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Abstract: Due to poor electrical conductivity and significant volume change during the lithia-
tion/delithiation process, the application of silica anode materials for lithium-ion batteries is severely
limited. Here, SiO2 nanotubes with a uniform and complete carbon layer were prepared employing
ZnO nanorods as templates. The controllable wall thickness of SiO2 nanotubes is about 11 nm, and
the thinner wall reduces the lithium-ion diffusion distance and boosts performance. The uniform and
complete carbon layer leads to a perfect dispersity of SiO2 nanotubes, enhances the overall electrical
conductivity, and also buffers the mechanical stresses caused by volume change, which helps to
exhibit high specific capacity and a long cycle life. The nanotubular SiO2@C composite reveals a high
discharge specific capacity of about 526.3 mAh g−1 at a current density of 1 A g−1 after 500 cycles
without significant capacity fade. In addition, it demonstrates excellent rate performance, which can
maintain above 420 mAh g−1 even at a current density of 5 A g−1. The strategy may be adopted to
prepare other anode materials as well.

Keywords: lithium-ion batteries; anode materials; SiO2 nanotubes; SiO2@C

1. Introduction

Because of their high power density, extended cycle life, favorable safety, and envi-
ronmental friendliness, lithium-ion batteries (LIBs) have inspired tremendous interest as
energy storage systems for electric vehicles, portable electronic devices, stationary storage,
and so on [1–5]. With the development of technology, LIBs with higher power density,
better cycle stability, and longer service life are required. The anode material is a key part
that determines the electrochemical properties of LIBs. In order to satisfy the increasing
requirement for LIBs with high energy density, many electrochemically active materials
with high theoretical specific capacity have been proposed to replace commercial graphite,
which has a theoretical capacity of only 372 mAh g−1.

Due to high theoretical capacity (1965 mAh g−1), great safety, and rich resources, SiO2
has been considered to be the most promising alternative material for the next generation
of LIBs [6,7]. However, in addition to low electronic conductivity, SiO2 has a significant
volume change during the lithiation/delithiation process, resulting in poor electrochemical
performance [8–11]. It severely restricts the application of SiO2 as an anode material
for LIBs.

Some researchers have used some strategies such as structural design and composite
material design to alleviate the volume expansion and enhance the poor electrical con-
ductivity [12–14]. In terms of structural design, SiO2 anode materials are prepared into
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unique morphologies such as nanospheres [15,16], nanowires [17], nanotubes [18], and
porous structures [19,20] to optimize electronic and lithium-ion (Li+) diffusion channels.
With regard to composite materials design, coating carbon is one of the most popular
methods because of good electrical conductivity and the small volume expansion of car-
bon [21]. Compared to pure SiO2 materials, the SiO2/carbon composite materials show
higher electrical conductivity [22], and the carbon coating layer acts as a buffer medium,
preventing mechanical stress induced by large volume variation, which leads to the for-
mation of stable solid electrolyte interphase (SEI) films and improves the electrochemical
performance [23]. Shi et al. [24] studied silica/carbon nanocomposites with a specific
capacity of 434 mAh g−1 over 50 cycles at a current density of 100 mA g−1 utilizing heat
and acid treatments. Guo et al. [25] demonstrated a hydrothermal-reaction-based silica
nanoparticle/hard carbon composite with a specific capacity of 600 mAh g−1 over 12 cycles.
Wang [26] et al. prepared graphene-coated silica nanotube networks (SiO2-NT/G net-
works), which had good electrochemical performances at a current density of 0.1 A g−1.
Gao [27] et al. prepared MHSiO2@C nanocomposites by chemical polymerization within
the shell of MHSiO2 using polydopamine (PDA) as the carbon source. The continuous
carbon layer improved the electronic conductivity and structural stability of MHSiO2@C.
At a current density of 0.5 mA g−1, the reversible capacity of MHSiO2@C was as high as
440.7 mAh g−1 after 500 cycles.

Due to the high aspect ratio, SiO2 nanotube anode material and electrolytes have a
large contact surface area, which reduces Li+ diffusion length. In addition, the enormous
volume change is alleviated by hollow structures [28]. Therefore, a good electrochemical
performance is demonstrated. The main methods used to prepare SiO2 nanotubes are
CVD [18], electrospinning [29,30], the template method [26,31,32], and so on. Using zinc
oxide as a template, there are few papers on the synthesis of silica nanotubes for anode
materials, as far as we know. Compared to other conventional templates, ZnO is cheap
and simple to synthesize, and it can be easily dissolved in mild acid or base solutions,
thus removal would be simple. Moreover, unfortunately so far the cycle performance of
silica-based anode materials at high current density has been little studied, which is very
important for industrial applications.

