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Abstract: State of charge (SOC) is a very important variable for using batteries safely and reliably. To
improve the accuracy of SOC estimation, a novel variational extended Kalman filter (EKF) technique
based on least square error method is herein provided by establishing a second-order equivalent
circuit model for the battery. It was found that when SOC decreased, resistance polarization occurred
in the electrochemical model, and the parameters in the equivalent RC model varied. To decrease
the modeling error in the equivalent circuit model, the system parameters were identified online
depending on the SOC’s estimated result. Through the SOC-estimation process, the variation theorem
was introduced, which enabled the system parameters to track the real situations based on the
output measured. The experiment results reveal the comparison of the SOC-estimation results
of the variational EKF algorithm, the traditional EKF algorithm, the recursive least square (RLS)
EKF algorithm, and the forgotten factor recursive least square (FFRLS) EKF algorithm based on
different indices, including the mean square error (MSE) and the mean absolute error (MAE). The
variational EKF algorithm provided in this paper has higher estimation accuracy and robustness than
the traditional EKF, which verifies the superiority and effectiveness of the proposed method.

Keywords: extended Kalman filter (EKF); variation theorem; state of charge (SOC); estimation

1. Introduction

In recent decades, with continuous climate change and extreme weather occurrences,
environmental deterioration and the energy crisis have become some of the key problems to
overcome [1]. To deal with such problems, strict policies for regulations of fuel consumption
and CO2 emission have been released throughout the world [2]. Therefore, developing
sustainable clean energy is a global strategic policy. Moreover, the goal of carbon neutrality
has become more and more popular as well [3,4]. Automotive manufacturers are focusing
on developing electric vehicles due to their energy savings and pollution reduction for
the environment, which offers great advantages and is a potential development trend
compared to traditional cars [5,6]. As a conclusion, electric vehicles constitute a major
development direction for automotive technology in the future [7,8]. To ensure that electric
vehicles are utilized safely and reliably, a battery management system (BMS) is required
for real-time battery-state monitoring. In the BMS, state of charge (SOC) is one of the core
parameters to monitor [9]. Thus, obtaining an accurate real-time estimation value of the
SOC is a significant goal for the future development of electric vehicles.

The SOC denotes the remaining capacity percentage of the battery, which is a key
parameter in battery-state-estimation process. Many approaches have been studied by
researchers to estimate the SOC, such as the open-circuit voltage (OCV) approach [10], the
Coulomb counting approach [11], the model-based approach [12,13], and the data-driven
approach [14]. The fundamental principle of the OCV approach depends on the nonlinear
correlation between OCV and SOC, in which OCV is able to be established by a high-order
function of SOC [10]. However, the drawback of this approach is that the lithium-ion
battery must rest for a period of time before OCV measurements can be taken. Compared
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to the OCV approach, the Coulomb counting method is simple in implementation due to
the convenient execution: Researchers only need to integrate the charging and discharging
current of the battery [11]. Nevertheless, the measurement error is difficult to eliminate in
the current integration process. The model-driven method is based on the establishment
of the electrochemical model (EM) and the equivalent circuit model (ECM). It is capable
of describing the internal principle of lithium-ion batteries based on the electrochemical
characteristics in the EM [12]. For the ECM, the model is combined with the resistance,
capacitance, and voltage source so that the dynamic process inside the lithium-ion batteries
is simulated within different forms of the circuit [13]. The model-driven methods are based
on basic theorems of the circuit, and the robustness is exhibited even with imprecise SOC
initialization values and possible measurement noise. However, the model accuracy largely
depends on the underlying battery model. The data-driven method is regarded as a “black
box” mathematical model rather than a practical model [14]. Its results depend greatly on
the quality of the input history data, whether the data are optimally trained, and whether
the hyperparameters are suitably selected.

