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Abstract: The limitations of existing commercial indirect liquid cooling have drawn attention to direct
liquid cooling for battery thermal management in next-generation electric vehicles. To commercialize
direct liquid cooling for battery thermal management, an extensive database reflecting performance
and operating parameters needs to be established. The development of prediction models could
generate this reference database to design an effective cooling system with the least experimental
effort. In the present work, artificial neural network (ANN) modeling is demonstrated to predict the
thermal and electrical performances of batteries with direct oil cooling based on various operating
conditions. The experiments are conducted on an 18650 battery module with direct oil cooling to
generate the learning data for the development of neural network models. The neural network models
are developed considering oil temperature, oil flow rate, and discharge rate as the input operating
conditions and maximum temperature, temperature difference, heat transfer coefficient, and voltage
as the output thermal and electrical performances. The proposed neural network models comprise
two algorithms, the Levenberg–Marquardt (LM) training variant with the Tangential-Sigmoidal
(Tan-Sig) transfer function and that with the Logarithmic-Sigmoidal (Log-Sig) transfer function. The
ANN_LM-Tan algorithm with a structure of 3-10-10-4 shows accurate prediction of thermal and
electrical performances under all operating conditions compared to the ANN_LM-Log algorithm
with the same structure. The maximum prediction errors for the ANN_LM-Tan and ANN_LM-Log
algorithms are restricted within ±0.97% and ±4.81%, respectively, considering all input and output
parameters. The ANN_LM-Tan algorithm is suggested to accurately predict the thermal and electrical
performances of batteries with direct oil cooling based on a maximum determination coefficient (R2)
and variance coefficient (COV) of 0.99 and 1.65, respectively.

Keywords: artificial neural network; battery; direct oil cooling; electrical performance; electric vehicle;
thermal performance

1. Introduction

The excessive consumption of fossil fuels by internal combustion engine vehicles is
causing a rapid increase in greenhouse gas emissions, including environmental contam-
inates of carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), sulfur
dioxide (SO2), and particulate matter (PM) [1]. To assure a low carbon future, the govern-
ments of various countries have passed regulations on emissions, for example, the United
States has issued the “1990 Clean Air Act”, European countries have implemented the “Low
Emission Zone Program”, and Japan has recirculated the “2007 NOx and PM Law” [2].
Furthermore, the European Commission has introduced the package “Fit for 55” to reduce
greenhouse gas emissions up to 55% by 2030 [3]. In global greenhouse gas emissions, the
transportation sector is the second largest contributor [4]. Therefore, the current transporta-
tion sector is undergoing a drastic change of replacing internal combustion engine vehicles

Batteries 2023, 9, 559. https://doi.org/10.3390/batteries9110559 https://www.mdpi.com/journal/batteries

https://doi.org/10.3390/batteries9110559
https://doi.org/10.3390/batteries9110559
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/batteries
https://www.mdpi.com
https://orcid.org/0000-0001-8857-4444
https://doi.org/10.3390/batteries9110559
https://www.mdpi.com/journal/batteries
https://www.mdpi.com/article/10.3390/batteries9110559?type=check_update&version=2


Batteries 2023, 9, 559 2 of 19

with electric vehicles to achieve a carbon-free and energy-sustainable future [5,6]. Electric
vehicles offer several benefits, such as a safe and clean environment and improved safety
and human health [7,8]. In addition, the ecological benefits of electric vehicles could be
extended by charging their batteries from renewable energy sources [9].

Electric vehicles are provided with batteries as the main energy storage system on
board the vehicle, the energy densities of which are continuously increasing to improve
the performance of electric vehicles [10,11]. The battery temperature should be maintained
within a range of 20 ◦C to 45 ◦C to ensure safe and efficient operations [12,13]. However,
the increasing energy densities result in higher heat generation, thus degrading the per-
formance and operational life of batteries [14]. Furthermore, the excessive heat generation
during high charging/discharging operations results in thermal runaway and explosion in
batteries [15,16]. Therefore, an advanced cooling technique should enable effective thermal
management of batteries, which could improve their efficiency and life span and thus the
safety and performance of electric vehicles.