In this paper, ZnO nanorods as templates, glucose as carbon sources, and TEOS were
used to prepare nanotubular carbon–coated SiO2 (SiO2@C) composites with controllable
wall thickness by a template method. The composite has an outstanding electrochemical
performance, especially a long cycle life even at high current density. It is reasonable to
assume that SiO2@C composites will meet the requirements of industrial application.

2. Materials and Methods
2.1. Chemicals and Reagents

For the synthesis of SiO2@C composites, the following reagents were used: zinc acetate
((CH3COO)2Zn, AR), potassium hydroxide (KOH, AR), zinc nitrate (Zn(NO3)2·6H2O, AR,
purity ≥99%), hexamethylenetetramine (HMT, AR), anhydrous ethanol (AR), tetraethoxysi-
lane (TEOS), hydrochloric acid (HCl, AR, 38 wt%), ammonium hydroxide (NH3·H2O, AR),
and isopropanol (AR, purity ≥ 99.7%). All above-mentioned chemicals and reagents were
obtained from Shanghai Sinopharm Chemical Reagent Co., Ltd., China. Glucose (AR) was
purchased from TianJin Yongda Chemical Reagent Co., Ltd., China. For the cell assembly,
acetylene black (AR) and sodium alginate (AR) were purchased from Shanghai Macklin
Chemical Reagent Co., Ltd., China. All chemical reagents used in this work were not
further purified.

2.2. Fabrication of Nanotubular SiO2@C Composites

Scheme 1 shows the preparation process of nanotubular SiO2@C composites. First,
zinc oxide nanorods were prepared. Zn(NO3)2·6H2O (8.01 g) and HMT (1.89 g) were mixed
in deionized water (DI water, 400 mL) and dispersed ultrasonically, and the solution was
heated to 60 ◦C. (CH3COO)2Zn (0.54 g) and KOH (0.42 g) were ultrasonically dispersed in
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130 mL and 120 mL of anhydrous ethanol, respectively. Then, (CH3COO)2Zn solution and
KOH solution were mixed thoroughly at room temperature. An amount of 45 mL of mixed
solution was added to the above solution containing Zn(NO3)2·6H2O and HMT, further
heated to 90 ◦C and mechanically stirred for 10 h. ZnO nanorods were prepared after being
filtered and dried.
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ZnO nanorods were added in the mixed solution containing isopropyl alcohol (120 mL),
DI water (16 mL), and NH3·H2O (4 mL). After the solution was mechanically stirred at
room temperature, TEOS (2.4 mL) was added drop-wise. Centrifugation was used to
gather ZnO@SiO2 nanorods, which were then washed and dried. The obtained ZnO@SiO2
nanorods were named as ZnO@SiO2-1, ZnO@SiO2-2, and ZnO@SiO2-3 according to the
reaction times, which were 1 h, 2 h, and 3 h, respectively. ZnO@SiO2 nanorods were added
in 1 M HCl solution to remove the ZnO template, and SiO2 nanotubes were obtained.
The prepared SiO2 nanotubes were named as SiO2-1, SiO2-2, and SiO2-3 according to the
reaction time.

Nanotubular SiO2@C composites were prepared with SiO2 nanotubes as reactants.
SiO2 nanotubes and glucose were added in anhydrous ethanol, stirred for 3 h to dis-
perse well, and dried by stirring in an oil bath at 90 ◦C to obtain SiO2@glucose. Then,
SiO2@glucose was placed in an argon atmosphere and heated up to 800 ◦C for 3 h. Finally,
nanotubular SiO2@C composites were prepared and named as SiO2@C-1, SiO2@C-2, and
SiO2@C-3 according to the different mass ratios (1:1, 1:2, and 1:3, respectively) of SiO2
nanotubes and glucose.

