitors. In [235], a review of cooling
strategies is made for EV traction inverters. In Figure 12, different methods are listed with
the coolant material phase and the material.

Figure 12. Different cooling methods for PE cooling [235].

In Figure 13, the cooling methods for a few industrial DC-fast charger systems are
presented where the majority of the manufacturers are using liquid cooling methods with
a few using forced air cooling. The advantages/disadvantages of air cooling and liquid
cooling are presented in Table 7. As discussed in the introduction, the number of DC-fast
charging stations will increase in the future and will be distributed. This means the chargers
will be integrated into the urban areas and commercial areas ext, meaning the size of the
overall system is important. Therefore, the manufacturers are choosing liquid cooling
over force air cooling. Moreover, these charging systems are subject to environmental
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conditions where the IP rating becomes important. Liquid cooling allows the removal
of heat from enclosed systems meaning a higher IP rating can be achieved. In addition,
considering the high number of chargers integrated into public spaces, reducing sound
pollution is essential. Finally, a higher efficiency results in lower operational cost and less
heat generation meaning a lower junction temperature oscillation resulting in a higher
reliability and longer lifetime.

Figure 13. Type of cooling used in the commercially available industrial EV DC-fast charger systems.

Table 7. Comparison of air and liquid cooling methods.

Advantages Disadvantages

Air Cooling
• Low cost
• Does not need additional equipment like heat-exchanger, pump,..
• Active control of fans allow control of junction temperature

• Performance depends on the environment.
• Requires CFD analysis for complex systems.
• Can be bulky for high-power applications.
• Harder to achieve high IP ratings due to polluted air.
• High operation noise.
• Fan reliability effects the overall lifetime.

Liquid Cooling

• Higher efficiency
• Heat removal from enclosed system is easier
• Less space and lighter system
• Low operation noise

• Requires CFD analysis for proper channel design
• Required pumps, heat exchanger ext.

6.2. Stationary and EV Battery Cooling Methods

So far, the cooling methods for power electronics were the focus of the discussion.
However, for a DC-fast charger with BESS, the cooling of batteries are just as important
from the point of view of increased lifetime and reliability.

6.2.1. State-of-the-Art Cooling Methods for Local BESS and EV Batteries

Battery energy storage systems (BESS) are an important technology for renewable
energy storage, as they allow excess energy to be stored and used when needed. However,
one challenge with BESS is keeping the batteries at an optimal temperature to ensure
their performance and longevity, particularly in challenging situations such as providing
short-term power.

One of the most common methods for cooling BESS is air cooling, which uses fans
or other mechanical devices to circulate air around the batteries and dissipate heat [236].
This method is relatively simple and inexpensive, but it can be less effective at cooling the
batteries in high ambient temperatures or at high charge/discharge rates.

Another method for cooling BESS is liquid cooling, which uses a liquid coolant to
transfer heat from the batteries to a heat exchanger [237]. This method is more effective at
removing heat from the batteries, but it requires a more complex cooling system and can be
more expensive to implement.

In Figure 14, different configurations for air and liquid cooling for thermal control are
presented [238]. In Table 8, the advantages and disadvantages of both methods are listed.
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Figure 14. Different cooling methods for Battery Thermal Management.

Table 8. Advantages and Disadvantages of Using Air/Liquid for Thermal Control.

Thermal Control Using Air Thermal Control Using Liquid

Advantages

Waste heat released to air
No separate cooling loop
No leakage concern
No electrical short-circuit due to leakage
Simple design and lower cost
Easier to maintain

Pack temperature is more uniform and thermally stable
Good heat transfer capability
Better thermal control
Lower pumping power
Lower volume
Compact design

Disadvantages

Low heat transfer capability
More temperature variation in the pack
Might influence cabin temperature
Potential of venting battery gas to cabin
High blower power
Blower fan noise

Additional components
Higher weight
Liquid conductivity can lead to isolation loss
Leakage potential
Higher maintenance
Higher cost

A relatively newer method for cooling BESS is phase change material (PCM) cooling,
which uses materials that have a high heat capacity and can absorb or release large amounts
of heat without changing temperature [239]. PCM cooling can be more effective at main-
taining a consistent temperature for the batteries, but it requires special PCM materials
and can be challenging to implement in practice. A variation of this includes the use of
phase change slurry (PCS), as a working fluid for cooling. This has the advantage of the
requirement for smaller cooling circuits and associated pumps.

There are several different methods for cooling BESS, each with its own advantages
and disadvantages. Air cooling is simple and inexpensive, but may not be effective at high
temperatures or high charge/discharge rates. Liquid cooling is more effective, but requires
a complex cooling system and can be expensive. PCM cooling can maintain a consistent
temperature, but requires special materials and can be challenging to implement. Further
research and development are needed to improve cooling methods for BESS and optimize
their performance and longevity.

6.2.2. Smart Pre-Conditioning Methods for Battery Charging for Improved Lifetime

Pre-conditioning of battery systems typically includes the pre-heating or pre-cooling of
the battery system such that the charge transfer can be maximized with minimal detrimental
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effects to the batteries in terms of aging and safety [240]. These types of methods can make
use of both of the thermal management circuits of the battery and also include interaction
with other thermal management subsystems (such as that of the climate system) [241]. These
operations can be run prior to the charging process (provided that predictive information is
available), or in parallel with the charging process. Typically the higher C-Rates experienced
by the battery for fast charging can lead to phenomena such as lithium plating (resulting
in the loss of active material within the battery) [242]. This is most prevalent at lower
temperatures and lower SOCs. As such pre-warming of the cells is desirable before fast
charging can occur. Additionally, the high C-Rates over sustained periods can lead to high
cell temperatures. By managing a lower starting temperature, the shorter-term requirement
on the cooling circuit can be minimized. An alternative approach has also been suggested
wherein the coolant is rapidly exchanged during the charging process. This method
allows for the pre-conditioning of the cooling, and the high demand on the vehicle-side
heating/cooling is removed [243].