Air cooling and indirect liquid cooling are commercially adopted for the thermal
management of electric vehicle batteries [17]. The cooling performance of air cooling is
poor and indirect liquid cooling imposes high thermal resistance owing to the existence of
cooling channels/plates, which reduces its cooling performance for high power density
batteries [18,19]. To overcome the limitations of the existing cooling strategies, research
has been initiated to find next-generation thermal management techniques for batteries.
Direct liquid cooling diminishes the thermal resistance by enabling direct contact between
batteries and the dielectric cooling fluid, hence improving the cooling performance [20,21].
In the last few years, numerous research studies have reported on direct liquid cooling as
an emerging battery thermal management technique. Li et al. restricted the temperature of
18650 batteries within 34 ◦C and 34.5 ◦C at 4C and 7C discharge rates, respectively, using
SF33 coolant-based direct liquid cooling [22]. Patil et al. employed immersion cooling
to maintain the maximum temperature of a battery pack within 28 ◦C at a 3C discharge
rate and 10 L/min flow rate [23]. Sundin et al. proposed single-phase immersion cooling,
which maintained the battery temperature within 30 ◦C at a 2C discharge rate, and Zhou
et al. further demonstrated that the thermal runaway of batteries was suppressed using
two-phase immersion cooling [24,25]. Dubey et al. showed improvements in maximum
temperature and pumping power for 21700 batteries with Novec 7500-based direct cooling
compared to that with water/glycol-based indirect cooling [26].

In recent years, machine learning is gaining popularity to predict and optimize the
performance of physical systems based on various influential variables compared to other
prediction approaches. Furthermore, ANN models are widely adopted to replicate the
behaviors of specific systems/devices under several conditions owing to the benefits of
faster response, minimal error, and least complex mathematical manipulation [27,28]. Nu-
merous studies have confirmed the potential of neural network models to accurately predict
the performance of batteries. Panchal et al. proposed a neural network model to predict
the thermal and electrical characteristics of batteries under real driving conditions [29].
Furthermore, Wang et al. also predicted the thermal and electrical characteristics of lithium-
ion batteries using a coupled thermal-equivalent circuit model integrated with a neural
network [30]. Feng et al. predicted the voltage and temperature of batteries using a neu-
ral network model under several conditions of current and temperature [31]. Xie et al.
developed a back-propagation-based neural network model to estimate battery internal
resistance and battery temperature [32]. Arora et al. proposed a neural network model with
battery heat generation as the output parameter and battery nominal capacity as the input
parameter [33]. Liu et al. developed an ANN model with the structure of 1-30-1 to predict
the surface temperature of batteries and pressure drop [34]. Jaliliantabar et al. predicted
the battery temperature for input conditions of phase change material with and without
paraffin/graphene composite, phase change material thickness, time, and discharge rate
using a neural network model with an accuracy of 0.99 and mean square error of 0.0173 [35].
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The open literature reveals that significant research has reported on direct liquid
cooling for next-generation battery thermal management. However, the reported research
is not sufficient to commercialize direct liquid cooling and there is scope to extend the
research to prove its reliability for battery thermal management. The development of a
final-stage direct liquid cooling system for batteries needs extensive efforts in terms of
prototype fabrication, testing, and optimization, which are time consuming and expensive.
In this scenario, accurately trained neural network models could effectively replicate
the performance behavior of a cooling system under actual operating conditions with
comparatively less effort. However, there is no concrete research that elaborates neural
network modeling for batteries with a direct liquid cooling system. Therefore, in the
present study, ANN models based on experimental data are developed to predict the
thermal and electrical performances of batteries with direct oil cooling. Two combinations
of an algorithm, namely ANN_LM-Tan and ANN_LM-Log, are developed to predict
the maximum temperature, temperature difference, heat transfer coefficient, and voltage,
considering operating conditions of oil temperature, oil flow rate, and discharge rate. The
ANN model with the best algorithm is suggested to accurately replicate the performance
data of batteries with direct oil cooling under several operating conditions.