Considering the robustness of the model-driven methods, the Kalman filter (KF),
which is known as the most common state-estimation technique, is utilized to estimate
the optimal posterior SOC based on ECM [15,16]. Based on the KF framework, the ex-
tended Kalman filter (EKF) linearizes the evolution function and measurement function
with first-order Taylor expansion to estimate the state for a nonlinear system [17]. Sun
et al. proposed a new variational Bayesian (VB)-based adaptive extended Kalman filter
(VBAEKF) for master–slave autonomous underwater vehicles (AUV) to deal with the un-
known state noises and uncertain measurement noises encountered during underwater
cooperative navigation [18]. Duan et al. utilized an improved EKF method with correlated
entropy loss to improve the SOC-estimation accuracy for non-Gaussian cases [19]. Zhu
et al. proposed a fractional-order adaptive extended Kalman filter (FO-AEKF) for SOC
estimation, which can recursively update the noise covariance [20]. In reference [21], Paul
et al. provided an optimized long short-term memory–weighted fading extended Kalman
filtering (LSTM-WFEKF) model with the consideration of a temperature-adaptation model
for SOC estimation, which introduced adaptive weighing and fading factors to correct
and optimize the SOC value for different temperature variations under complex working
conditions. Moreover, the unscented Kalman filter (UKF) based on unscented transform
introduced sigma points that have same mean and variance as the state for nonlinear
estimation [22]. With the help of radial basis function (RBF) networks and square-root UKF
technique, Gholizade-Narm et al. provided a method for estimating the SOC of lithium-ion
batteries [23]. When the nonlinear system is complex, the particle filter (PF) utilizes a large
amount of particles to approximate the probability density function (PDF) of the state with
the aim of estimating the updated state [24]. Accordingly, the UKF and PF have a more
accurate estimation performance, but the implementation is more complex; the EKF is
one of the simplest estimation techniques to be realized in many of the studies mentioned
above, although the estimation is not as precise as other estimation methods in the Kalman
framework. When the modelling parameters are accurate enough, the estimation perfor-
mance of EKF and improved EKF algorithms are precise as well. Accordingly, the variation
idea is proposed to solve the coupling problem of the state’s and system’s uncertainty for
compensation. When the system is more certain, the estimated state is more accurate, and
vice versa. The variation idea is employed in the variational Bayesian estimation, by which
the state and the system parameters are estimated simultaneously by fixing a portion of the
variables within the state and the system parameters [25]. As a consequence, the variation
idea is an iteration process with heavy computational pressure to arrive at an accurate
estimation performance within the Bayesian framework.

In this study, the model was established as a second-order RC model, and the parame-
ters were identified based on the least square error technique. After the parameters were
determined, the variational EKF algorithm was utilized, which optimizes the model accu-
racy and the estimation performance with simultaneous iterations. The main contribution
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of this study is the variational EKF algorithm in the SOC estimation for batteries. With
the determination of the unique characteristics of the RC model in SOC estimation, the
feasibility of the combination for the variation idea and the EKF algorithm is proposed. The
variational EKF algorithm takes the model system parameters’ variations into consideration
and estimates the SOC reasonably. The robustness and non-fragility of the algorithm is
stronger than the traditional EKF algorithm due to the variational iteration.

The remaining sections of this paper are organized as following: Section 2 introduces
the mathematical analysis for the architecture of the equivalent circuit model and the
working principle of the traditional EKF algorithm in the SOC-estimation process. Section 3
proposes the flowchart for SOC estimation and provides the descriptions of the variational
EKF algorithm. Section 4 describes the experimental validation of the study, including the
experimental test platform, the experimental test procedure, the SOC-estimation results,
and the performance comparison for the variational EKF, the traditional EKF, the RLS-EKF,
the FFRLS-EKF algorithms based on the second-order RC models. Section 5 gives the
conclusion of this paper.

2. Mathematical Analysis
2.1. Battery Modelling

In general, the battery can be equivalently modeled as RC combinations. Considering
that the battery-equivalent model is more accurate with more RC and results in heavier
computational pressure, a suitable RC selection can balance the computational efficiency
and estimation accuracy. In Figure 1, the second-order RC model as utilized is shown [26].
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Figure 1. The Second-Order RC Model [26].