Several ongoing research areas exist for the pre-conditioning for battery charging for
an improved lifetime. These include:

• The development of advanced algorithms and machine learning techniques for pre-
dicting and optimizing the charging process, in order to minimize stress on the battery
and maximize its capacity and longevity [244].

• The development of improved understanding of the effects of different charging
protocols, such as the constant current/constant voltage (CC/CV) charging, pulse
charging, and others, on the performance and lifetime of the battery [245].

• Studying the interactions between different factors that affect battery charging, such as
temperature, state of charge, and charging rate, in order to develop more sophisticated
models and algorithms for optimizing the charging process [246].

• Testing and evaluating smart pre-conditioning in different battery chemistries and
applications, such as lithium-ion batteries for electric vehicles, stationary energy
storage systems, and portable electronic devices.

• Integrating smart pre-conditioning into commercial battery charging systems, in order
to demonstrate its benefits and potential for real-world applications.

There is considerable potential for further research and development in the area of smart
pre-conditioning for battery charging, and this remains an open area of ongoing research.

7. Conclusions

This study presents a comprehensive examination of the current state-of-the-art ad-
vancements in DC-Fast charging systems that incorporate local battery energy storage
systems (BESS). Previous research has provided a thorough review of general charging
infrastructures for both on-board and off-board applications, standards, and various types
of energy storage systems (ESS) and control methods (Safayatullah, 2022; Khalid, 2021;
Rafi, 2021; Yilmaz, 2013). However, a detailed examination of BESS chemistries, design
for reliability, reliability-oriented low/system-level control, and cooling methods had not
been thoroughly explored in academic literature. This paper conducts a review of various
battery chemistries and compares their cost, size, and lifetime. Additionally, it presents
various low/high-level control strategies, including those for reliability and system-level
reliability-oriented control, which offer OEMs lower OPEX. However, the effectiveness of
these strategies is contingent on the efficiency of the cooling systems. Therefore, this paper
also examines the current trends in power electronics and battery cooling technologies,
including techniques such as pre-conditioning.

As potential areas for future research, this paper suggests investigating advanced
methods for smart charging management strategies, with a focus on minimizing costs
and maximizing the lifetime of the charging system. Additionally, the use of reliability-
oriented design optimization techniques for DC-fast chargers with BESS, considering factors
such as cooling, control, component selection, and sizing, may be of significant interest.
Another potential area of research may be the study of second-life batteries and the practical



Batteries 2023, 9, 121 26 of 36

challenges they present in stationary BESS applications, such as CO2 emissions, safety
concerns, and issues related to battery passports and multiple chemistries. Researchers and
battery manufacturers may also find it beneficial to investigate the development of batteries
that are designed to function effectively during both first-life and second-life operations,
as this has a direct impact on the capital and operational cost. Furthermore, postponing
recycling can reduce emissions, which is a pressing concern for both the present and future.
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Abbreviations
The following abbreviations are used in this manuscript:

AFE Active Front End
APS Asymmetric Phase Shift
ATC Active Thermal Control
BESS Battery Energy Storage System
CAPEX Capital Expenditure
CPC Compensated Proportional Controller
CTE Coefficient of Thermal Expansion
DAB Dual Active Bridge
DBC Direct Bonded Copper
DfR Design for Reliability
DoD Depth of Discharge
DPS Double Phase Shift
DPWM Discontinuous PWM
EMI Electro-Magnetic Interference
EoL End of Life
EPS Extended Phase Shift
ESS Energy Storage System
EV Electric Vehicle
FC Flying Capacitor
G2V Grid to Vehicle
GaN Gallium Nitrate
HEMT High Electron Mobility Transistor
ICEV Internal Combustion Engine Vehicle
LiB Lithium-ion Battery
MPPT Maximum Power Point Tracker
MTBF Mean Time between Failure
MTTF Mean Time to Failure
NPC Neutral Point Clamped
NTC Negative Temperature Coefficient
OEM Original Equipment Manufacturer
OPEX Operational Expenditure
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PCM Phase Change Material
PCS Phase Change Slurry
PEC Power Electronics Converter
PFC Power Factor Corrector
PFM Pulse Frequency Modulation
PHM Prognostics and Health Management
PI Proportional Integral
PLL Phase Locked Loop
RMS Root Mean Square
RUL Remaining Useful Life
SiC Silicon Carbide
SLB Second Life Battery
SMC Sliding Mode Controller
SoC State of Charge
SoH State of Health
SPS Single Phase Shift
SR Synchronous Rectification
SVPWM Space Vector PWM
TDDB Time Dependent Dielectric Breakdown
THD Total Harmonic Distortion
TPS Triple Phase Shift
TSEP Temperature Sensitive Electrical Parameter
V2G Vehicle to Grid
WBG Wide Band Gap
ZCS Zero Current Switching
ZVS Zero Voltage Switching
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