2. Experimental Method
2.1. Experimental Set-Up Description

The experimental set-up of the 18650 battery module with direct oil cooling is depicted
in Figure 1. The considered batteries are INR18650 MJ1 3.5 Ah, comprising silicone-graphite
as the anode material and NMC-811 as the cathode material and outsourced from LG Chem
Ltd. (Seoul, South Korea). The battery module is composed of 16 cylindrical cells with
a 4-series and 4-parallel configuration. The specifications of the selected battery cells are
presented in Table 1. The battery module is contained within an acryl box, which is filled
with dielectric thermal oil manufactured by Shell company. The thermophysical properties
of the selected dielectric thermal oil are presented in Table 2 [20]. The oil is distributed
around the battery cells through inlet and outlet ports, located at the center on opposite
faces of the acryl box. Sixteen T-type thermocouples with a range of −200 ◦C to 400 ◦C
are used to measure the temperature of the battery module. A thermocouple is attached
at the center of each battery cell, considering a negligible temperature difference over the
battery cell surface. Li et al. observed that there was no significant difference in battery
temperature over its various surface locations [22]. Pt-100 temperature sensors with a
range of 0 ◦C to 850 ◦C are provided at the inlet and outlet of the acryl box to measure
the temperature of the oil. A peristaltic pump with a range of 0.4 mL/min to 2.2 L/min is
used to circulate the oil in the acryl box. The heated oil from the battery module is cooled
using a 30 L chiller with range of −25 ◦C to 80 ◦C. The terminals of the battery module are
connected to the 1.2 kW DC electronic loader (TOYOTECH TLF1200, Incheon, South Korea)
with a voltage range of 1 V to 150 V and current range of 0 A to 240 A. The electronic loader
is used to discharge the battery module at constant current mode, considering different
discharge rates ranging from 1C to 4C. The battery module is discharged until the voltage is
cut off and rested for 2 h. The fully discharged battery module is charged using a DC power
supply with a voltage range of 0 V to 30 V and current range of 0 A to 10 A, considering a
charging rate of 0.5C. The battery module is charged in constant current mode with 7 A
until it reaches 16.8 V, and then the battery module is maintained at constant voltage mode
until the current approaches to 0.2 A. The fully charged battery is rested for 2 h. The battery
management unit with passive cell balancing is employed. Furthermore, the rest time after
full discharging and charging operations ensures cell balancing of the battery module. All
measuring devices are connected to a GL840 data logger to monitor and record the data.
The temperature and voltage data of the battery module with direct oil cooling are recorded
at each second over the discharge period of battery. The temperature difference and heat
transfer coefficient are calculated corresponding to the measured data. The measured and
calculated data of the battery module with direct oil cooling are evaluated considering
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four oil flow rate conditions of 0.4 L/min, 0.6 L/min, 0.8 L/min, and 1.0 L/min, four oil
temperature conditions of 15 ◦C, 20 ◦C, 30 ◦C, and 35 ◦C, and four discharge rates of 1C,
2C, 3C, and 4C. These measured and calculated data under several operating conditions
are employed to develop the ANN models. The sample of the experimental data used for
neural network modeling is depicted in Figure 2. The experimental set-up is housed within
a chamber with temperature and humidity ranges of −30 ◦C to 60 ◦C and 30% to 95%,
respectively; therefore, the ambient temperature during all experiments is controlled at
25 ◦C.
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Table 1. Specifications of the selected battery cells.

Specification Value

Nominal capacity (Ah) 3.5
Nominal voltage (V) 3.653

Max voltage (V) 4.2
Discharge cut-off voltage (V) 2.5
Standard charge current (A) 1.7

Standard charge cut-off current (A) 0.050

Table 2. Thermophysical properties of dielectric thermal oil.