In Figure 1, the battery state of charge (SOC) is defined as the ratio of the residual
capacity to the nominal capacity. In practical applications, the most commonly used
method to estimate SOC is the Coulomb counting technique, which accumulates the charge
transferred in or out of the battery to determine the change of the SOC. Thus, the initial
SOC must be precise for SOC estimation in this method. In Equation (1), the SOC at time t
is denoted as follows [27]:

SOC(t) = SOC(t0)−
1

Q0

t∫
t0

η I(t)dt (1)

where SOC(t0) is the SOC value at time t0, Q0 is the nominal capacity, η is the Coulomb
efficiency, and I(t) denotes the time-varying current. Then, with the help of Kirchhoff’s law
of the circuit, the second-order RC model can be obtained by the following Equations (2)–(4):

.
U1(t) = −

1
R1C1

U1(t) +
1

C1
I(t) (2)

.
U2(t) = −

1
R2C2

U2(t) +
1

C2
I(t) (3)
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UL(t) = UOC(t)−U1(t)−U2(t)− R0 I(t) (4)

In Equations (2) and (3), U1(t) and U2(t) denote the terminal voltages of two RC
circuit loops, respectively. UOC(t) is the measured OCV, which establishes the relationship
with SOC by the polynomial of the OCV-SOC fitting curve, as in Figure 2.
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According to the differential Equations (2) and (3), U1(t) and U2(t) are solved. Then,
the discrete state space based on Equations (2)–(4) is proposed as the state space model
system (5). {

x(k + 1) = Ax(k) + Bu(k) + w(k)
y(k) = Cx(k) + Du(k) + UOC(k) + v(k)

(5)

In system (5), the state variable x(k) =
[
SOC(k) U1(k) U2(k)

]T, the input u(k) = I(k),
and the outputs y(k) = UL(k). w(k) and v(k) are the Gaussian system noise, and mea-
surement noise with zero mean and the variance are Q and R, respectively. UOC(k) is the
discrete form of UOC(t). The state space parameters are given as follows:

A =

1 0 0

0 e−
∆t

R1C1 0

0 0 e−
∆t

R2C2

, B =

[
− η

Q0
R1

(
1− e−

∆t
R1C1

)
R2

(
1− e−

∆t
R2C2

)]T
,

C =
[
0 −1 −1

]
and D = R0

where ∆t = 1 is the sampling rate of the discrete system.
In the system (5), the parameters are written as the function of the second-order RC

model parameters R1, C1, R2, C2, and R0 given in Figure 1. These parameters are identified
based on the hybrid pulse power characteristic (HPPC) test of the battery. The time-varying
battery discharge voltage in the HPPC test is given in Figure 3 [26]. In the HPPC test
procedure, the voltage of the battery is 4.2 V in the beginning, which means the battery
SOC is 100% and at full charge. During the HPPC process, the battery is discharged by
a 1 C current for 6 min at 25 ◦C in the discharging step; then, the battery is preserved for
60 min in the preserving step. Therefore, the time range of the measured voltage curve of
the battery is 66 min. The discharging and preserving step in the HPPC test process needs
to be repeated ten times. The battery SOC is reduced by 10% after each repetition. In the
end, the battery SOC is reduced to 0, which means the battery runs out of power.
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To explain in detail, Figure 4 provides a pulse of the HPPC test in Figure 3. In
Figure 4 [26], time A is the beginning of discharging, and time C is the end of discharging.
In the figure, the voltage decreases sharply from time A to time B and the voltage decreasing
speed significantly slows down from time B to time C. Simultaneously, it can be found
that the voltage decreases at time A and increases at time C; time C to time E denotes the
battery preserving time after discharging with zero current I(0) = 0. The voltage increases
rapidly from time C to time D and voltage increasing speed significantly slows down from
time D to time E. Consequently, the internal resistance R0 can be determined by the voltage
variation as follows:

R0 =
(UA −UB) + (UD −UC)

2I
(6)

where UA, UB, UC, and UD are the voltages at times A, B, C, and D in Figure 4, respectively.
The dynamic characteristics of U1(t) and U2(t) of the battery are given as follows:

U1(t) = U1(0)e
− t

R1C1 + IR1

(
1− e−

t
R1C1

)
(7)

U2(t) = U2(0)e
− t

R2C2 + IR2

(
1− e−

t
R2C2

)
(8)

Batteries 2023, 9, x FOR PEER REVIEW 6 of 16 
 

 
Figure 4. Battery discharge voltage in a pulse of the HPPC test [26]. 