2.3. Characterizations

The crystallographic information of the prepared sample was measured using a pow-
der X-ray diffractometer (XRD, D8 advance, Germany) at a scan speed of 5◦ min−1 in
an angle range of 5–90◦. Transmission electron microscopy (TEM, Tecnai G2 F20, USA)
and scanning electron microscopy (SEM, JEOL 6300/7001, Japan) were applied to check
the morphology of the sample. The carbon content was obtained via thermogravimetric
analysis (TG, TG 209 F1 Libra, Germany) at a rate of 10 ◦C min−1 at a temperature range of
20–800 ◦C. The functional groups of the sample were characterized by Fourier transform
infrared spectroscopy (FTIR, Nicolet iS50, USA). Raman spectroscopy (Raman, LabRAM
HR Evolution, France) was measured to analyze the defect and disordered structure of
carbon in the composite. All samples were excited with 532 nm visible light and tested in
a range of 100–3500 cm−1. The chemical bonding and the chemical state of the prepared
sample were determined by X-ray photoelectron spectroscopy (XPS, K-Alpha Plus, USA)
with an Al Kα radiation source.

2.4. Electrochemical Measurements

By assembling CR2032 coin-type cells in a glove box filled with Ar, electrochemical
analysis was tested. The separator was Celgard 2400 (polypropylene), the anode was
lithium, the binder was sodium alginate, and the conductive agent was acetylene black in
this paper. The electrode slurry was uniformly coated on the copper foil using DI water as a
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solvent, and the copper foil coated with active materials was dried at 110 ◦C for 12 h under
vacuum. The diameter of the prepared electrode was 12 mm and the area loading mass of
the active materials was about 0.26–0.41 mg cm−2. LiPF6 (1 mol L−1) was dissolved into
a mixed solution of ethylene carbonate (EC), diethyl carbonate (DEC), and ethyl methyl
carbonate (EMC) with a volume ratio of 1:1:1, which was used as the electrolyte. By using a
Land battery test system, the charge and discharge tests were executed in a potential range
of 0.01–3.0 V. In a frequency range of 1.0 × 10−2~1.0 × 105 Hz, electrochemical impedance
spectroscopy (EIS) experiments were performed on a CHI660A electrochemical workstation
using fresh coin-type cells. At a scan rate of 0.1 mV s−1, cyclic voltammetry (CV) was
conducted in a potential range of 0.01–3.0 V.

3. Results and Discussion
3.1. Structure and Morphology Analysis

To demonstrate microscopic morphology, SEM and TEM tests were performed.
Figure 1a–c display SEM images of ZnO@SiO2; Figure 1d–f exhibit SEM images of SiO2;
and Figure 1g–i illustrate SEM images of SiO2@C. SEM images demonstrate that SiO2 has
a regular tubular structure with homogeneous morphology, and the removal of the ZnO
template and carbon coating layer has no impact on the shape. There is obviously a perfect
dispersity of SiO2 nanotubes. In addition, the wall thickness of SiO2 nanotubes increases
with the increase in reaction times, which further demonstrates that reaction times can be
changed to regulate the wall thickness of SiO2 nanotubes.
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Figure 1. SEM images of (a) ZnO@SiO2-1, (b) ZnO@ SiO2-2, (c) ZnO@ SiO2-3, (d) SiO2-1, (e) SiO2-2,
(f) SiO2-3, (g) SiO2@C-1, (h) SiO2@C-2, (i) SiO2@C-3.

Figure 2 shows TEM images of SiO2 nanotubes with different reaction times. The
TEM images clearly show that the prepared SiO2 has a uniform tubular morphology and
nanotube walls are all relatively thin [26,32]. As can be observed, the wall thickness of
SiO2 nanotubes is around 11 nm, 23 nm, and 30 nm at reaction times of 1 h, 2 h, and 3 h,
respectively. It illustrates that the wall thickness of SiO2 nanotubes can be adjusted by
controlling the reaction time of hydrolysis and polycondensation of TEOS, and the wall
thickness increases with the reaction time. Therefore, the wall thickness of SiO2 nanotubes
will be further reduced by controlling the reaction time.
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peaks at 2θ = 23◦, indicating that SiO2@C composites and SiO2 are amorphous.
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Raman spectra (Figure 3b) demonstrate the presence of carbon in SiO2@C-3 compos-
ites. The two peaks of SiO2@C-3 composites situated at 1337 cm−1 and 1593 cm−1 are
corresponding to the D−band associated with carbon atoms with dangling bonds and
the G−band associated with the vibration of carbon atoms with sp2 hybridization, respec-
tively [33]. In addition, carbon has a high degree of graphitization, since the strength of the
G-band is greater than that of the D−band [27]. Additionally, SiO2 can be identified by two
peaks at 487 cm−1 and 980 cm−1. In Raman spectra of SiO2@C-3, because the carbon layer
is too thick and the carbon completely coats the SiO2, the Raman information of SiO2 may
not be detected and peaks of SiO2 cannot be observed [27].