Property Value

Density (kg/m3) 810
Thermal conductivity (W/m-K) 0.14

Specific heat (J/kg-K) 2100
Viscosity (cSt) 19.4

2.2. Experimental Parameters and Uncertainty Analysis

Uncertainty analysis was conducted on the experimental parameters to consider the
accuracies of the experimental devices and errors owing to probe position, calibration,
and measurement [36,37]. The accuracies labeled with the T-type thermocouples, Pt-100
temperature sensors, DC loader, data logger, and pump were ±0.5%, ±0.25%, ±0.1%,
±0.1%, and ±0.2%, respectively. The uncertainties in various experimental parameters
were evaluated using Equation (1) [38]:

UR =

[(
∂R
∂X1

U1

)2
+

(
∂R
∂X2

U2

)2
+ · · ·+

(
∂R

∂Xn
Un

)2
] 1

2

(1)
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Here, R is the dependent experimental parameter and UR is the uncertainty in the
dependent experimental parameter, whereas X1, X2, . . . Xn are independent experimental
parameters, and U1, U2, . . . Un are the uncertainties in the independent experimental pa-
rameters. The uncertainties in measured temperature, voltage, and heat transfer coefficient
were evaluated as 3.13%, 1.29%, and 6.45%, respectively.

The temperature difference of the battery module was calculated as follows [39]:

∆T = Tmax, battery − Tmin,battery (2)

Here, Tmax, battery and Tmin,battery are the maximum and minimum temperatures of the
battery module, respectively.

The heat transfer coefficient for the battery module with direct oil cooling was calcu-
lated as follows [40]:

h =
Qconvection, oil

Abattery

(
Tmean,battery − Tmean,oil

) (3)

The convective heat transfer from the battery module to the oil was calculated as
follows [40]:

Qconvection,oil =
.

moilCp,oil(Toutlet, oil − Tinlet,oil) (4)

Here, Abattery is the surface area of the battery module, Tmean,battery is the mean tem-
perature of the battery module, Tmean,oil is the mean temperature of the oil,

.
moil is the mass
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flow rate of the oil, Cp,oil is the specific heat of the oil, and Toutlet, oil and Tinlet,oil are outlet
and inlet temperatures of the oil, respectively.

3. Artificial Neural Network Modeling

The non-linear and complex relationship between various performances and influ-
ential factors can be effectively mapped with the least computational time using neural
network models. The ANN mimics the biological neural structure, which relates larger
datasets of various parameters for any physical system [41]. The neural network involves
the integration of the neurons in respective layers of input, output and hidden [42]. The
input and output parameters decide the number of neurons in respective layers, whereas
the numbers of hidden layers and neurons in hidden layers are considered based on the
optimized training error [43]. The weights are the connection link between each layer of
neurons. Various combinations of algorithms with transfer functions and training variants
are employed to train the neural network [44]. The effective mapping pattern between
input and output datasets is established by adjusting the weights while neural network
training [45].

In the present work, ANN was modeled to predict the thermal and electrical perfor-
mances of batteries for direct oil cooling considering different operating conditions. The
developed ANN model comprised oil temperature, oil flow rate, and battery discharge rate
as input neurons in the input layer. And the discharge voltage, maximum temperature,
temperature difference, and heat transfer coefficient were included as output neurons in the
output layer. The input conditions of oil temperature, oil flow rate, and discharge rate were
varied in the ranges of 15 ◦C to 35 ◦C, 0.4 L/min to 1.0 L/min, and 1C to 4C, respectively,
for neural network modeling. After trying several combinations, the number of hidden
layers was adjusted to 2, each with 10 hidden neurons to achieve the minimum error and
computational time. Hence, the structure of the proposed ANN model was presented by 3-
10-10-4, as depicted in Figure 3. The neural network was trained using a back-propagation
algorithm comprising of two combinations of the LM training variant, that with transfer
functions of the Tan-Sig and the Log-Sig. MATLAB R2018a software was used for neural
network modeling considering the aforementioned parameters and algorithms.
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The predicted output from the developed ANN model was expressed as follows [46]:

Yi = G
(

Ai + UTYi−1
)

(5)

Here, Y is the predicted output, G indicates the transfer function, A and U present the
connection and weight matrixes, respectively, and i stands for the layer number.