1 1 2 2

1 2

1 2

( ) ( ) ( )

(0) (0)

L OC
t t

R C R C
OC

U t U U t U t

U U e U e
− −

= − −

= − −
 (9) 

The curve fitting tool in MATLAB2022a software was utilized to perform custom 
equation fitting of the polarization voltage based on the following equation: 

1 2
0 1 2( ) b t b tf t a a e a e− −= − −  (10) 

Referring to Equations (8) and (9), the parameters can be obtained as follows: 

0OCU a= , 1 1(0)U a= , 1 1
1

1R C
b

= , 2 2(0)U a=  and 2 2
2

1R C
b

=  (11) 

Before time A in Figure 4, the battery has been preserved enough times so that the 
polarization and concentration effect is nearly zero. From time A to time C in Figure 4, the 
battery is discharging with invariable current. With the substitution 0t =  into Equations 
(7) and (8), it is easy to find 1 1(0)U IR=  and 2 2(0)U IR= . Then, the parameters in the sec-
ond-order RC model can be identified as follows: 

1
1

aR
I

= , 1
1 1

IC
a b

= , 2
2

aR
I

=  and 2
2 2

IC
a b

=  (12) 

To determine the relationship between ( )OCU t  and SOC shown in Figure 2, which 
are obtained by the measurement of the battery discharge voltage in the HPPC test from 
Figure 3, the MATLAB curve fitting tool was utilized, and its fitting polynomial is given 
as follows: 

6 5 4

3 2

12.6667 38.7423 40.1910
12.2887 4.1345 3.3490 3.0330

OCU SOC SOC SOC
SOC SOC SOC

= − +

− − + +
 (13) 

From Figure 3, it is obvious that the parameters in the second-order RC model are 
variables with different SOCs based on Equations (6) and (12). Similarly, the fitting poly-
nomial for the second-order RC model parameters can be derived as follows: 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time(s)

3.9

3.95

4

4.05

4.1

4.15

4.2

4.25

A

B

C

D

E

Figure 4. Battery discharge voltage in a pulse of the HPPC test [26].



Batteries 2023, 9, 583 6 of 15

Then, the output based on zero input I(t) = 0 can be written by substituting Equations
(7) and (8) in the state space model (5) through the stabilization process in Figure 4 from
time C to time D as follows:

UL(t) = UOC −U1(t)−U2(t)

= UOC −U1(0)e
− t

R1C1 −U2(0)e
− t

R2C2
(9)

The curve fitting tool in MATLAB2022a software was utilized to perform custom
equation fitting of the polarization voltage based on the following equation:

f (t) = a0 − a1e−b1t − a2e−b2t (10)

Referring to Equations (8) and (9), the parameters can be obtained as follows:

UOC = a0, U1(0) = a1, R1C1 =
1
b1

, U2(0) = a2 and R2C2 =
1
b2

(11)

Before time A in Figure 4, the battery has been preserved enough times so that the po-
larization and concentration effect is nearly zero. From time A to time C in Figure 4,
the battery is discharging with invariable current. With the substitution t = 0 into
Equations (7) and (8), it is easy to find U1(0) = IR1 and U2(0) = IR2. Then, the parameters
in the second-order RC model can be identified as follows:

R1 =
a1

I
, C1 =

I
a1b1

, R2 =
a2

I
and C2 =

I
a2b2

(12)

To determine the relationship between UOC(t) and SOC shown in Figure 2, which
are obtained by the measurement of the battery discharge voltage in the HPPC test from
Figure 3, the MATLAB curve fitting tool was utilized, and its fitting polynomial is given as
follows:

UOC= 12.6667SOC6 − 38.7423SOC5 + 40.1910SOC4

−12.2887SOC3 − 4.1345SOC2 + 3.3490SOC + 3.0330
(13)

From Figure 3, it is obvious that the parameters in the second-order RC model are vari-
ables with different SOCs based on Equations (6) and (12). Similarly, the fitting polynomial
for the second-order RC model parameters can be derived as follows:

R0= 5.5499SOC6 − 24.4678SOC5 + 38.0322SOC4

−25.2196SOC3 + 5.6661SOC2 + 0.9635SOC− 0.3488
(14)

R1= 24.1999SOC6 − 87.3629SOC5 + 125.7313SOC4

−91.9119SOC3 + 35.8142SOC2 − 7.0041SOC + 0.5513
(15)