To investigate the carbon content, TG tests were performed. Figure 3c displays TG
curves. The weight of the SiO2@C composites sharply drops from 500 ◦C to 600 ◦C, which is
primarily attributed to the gasification of amorphous carbon. Therefore, it can be calculated
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that the carbon contents of SiO2@C-1, SiO2@C-2, and SiO2@C-3 composites are 30.9%,
38.52%, and 50.33%, respectively.

Functional groups of materials were identified to further explore the structure by FT–
IR and are displayed in Figure 3d. In the FT–IR spectrum, the peaks located at 1078 cm−1,
800 cm−1, and 452 cm−1 are corresponding to the asymmetric stretching, symmetric stretch-
ing, and bending vibrations of Si–O–Si [34,35]. Bands at 3433 cm−1 and 948 cm−1 are
corresponding to the O–H and Si–O stretching vibration of Si–OH, respectively [36].

The XPS spectrum proves chemical states of Si, C, and O elements in SiO2@C-3
composites. In Figure 4a, there are characteristic peaks of Si 2p, C 1s, and O 1s, indicating
that the SiO2@C-3 composite is thought to contain Si, C, and O elements. A characteristic
peak corresponding to Si4+ (103.5 eV) can be noticed in Si 2p spectrum (Figure 4b) [37,38],
indicating that the Si element exists in the form of SiO2. The C 1s spectrum can be seen in
Figure 4c, and after being fitted, three peaks occur at 284.1 eV, 285.1 eV, and 288.8 eV. The
three peaks are corresponding to C–C, C–O and C=O bonds, respectively [39].
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3.2. Electrochemical Properties

Figure 5a indicates the cycle performances of SiO2-1, SiO2-2, and SiO2-3 at a current
density of 0.2 A g−1. As shown in Figure 5a, the initial discharge specific capacities of SiO2-
1, SiO2-2, and SiO2-3 are 549.4 mAh g−1, 545.1 mAh g−1, and 504.2 mAh g−1, respectively.
SiO2-1 is superior to SiO2-2 and SiO2-3 in terms of the discharge specific capacity, displaying
a high discharge specific capacity of 381.2 mAh g−1 over 200 cycles. Additionally, SiO2-1 is
more stable than SiO2-2 and SiO2-3 during cycling. It can be seen that the wall thickness
of SiO2 nanotubes decreases with the decrease in reaction times, which shortens the Li+

diffusion distance and leads to better electrochemical performance.
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Figure 5b demonstrates cycle performances of SiO2-1, SiO2-2, and SiO2-3 at a current
density of 1 A g−1. As can be shown, SiO2-1, SiO2-2, and SiO2-3 have initial discharge
specific capacities of 639 mAh g−1, 531 mAh g−1, and 509 mAh g−1, respectively. When
cycled 400 times, discharge specific capacities of SiO2-1, SiO2-2, and SiO2-3 could reach
344.3 mAh g−1, 317.5 mAh g−1, and 263.4 mAh g−1, respectively, with SiO2-1 maintaining
the highest discharge specific capacity. In addition, from the second cycle onward, the
coulombic efficiency of SiO2-1 is consistently above 95%. This demonstrates that SiO2 with
thinner walls performs better electrochemically than SiO2 with thicker walls.

Figure 5c displays rate performances of SiO2-1, SiO2-2, and SiO2-3. Discharge spe-
cific capacities of SiO2-1, SiO2-2, and SiO2-3 are 587.6 mAh g−1, 588 mAh g−1, and
540.7 mAh g−1 at a current density of 0.2 A g−1, respectively. At a current density of
5 A g−1, SiO2-1, SiO2-2, and SiO2-3 have high discharge specific capacities of 171 mAh g−1,
170.8 mAh g−1, and 157.7 mAh g−1, respectively. When the current density returns to
0.2 A g−1, discharge specific capacities of SiO2-1, SiO2-2, and SiO2-3 stay at 310 mAh g−1,
300 mAh g−1, and 288 mAh g−1, respectively. The electrochemical performance of SiO2
with a thinner wall is better due to the fact that the thin wall helps to reduce the Li+