The mathematical expressions for the considered Tan-Sig and Log-Sig transfer func-
tions are as follows [41,46]:

f (Y) =
1 − e−Y

1 + e−Y (6)

f (Y) =
1

1 + e−Y (7)

To evaluate the accuracy of the predicted results from the ANN model, three statistical
parameters, the coefficient of determination (R2), variance coefficient (COV), and mean
square error (MSE), were calculated using Equations (8)–(10) [47]:

R2 = 1 −
∑n

i=1
(
Ypre,i − Ymea,i)

2

∑n
i=1(Ymea,i)2 (8)

COV =

√
∑n

i=1(Ypre,i−Ymea,i)2

n∣∣Ymea
∣∣ × 100 (9)

MSE =
1
n∑n

i=1

(
Yi − Y)2 (10)

Here, Ypre,i is the predicted value at ith data point, Ymea,i is the measured value at ith
data point, Ymea is the average value of measured data points, and n indicates the maximum
data points.

The experimental data of the considered input and output parameters were evaluated
over the discharge period of the batteries at each second. A time series of experimental
data was considered to develop the ANN models. The 1000 data points comprising
four performances (output parameters) were evaluated corresponding to three operating
conditions (input parameters). Thus, the neural network models were developed for input
and output parameters comprising 1000 experimental data points. The total dataset of
1000 data points was divided into three subgroup proportions of 60%, 20%, and 20%,
corresponding to training, validation, and testing, respectively. Based on the considered
data, the deducted training, validation, and testing errors for the developed ANN model
with two algorithms are presented in Figure 4. It should be noted that the input parameter
values were fixed; however, the output parameter values were predicted in form of time
series over the discharge period of the batteries. And from the predicted results in form of
time series, the thermal performance was compared at the end of discharge and electrical
performance was compared at the same discharge capacity, considering the variations in
various influential factors.
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4. Results and Discussion

The thermal and electrical performances of batteries with direct oil cooling are eval-
uated and discussed in this section for various operating conditions. Furthermore, the
ANN models with two combinations of the algorithm are compared to predict the battery
performance under similar operating conditions. The thermal performance under various
conditions is elaborated in Section 4.1, followed by Section 4.2 with a discussion of the
electrical performance under various conditions, and Section 4.3 presents a replication of
the thermal and electric performances by the best ANN algorithm with the experimental
results under various discharge capacities.

4.1. Thermal Performance

The maximum temperature, temperature difference, and heat transfer coefficient were
evaluated and predicted as the thermal performance of the batteries under various oil
temperatures, oil flow rates, and discharge rates. The thermal performance of the batteries
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in terms of maximum temperature, temperature difference, and heat transfer coefficient
was predicted in form of time series over the discharge period of the batteries, considering
variations in oil temperature, oil flow rate, and discharge rate. However, for comparison,
the predicted and experimental results of thermal performance at the end of discharge
are presented.