C1= 7.1098× 105SOC6 − 2.6085× 106SOC5 + 3.7925× 106SOC4

−2.7592× 106SOC3 + 1.0443× 106SOC2 − 1.9416× 105SOC + 1.5661× 104
(16)

R2= −26.6129SOC6 + 104.0744SOC5 − 158.7476SOC4

+118.6184SOC3 − 43.8665SOC2 + 7.0261SOC− 0.2359
(17)

C2= −5.6107× 105SOC6 + 1.5432× 106SOC5 − 1.5337× 106SOC4

+7.0519× 105SOC3 − 2.0315× 105SOC2 + 5.4359× 104SOC + 640.8538
(18)

According to Equations (13)–(18), it is obvious that the parameters A, B, C, and D in
the state space model (5) vary depending on the state variable SOC, which results in the
deficiency of the traditional recursive state-estimation algorithms.
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2.2. Extended Kalman Filter

Previously, in Section 2.1, the system parameters in the state space model (5) were
shown varying depending on the state variable SOC. In this way, it is clear that the system
(5) is nonlinear, and the estimation error of the traditional Kalman filter is unneglectable
because the Kalman filter only determines the best expectation for the estimation based on
the linear system and white Gaussian noise [15]. When it comes to nonlinear systems, the
Kalman filter is unable to provide the optimal estimation result.

In this way, the extended Kalman filter (EKF) is proposed to deal with such estimation
problems in a nonlinear system, which is an improvement of the traditional Kalman filter
algorithm. The EKF algorithm for a discrete system is given as follows:{

x(k + 1) = f (x(k), u(k)) + w(k)
y(k) = g(x(k), u(k)) + v(k)

(19)

where f (x(k), u(k)) and g(x(k), u(k)) are continuously differentiable nonlinear functions
in Equation (19).

The EKF introduces the first-order Taylor expansion for the nonlinearities of x(k),
which is given as follows:{

x(k + 1) = Ã(x(k|k))x(k) + B̃(x(k|k))u(k) + w(k)
y(k) = C̃(x(k|k))x(k) + D̃(x(k|k))u(k) + v(k)

(20)

where x(k|k) is the posterior estimation of state x at time k, and the system parameters are
differentiated as Ã(x(k|k)) = d f

dx

∣∣∣
x=x(k|k)

, B̃(x(k|k)) = d f
du

∣∣∣
x=x(k|k)

, C̃(x(k|k)) = dg
dx

∣∣∣
x=x(k|k)

,

and D̃(x(k|k)) = dg
du

∣∣∣
x=x(k|k)

.

Then, the process of the recursive Traditional EKF algorithm is provided as Algorithm 1
in the following:

Algorithm 1 Traditional EKF Algorithm

Step 1 : Initializing the initial state x(0) and the variance P(0).
Step 2: Predicting the one step prior state prediction and variance.

x(k + 1|k) = f (x(k|k), u(k))
P(k + 1|k) = Ã(k|k)P(k|k)Ã(k|k) + Q

Step 3: Computing the filter gain.
K(k + 1)= P(k + 1|k)C̃T(x(k + 1|k))

×
[
C̃(x(k + 1|k))P(k + 1|k) C̃(x(k + 1|k)) + R

]−1

Step 4: Calculating the one step posterior state estimation and variance
x(k + 1|k + 1) = x(k + 1|k) + K(k + 1)[y(k)− g(x(k), u(k))]

P(k + 1|k + 1) = [I − K(k + 1) C̃(x(k + 1|k))
]

P(k + 1|k)
Step 5: Repeating Step 2 to Step 4.

The traditional EKF algorithm may cause divergence in the filtering process mainly
due to the unreasonable mathematical model. The linearized parameters are derived based
on the Jacobian of the nonlinear function. In this way, it is clear that the model only satisfies
first-order accuracy, which means that once the system’s nonlinearity come to the higher
order, the approximated linearized system is unable to follow the original nonlinear system
well. Therefore, when the estimation result of the EKF algorithm is inaccurate, and the
approximated linearized system is unable to approximate the original nonlinear system,
especially with strong nonlinearity.

3. SOC Estimation Based on Variational Extended Kalman Filter Algorithm

To compensate the drawbacks of EKF as mentioned above, the idea of parameter
variation was introduced. With the introduction of such an idea, the traditional EKF was
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improved by recursive iteration for the linearized parameters depending on the posterior
estimation of SOC, with estimation of the SOC depending on the parameters obtained in
the previous iteration.