diffusion distance.
Cycle performances of SiO2@C-1, SiO2@C-2, and SiO2@C-3 composites at a current

density of 0.2 A g−1 are displayed in Figure 5d. After 100 cycles, discharge specific capacities
of SiO2@C-1, SiO2@C-2, and SiO2@C-3 are 671.6 mAh g−1, 743.2 mAh g−1, and 743.2 mAh
g−1, respectively. As a whole, SiO2@C-3 has better cycle performance. All composites show
good cycling stability, and SiO2@C composites have substantially higher discharge specific
capacities than SiO2. Therefore, it is evident that carbon coating and nanotubular structure
strengthen the structural stability and improve electrochemical performance.

Cycle performances of SiO2@C-1, SiO2@C-2, and SiO2@C-3 composites at a current
density of 1 A g−1 are presented in Figure 5e. Discharge specific capacities all show a slight
increase after the first few cycles. After 500 cycles, the discharge specific capacity of SiO2@C-
3 (526.3 mAh g−1) is significantly higher than those of SiO2@C-1 (446.4 mAh g−1) and
SiO2@C-2 (508.3 mAh g−1), demonstrating that SiO2@C-3 has a better cycle performance
compared with SiO2@C-1 and SiO2@C-2. In addition, the first coulombic efficiency of
SiO2@C-3 is 50.52%, indicating that an irreversible Li+ embedding process occurs during
charge/discharge, but after the second cycle, the coulombic efficiency of SiO2@C-3 remains
above 95%. The excellent cycle performance is related to its special structure and carbon
coating. The results indicate that the amorphous carbon layer alleviates the volume change,
and significantly enhances the structural integrity and cycle stability of SiO2@C composites
during the lithiation/delithiation process. In addition, the carbon layer has a good electronic
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conductivity, which provides the overall electronic conductivity of SiO2@C. Additionally,
a thicker carbon layer helps to improve the cycling stability, so the SiO2@C-3 composite
shows the best electrochemical performance.

Figure 5f presents rate performances of SiO2@C-1, SiO2@C-2, and SiO2@C-3 compos-
ites at different current densities from 0.2 A g−1 to 5 A g−1. As shown in Figure 5f, the
discharge specific capacities of SiO2@C-1, SiO2@C-2, and SiO2@C-3 are 1342.1 mAh g−1,
1464.2 mAh g−1, and 1683.6 mAh g−1 at a current density of 0.2 A g−1, respectively. When
the current density is up to 5 A g−1, SiO2@C-1, SiO2@C-2, and SiO2@C-3 still have high
discharge specific capacities of 304.2 mAh g−1, 370.4 mAh g−1, and 436.4 mAh g−1. Further-
more, when the current density returns to 0.2 A g−1, discharge specific capacities restore
to 685 mAh g−1, 745.9 mAh g−1, and 870.4 mAh g−1, exhibiting good rate performance.
This further demonstrates that the thin wall thickness of SiO2 can significantly decrease the
Li+ diffusion distance, and that the tubular structure has more space to effectively alleviate
the volume expansion. At the same time, the amorphous carbon layer on the surface not
only buffers the volume expansion during the charge/discharge process and improves
the structural stability of the composite, but also improves the electrical conductivity of
the material.

CV curves of SiO2@C-3 composites are presented in Figure 6a. There are three reduc-
tion peaks at the first CV cycle. In the case of a broad peak situated around 0.7 V, it may be
caused by electrolyte decomposition and the formation of an SEI layer on the surface of the
electrode [40]. In addition, the peak at 1.45 V may result from the reaction between SiO2 and
lithium [41]. These irreversible reactions lead to the formation of the SEI film, and consume
a large amount of Li+, which may lead to a low initial coulombic efficiency and a large
irreversible capacity. These peaks were not observed in the subsequent cycle, indicating
that the SEI film has been almost completely generated [16,42]. The peak around 0 V may
result from the alloying reaction between Si and lithium, which makes a contribution to
lithium storage capacity [43]. It is observed that the oxidation peak appears at 0.2 V in the
first charge process, and it may be assigned to the delithiation of the LixSi alloy [44]. At the
subsequent cycle, CV profiles remain relatively stable, revealing that SiO2@C-3 has high
electrochemical reversibility and good stability during the lithiation/delithiation process.
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Voltage profiles of SiO2@C-3 composites at a current density of 1 A g−1 are given in
Figure 6b, which agree well with the CV measurements. It is shown that an irreversible
lithiation reaction occurs at the first cycle, resulting in low coulombic efficiency. At sub-
sequent cycles, voltage profiles do not change significantly, indicating that a more stable
SEI film has been generated. It further demonstrates the benefit of the carbon layer to
the cycling stability. It can be seen from the figure that the discharge specific capacity of
SiO2@C-3 composites is 539.8 mAh g−1 after 100 cycles.