4.1.1. Maximum Temperature

The variation in experimental and predicted maximum temperatures of the batteries
with change in oil temperature is presented in Figure 5. The difference in temperature
between battery and oil decides the rate of dissipated heat generated in the battery. The
heat transfer rate is superior when the difference in temperatures between the two sources
is high. Therefore, the heat transfer rate from battery module to oil was maximum when
oil at a lower temperature contacted the battery surface. The maximum temperature of the
batteries increased from 44.6 ◦C to 64.3 ◦C when the oil temperature rose from 15 ◦C to 35 ◦C.
Accurate training with lower prediction error in the case of the ANN_LM-Tan algorithm
resulted in closer agreement between predicted and experimental maximum temperatures.
The maximum temperature increased from 44.32 ◦C to 63.76 ◦C and 43.23 ◦C to 61.69 ◦C
for the ANN_LM-Tan and ANN_LM-Log algorithms, respectively, with an increase in the
oil temperature from 15 ◦C to 35 ◦C, which indicated corresponding maximum prediction
errors of 0.94% and 4.05%.
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The experimental and predicted maximum temperatures of the batteries decreased
with an increase in oil flow rate, as shown in Figure 6. The convective heat transfer from
the battery module to the oil improved as the oil flow rate increased owing to the increase
in local obstruction of flowing oil around the battery cells. The predicted maximum
temperatures by the ANN_LM-Tan and ANN_LM-Log algorithms followed the same trend
as the experimental maximum temperature variation with oil flow rate, corresponding to
maximum errors of 0.97% and 4.30%. The experimental results and the ANN_LM-Tan and
ANN_LM-Log algorithms showed decreases in maximum temperature from 63.40 ◦C to
45.20 ◦C, 63.91 ◦C to 45.46 ◦C, and 65.73 ◦C to 46.91 ◦C, respectively, with an increase in oil
flow rate from 0.4 L/min to 1.0 L/min.
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The maximum temperature was predicted for the two algorithms and compared with
experimental results under various discharge rates, as shown in Figure 7. The batteries
generated a larger amount of heat during the high discharge rates; hence, for the same direct
oil cooling conditions, the maximum temperature of the batteries increased with an increase
in discharge rate. With an increase in discharge rate from 1C to 4C, the experimental
results and the ANN_LM-Tan- and ANN_LM-Log-predicted maximum temperatures
showed increases from 32.40 ◦C to 60.20 ◦C, 32.69 ◦C to 60.68 ◦C, and 33.51 ◦C to 62.18 ◦C,
respectively. It can be observed that the predicted maximum temperature by the ANN_LM-
Tan algorithm showed closer agreement with the experimental maximum temperature
compared to the ANN_LM-Log algorithm, with corresponding maximum errors of 0.89%
and 4.20%.
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4.1.2. Temperature Difference

The difference between the maximum and minimum temperatures of the battery
module improved with a decrease in oil temperature and increase in oil flow rate. As
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explained, the lower oil temperature and high oil flow rate improved the heat transfer
rate between battery module and oil, which resulted in a lower temperature difference. In
addition, similar to the maximum temperature, the temperature difference also increased
as the discharge rate increased owing to an increase in battery heat generation under the
same cooling conditions. Figures 8–10 show the variations in experimental and predicted
temperature differences with changes in oil temperature, oil flow rate, and discharge rate,
respectively. The temperature difference increased from 6.9 ◦C to 17.3 ◦C and 3 ◦C to
16.8 ◦C with an increase in oil temperature from 15 ◦C to 35 ◦C and increase in discharge
rate from 1C to 4C, respectively. However, the temperature difference dropped from
16.7 ◦C to 7.3 ◦C with an increase in flow rate from 0.4 L/min and 1.0 L/min. In the
case of temperature difference, the ANN_LM-Tan algorithm also had high prediction
accuracy with the experimental results compared to the ANN_LM-Log algorithm for all
oil temperatures, oil flow rates, and discharge rates. The maximum errors between the
predicted and experimental temperature differences were 0.95% and 4.29% in the case
of oil temperature, 0.96% and 4.86% in the case of oil flow rate, and 0.81% and 3.52%
in the case of discharge rate, corresponding to the ANN_LM-Tan and ANN_LM-Log
algorithms, respectively.
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4.1.3. Heat Transfer Coefficient

To assess the effectiveness of direct oil cooling for the battery module, the heat transfer
coefficient was evaluated under various conditions of oil temperature, oil flow rate, and
discharge rate, as shown in Figures 11–13. The convective heat transfer between batteries
and oil improved when the oil temperature decreased and oil flow rate increased. There-
fore, the lower battery temperature at the lower oil temperature and higher oil flow rate
indicated a maximum heat transfer coefficient. The maximum heat transfer coefficients
of 3908.83 W/m2-K and 2374.92 W/m2-K were evaluated corresponding to 15 ◦C oil tem-
perature and 1.0 L/min oil flow rate, respectively. There was no significant difference
in heat transfer coefficient with change in discharge rate; however, the higher discharge
rate enabled the opportunity for increased convective heat transfer from battery to oil
owing to higher heat generation compared to the lower discharge rate. The maximum
heat transfer coefficient of 2741.22 W/m2-K was observed at a discharge rate of 4C. Closer
agreement between the actual and predicted heat transfer coefficients was observed for the
ANN_LM-Tan algorithm under conditions of oil temperature, oil flow rate, and discharge
rate with corresponding lowest maximum errors of 0.93%, 0.94%, and 0.79%, respectively.
The highest maximum errors of 4.14%, 4.73%, and 4.17% were observed between ANN_LM-
Log-predicted and actual heat transfer coefficients in the case of oil temperature, oil flow
rate, and discharge rate, respectively.