In the variational EKF algorithm, the posterior estimation result of the SOC is obtained
based on the EKF algorithm depending on the system parameters determined by the
estimated SOC in the previous iteration. Then, the parameters are determined based on the
updated estimation result of the SOC obtained by Equations (14)–(18). It is clear that the
approximated linearized system is able to arrive at the estimation result, which is close to
the original nonlinear function based on the accurate estimated SOC. With this confirmation,
the system parameters and the SOC estimation result are closer to the true value in every
iteration simultaneously. The variational EKF algorithm is given as Algorithm 2 in the
following.

Algorithm 2 Variational EKF Algorithm

Step 1: Initializing the initial state x(0) and the variance P(0).
Step 2: Figuring out the one step prior to state prediction x(k + 1|k) and variance P(k + 1|k), the
filter gain K(k + 1), and the posterior state estimation x(k + 1|k + 1) and variance P(k + 1|k + 1)
based on traditional EKF algorithm mentioned in Algorithm 1.
Step 3: Computing the system parameters Ã(x(k + 1|k + 1)), B̃(x(k + 1|k + 1)),
C̃(x(k + 1|k + 1)), D̃(x(k + 1|k + 1)) based on Equations (13)–(18) with the introduction of the
posterior state estimation x(k + 1|k + 1).
Step 4: Comparing the difference between the posterior state estimated by step 2 and step 3; if the
difference is small enough, then go to next step; if the difference is large, then send the posterior
state estimation in step 3 to step 2, and repeat step 3;
Step 5: Replacing moment k by moment k + 1 and repeating step 2–4.

With the variational EKF algorithm proposed, the most important highlight is the
variation cycle in each time moment. The variation cycle recursively estimates the posterior
state based on traditional EKF and improves the linearized system parameters depending
on the estimated posterior state. With more accurate linearized system parameters, the
estimation result is closer to the true value, and with an estimation result closer to the
true value, the linearized system parameters provide a more accurate estimation result.
Therefore, the variation cycle is able to help the traditional EKF algorithm to estimate the
posterior state more accurately. For better understanding, a flow chart of this process is
provided in Figure 5 to show the logical order and algorithm flow.
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Furthermore, the most common drawback of traditional EKF is the heavy computa-
tional pressure for the Jacobian matrix computation. As mentioned in [27], the number of
floating operations (flops) required to implement the EKF equations from step 2 to step 4 in
Algorithm 1 at each recursion is given approximately as follows:

CountEKF = 3n3
x +

(
3ny +

5
2

)
n2

x + 3
(

n2
y + ny

)
nx +

2
3

n3
y +

3
2

n2
y +

5
6

ny (21)

From Equation (21), it can be inferred that when the state dimension nx is very large,
direct implementation of the EKF is not possible because of the cubic term 3n3

x due to the
computation of the Jacobian matrix, the prior variance P(k|k− 1), and the inverse matrix
in Kalman gain. Nevertheless, when it comes to the SOC estimation, the Jacobian matrix
computation is not as heavy as other EKF circumstance because all the differentials in the
linearized system parameters are only for the component SOC in the state vector and have
no relationship with other components in the state vector. Simultaneously, the parameter
in the linearized system is a diagonal matrix obtained by the Kirchhoff’s law circuit, which
indicates that the computational pressure of solving the inverse matrix for the Kalman gain
in the EKF algorithm is not as heavy as traditional EKF applications but is approximately
of n2

x order of magnitude. In this way, the computation pressure is tolerable, and the
introduction of the variation idea is possible.

In Section 4, the experiment’s validation results are shown to prove the reliability and
superiority of the variational EKF algorithm. The traditional EKF, the RLS-EKF, and the
FFRLS-EKF are compared for the SOC-estimation process based on five batteries of the
same type.