EIS tests further illustrate how carbon cladding modification improves electrochemical
properties of SiO2. Figure 7a records an equivalent circuit used in the fitting plot, including
Rs, Rct, CPE1, and Ws parameters. Rct is the impedance during charge transfer and
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Ws is partially related to the diffusion of Li+ in electrode materials. Nyquist plots of
SiO2 and SiO2@C are displayed in Figure 7b, which indicate that all plots are made up
of semicircles related to Rct in the mid-high-frequency area and that diagonal lines are
related to Ws in the low-frequency area [27]. In accordance with fitted results, the Rct value
of the SiO2@C-3 electrode (220 Ω) is significantly lower than those of the SiO2 electrode
(279 Ω), SiO2@C-1 electrode (256 Ω), and SiO2@C-2 electrode (241 Ω), suggesting that the
amorphous carbon layer coated on the surface of SiO2 nanotubes can effectively reduce
the Rct value. SiO2@C-3 has the smallest Rct, indicating a faster charge transfer during the
electrochemical reaction [45].
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Our work is compared with peers based on available data. Table 1 provides an
overview of recent investigations on SiO2–based anode materials. Nanotubular SiO2@C is
shown to have a larger discharge specific capacity and better stability. Better electrochemical
properties of nanotubular SiO2@C anode materials may be explained by the synergistic
effect of the tubular structure and carbon layer. In addition, the nanotubular structure with
a wall thickness of only 11 nm reduces the Li+ transport distance, and the hollow structure
provides sufficient space to mitigate the volume expansion of nanotubular SiO2@C anode
materials and improves the structural stability during the charging and discharging process.
The carbon layer can provide additional electronic transport paths to improve electrical
conductivity, and meanwhile acts as a support to relieve the mechanical stress generated
during the lithiation/delithiation process. Beyond doubt, the SiO2@C composite can be
further optimized to enhance properties.

Table 1. Previous works on silica-based anodes in recent years.

Materials Active Material
Loading (mg cm−2)

Current Density
(A g−1)/Capacity
(mAh g−1)/Cycle
Number (n)

Current Density (A
g−1)/Capacity (mAh
g−1)/Cycle Number
(n)

Ref.

SiO2@C composites 0.26–0.41 0.2/759.1/100 1/500/526.3 this work
SNTs@NC - 0.1/781/200 - [32]
SiO2 nanotubes - 0.04/232.5/100 - [46]
SiO2/C@SiO2@CNT 1.0 0.1/644/200 1/5000/242 [47]
SiO2/rGO 1.0 0.2/961/250 1/800/801 [48]
SiO2/C/CNT
composites 0.87 0.05/502.3/100 1/315.7/1000 [49]

4. Conclusions

In this paper, nanotubular SiO2@C composites with controllable wall thicknesses
were synthesized using ZnO nanorods as templates and glucose as carbon sources. The
results reveal homogeneous and complete coating of the carbon layer on the surface of
SiO2 nanotubes. SiO2 nanotubes with thin wall thicknesses alleviate the volume expansion
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during cycling, which helps to avoid particles cracking or even crushing and improves
the electrochemical performance. The carbon layer results in a perfect dispersion between
SiO2 nanotubes, providing a good conductive network for the composite and limiting the
volume change and enhancing the structural stability. In addition, the nanotubular SiO2@C
composites exhibit exceptional performance, with a steady discharge specific capacity of
526.3 mAh g−1 at a current density of 1 A g−1 after 500 cycles. Moreover, they exhibit
excellent rate performances, which maintain a discharge specific capacity of 420 mAh g−1

even at a current density of 5A g−1. This synthesis procedure is straightforward and simple,
and it may also be utilized to prepare various materials.
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