4.2. Electrical Performance

The discharge voltage was evaluated and predicted using the ANN model as the
electrical performance of the batteries under various conditions of oil temperature, oil flow
rate, and discharge rate. The voltage results were predicted in the form of time series over
the discharge period of the batteries for changes in influential factors. However, it should
be noted that the voltage at the end of discharge was the same; hence, to compare the
experimental and predicted results of voltage under variations of oil temperature, oil flow
rate, and discharge rate, the voltage results were considered at the same discharge capacity.

Voltage

The effect of oil temperature on the voltage of batteries is depicted in Figure 14. The
presented voltage results are compared at the same discharge capacity. The operating
temperature of a battery affects the electrochemical characteristics of the battery; therefore,
a change in oil temperature has a significant impact on the voltage of a battery during
the discharge condition. The lower oil temperature showed a decreased voltage value,
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which increased as the oil temperature increased because the lower oil temperature had
a higher heat transfer rate from the batteries, which raised the internal resistance of the
batteries. A drop in surrounding temperature results in the enhancement of ohmic resis-
tance, which degrades the voltage of a battery [48]. In addition, Lu et al. claimed that
the ionic conductivities of the SEI layer, electrode, and electrolyte were minimum at low
temperature, which generates a decreasing voltage trend for the battery [49]. The voltage
of the batteries dropped from 12.181 V to 10.996 V when the oil temperature decreased
from 35 ◦C to 15 ◦C. Furthermore, the predicted voltages from the ANN model with two
algorithms are compared to the experimental results under various oil temperatures in
Figure 14. The overall error combining training, validation, and testing was higher in
the case of the ANN_LM-Log algorithm compared to the ANN_LM-Tan algorithm, as
presented in Figure 4. Therefore, the voltage predicted by the ANN_LM-Tan algorithm
showed closer agreement with the experimental voltage at all oil temperatures compared
to that by the ANN_LM-Log algorithm. The maximum errors between the experimental
and predicted voltages by the ANN_LM-Tan and ANN_LM-Log algorithms were 0.88%
and 4.81%, respectively.
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The effect of oil flow rate on experimental voltage and predicted voltage using both
algorithms is depicted in Figure 15. An increase in oil flow rate indicates an improvement
in battery cooling performance, which means the internal resistance of the battery increases
with an increase in oil flow rate and thus a decrease in battery voltage during the discharge
condition. Tong et al. also observed that the voltage of batteries dropped owing to a rise in
the internal resistance of batteries when the battery cooling rate improved [50]. Therefore,
the experimental and predicted voltage results showed a decreasing trend with an increase
in oil flow rate. The voltage dropped from 11.113 V to 10.725 V with an increase in oil flow
rate from 0.4 L/min to 1.0 L/min. The prediction accuracy for the ANN_LM-Tan algorithm
was higher compared to the ANN_LM-Log algorithm with experimental voltages at each
oil flow rate. The maximum prediction errors for the ANN_LM-Tan and ANN_LM-Log
algorithms were 0.62% and 3.43%, respectively.
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The comparison of experimental and predicted voltages for different discharge condi-
tions is shown in Figure 16. The voltage dropped rapidly as the discharge rate increased;
therefore, at the same discharge capacity, the lower and higher discharge rates showed
maximum and minimum voltages. The voltage dropped from 13.553 V to 10.725 V with
an increase in discharge rate from 1C to 4C. The predicted voltages for both algorithms
showed the same decreasing trend as the experimental voltage with the rise in discharge
rate. However, the ANN_LM-Tan algorithm was found to be an accurate model to predict
closer voltages with corresponding experimental values compared to the ANN_LM-Log
algorithm. Considering all discharge rates, the maximum errors between the predicted
voltages by the ANN_LM-Tan and ANN_LM-Log algorithms with the experimental voltage
were 0.57% and 3.79%, respectively. As explained, the experimental and predicted results
of the voltage were compared at the same discharge capacity of 8.136 Ah.
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4.3. Accuracy of Proposed ANN Model