4. Experimental Validation

The effectiveness of the variational EKF algorithm in SOC estimation was revealed
through the comparative experiments explained in this section. This study utilized the
18650 lithium-ion battery test with a rated capacity of 2.5 Ah as the research object, and the
experimental platform was utilized to set the working conditions by the charge–discharge
instrument in Figure 6 and battery manage system in Figure 7. As shown in Figure 6, the
battery measurement system includes a battery testing system (BTS) and a thermal chamber
from Neware manufacturer (Shenzhen, China). The type of BTS is Neware BTS-4000, which
is carried out battery aging experiments at different charging rates. The type of the thermal
chamber is Neware MHW-200, which is used to control the battery temperatures. Figure 7
shows that the battery aging data are measured by a battery management system in the
Industrial Personal Computer (IPC). The green, red, and orange color blocks in the figure
denote the charging, discharging, and temporary waiting of batteries. In the charging and
discharging process, the hybrid pulse power characteristic (HPPC) test of the battery was
performed to obtain the discharge data and was conducted with a NEWARE BTS-4000 in a
5 V 20 A working condition and at 25 ◦C working temperature. The detailed parameters of
the 18650 battery are given in Table 1.

Five batteries of the same type were tested in the experiment. The tested batteries have
different RC model parameters; nevertheless, the estimation result based on variational
EKF is always better than that based on traditional EKF, the RLS-EKF, and the FFRLS-
EKF, which shows the robustness of the variational EKF algorithm compared to the other
methods. In the RLS-EKF algorithm, the RLS technique is able to derive the real-time
characteristics by recursively updating the system parameters [28]. Compared to the RLS-
EKF, the FFRLS-EKF introduces the forgotten factor to decrease the early date weights,
which makes the updated parameters of the system more reasonable. The initialization of
the tested batteries is given as follows. The true value of SOC at the beginning is 100%,
and the initial parameters of the variational EKF and the comparison EKF algorithms are
x(0) = 95% and P(0) = 10−4. The variance of the system noise and the measurement noise
is Q = 10−4 and R = 10−4, respectively. In the experiment, the SOC is estimated based on
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the RC model and the measured OCV in the HPPC test according to the OCV-SOC fitting
curve obtained in Figure 2.
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Table 1. The parameters of the 18650 battery.

Battery Model LR1865SZ

Nominal capacity 2.5 Ah
Minimum capacity 2.4 Ah
Charging voltage 4.2 V
Nominal voltage 3.0 V

Maximum charging current 1 C (2.4 A)
Maximum discharging current 1 C (2.4 A)

The experimental results for battery No. 1 are provided in Figures 8 and 9. The
estimation comparison of the traditional EKF algorithm, the variational EKF algorithm, the
RLS-EKF, and the FFRLS-EKF is given in Figure 8. From this figure, it is obvious that the
variational EKF estimation result is closer to the true value of SOC compared to the other
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EKF estimation results. With the introduction of the variation technique, the linearized
system parameters are approximated to the nonlinear system parameters. Therefore, the
estimation result is accurate, demonstrating the algorithm’s ability to determine the true
SOC value well even when a signal mutation or measurement error exists. The estimation
error comparison between the EKF algorithms is given in Figure 8. Similarly, the experi-
mental results for batteries No. 2 through No. 5 are given in Figures 10 and 11. Obviously,
the estimation result comparison and the estimation error have a similar tendency with
battery No. 1, and the variational EKF performs better than the other EKF algorithms. The
reason is that the RC model parameters are determined depending on the estimated SOC
but not the true value, and the estimation result gives an inaccurate performance when the
initialization is far from the true SOC or when sudden extreme cases occur in the estimation
process. In these circumstances, the other EKF algorithms’ performance is not as good as
that of the variational EKF due to the parameters’ correction from the variation part. The
detailed experimental testing data are shown in Table 2. The SOC estimation based on
variational EKF algorithm are other EKF algorithms depends on these test data.
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Table 2. The Experimental Testing Data of Batteries.

Battery No. Initial Voltage
(V)

Discharge
Current (mA)

Discharge
Capacity (mAh)

Discharge
Energy (mWh)

No. 1 4.1238 2352.4 2337.614 9083.854
No. 2 4.1319 2379.7 2362.726 9173.627
No. 3 4.1282 2367.3 2361.838 9174.183
No. 4 4.1378 2328.8 2317.366 9001.016
No. 5 4.1307 2346.2 2336.890 9065.465
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To make the experimental results more persuasive, the estimation results were tested
based on simulations with different random noise sequences with the help of a Monte
Carlo (MC) simulation algorithm. Each battery was simulated 100 times for the random
noise in different sequences. In this way, the estimation error of the variational EKF was
proven to still be significantly less than that of the other EKF algorithms. To demonstrate
the superiority of the variational EKF algorithm, the mean absolute error (MAE) and the
mean square error (MSE) of several EKF algorithms for batteries No. 1 through No. 5
during 100 simulations are given in Table 3 to prove the effectiveness and the reliability of
the variational EKF algorithm.

Table 3. Performance index comparison between the variational EKF and other EKF algorithms.

Battery No. Algorithm MAE MSE

No. 1

Variational EKF 0.0357 0.0021
Traditional EKF 0.0262 0.0037

RLS-EKF 0.0779 0.0081
FFRLS-EKF 0.0482 0.0047

No. 2

Variational EKF 0.0448 0.0025
Traditional EKF 0.0425 0.0097

RLS-EKF 0.0702 0.0075
FFRLS-EKF 0.0455 0.0047

No. 3

Variational EKF 0.0343 0.0019
Traditional EKF 0.0421 0.0062

RLS-EKF 0.0505 0.0038
FFRLS-EKF 0.0467 0.0032

No. 4

Variational EKF 0.0453 0.0057
Traditional EKF 0.0720 0.0237

RLS-EKF 0.0683 0.0079
FFRLS-EKF 0.0455 0.0062

No. 5

Variational EKF 0.0298 0.0012
Traditional EKF 0.0733 0.0263

RLS-EKF 0.0990 0.0128
FFRLS-EKF 0.0454 0.0042

In detail, it is easily observed that the estimation error of all the EKF algorithms has
a spike at the end of every discharge step. This phenomenon occurs mainly owing to the
mismatch between the model prediction and OCV measurement results. If the model is
accurate enough, the estimation results of EKF algorithm will be accurate as well. All the
EKF algorithms gradually converge to the true value of SOC in the preserving step. At
the high-SOC part, the traditional EKF algorithm performs better than the variational EKF,
which is shown in Table 3. However, when it comes to low-SOC part, the performance
of the traditional EKF algorithm decreases sharply. The reason is that the modeling error
is unable to be ignored during the RC model parameter identification process. When
the model parameters are not accurate at low-SOC part, the EKF is unable to determine
an accurate posterior estimation result. Nevertheless, the variational EKF algorithm has
better performance at the low-SOC part, which results from the recursive parameter and
estimation result iteration by the variational theorem. In Figures 8 and 10, the variational
EKF algorithm performs much better than other EKF algorithms. The performance indices
provided in Table 3 show that the variational EKF has the lowest MSE for all the batteries
and the lowest MAE for batteries No. 3 through No. 5. The traditional EKF algorithm
has a lower MAE than the variational EKF algorithm in batteries No. 1 and No. 2. This
result depends on the RC model accuracy by which the traditional EKF is able to track the
SOC well at the high-SOC part. At the low-SOC part, the model’s accuracy reduction is
not significant enough, and the SOC-estimation error is averaged by the good performance
at the high-SOC part. The MSE magnifies the estimation error comparison, especially
at the low-SOC part. Therefore, even though the traditional EKF algorithm has a lower
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MAE in some cases, the variational EKF algorithm is robust for most battery cases, and the
superiority and the effectiveness are extremely obvious.

5. Conclusions

In this paper, a variational EKF algorithm is provided to estimate the SOC of lithium-
ion batteries. Firstly, the input battery datasets were modeled as a second-order RC model
based on the least square error curve fitting technique. Secondly, the SOC estimation was
obtained by the variational EKF and other EKF algorithms based on the second-order RC
model, respectively. With the introduction of the variational theorem, the estimation result
of the improved EKF algorithm was more accurate than that of the other EKF algorithms.
The result provides low noise and good error-correction ability. The variational EKF
algorithm estimated the SOC for battery No. 1 with the overall best MAE, with MSE values
of 0.0355 and 0.0019 under the HPPC working condition, respectively, which manifests the
superiority and reliability of the variational EKF algorithm. However, the initialization
value of the variational EKF algorithm still affects the estimation accuracy. Therefore, in
future work, we will focus on reducing the effectiveness of the imprecise initialization value.
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