The ANN_LM-Tan algorithm depicted accurate predictions of all thermal and electrical
performances under several conditions of oil temperature, oil flow rate, and discharge
rate compared to the ANN_LM-Log algorithm. Therefore, the ANN_LM-Tan algorithm is
suggested to replicate the various performances of battery modules with direct oil cooling
under real operating conditions. Furthermore, to assure the accuracy and reliability of the
suggested ANN model, the maximum temperature and voltage were predicted as thermal
and electrical performances with change in discharge capacity and compared with the
corresponding experimental results. The variations in experimental and ANN_LM-Tan-
predicted maximum temperature and voltage with discharge capacity are presented in
Figure 17. This comparison is presented for an oil temperature of 30 ◦C, oil flow rate of
1.0 L/min, and discharge rate of 4C. For each condition of discharge capacity, the proposed
ANN model depicted accurate replications of maximum temperature and voltage compared
to the experimental data. The statistical parameters were calculated for the comparison,
as presented in Figure 17, to quantify the accuracy of the predicted thermal and electrical
performances. The calculated R2 and COV were 0.9998 and 1.55, respectively, in the case of
maximum temperature, and 0.9997 and 1.66, respectively, in the case of voltage, indicating
the reliability of the proposed ANN model to accurately mimic the actual condition data.
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The development of an accurate neural network model enables replication of the
performance of a battery with direct oil cooling under realistic operating conditions with
minimal errors. The proposed neural network model could be used to generate a database
relating the influential parameters and performance of batteries with direct oil cooling.
Thus, several efforts in the development of prototypes could be minimized to fabricate a
final-stage direct oil cooling system using the generated comprehensive reference database.

5. Conclusions

The thermal and electrical performances of a battery module with direct oil cool-
ing were experimentally evaluated and predicted using neural network models under
several operating conditions. The following key findings are listed from the conducted
present work.
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(a) The thermal performance in terms of maximum temperature, temperature difference,
and heat transfer coefficient improves with a decrease in oil temperature. The lower
maximum temperature and temperature difference of 44.6 ◦C and 6.9 ◦C, respectively,
and higher heat transfer coefficient of 3908.83 W/m2-K were evaluated at a lower oil
inlet temperature of 15 ◦C. The electrical performance in terms of voltage drops with
a decrease in oil temperature, such that oil temperatures of 15 ◦C and 35 ◦C showed
voltages of 10.996 V and 12.181 V, respectively.

(b) An increase in oil flow rate reduces the maximum temperature, temperature difference,
and voltage, whereas the heat transfer coefficient is enhanced. With an increase in
oil flow rate from 0.4 L/min to 1.0 L/min, drops of 18.2 ◦C, 9.4 ◦C, and 0.388 V and
an improvement of 1602.78 W/m2-K were observed in the maximum temperature,
temperature difference, voltage, and heat transfer coefficient, respectively.

(c) The maximum temperature and temperature difference increased by 27.8 ◦C and
13.8 ◦C, respectively, and the voltage dropped by 2.828 V with an increment in dis-
charge rate from 1C to 4C. The maximum heat transfer coefficient of 2741.22 W/m2-K
was evaluated at a higher discharge rate of 4C.

(d) The ANN_LM-Tan and ANN_LM-Log algorithms showed maximum errors of 0.97%
and 4.30% in the case of maximum temperature, 0.96% and 4.86% in the case of
temperature difference, 0.94% and 4.73% in the case of heat transfer coefficient, and
0.88% and 4.81% in the case of voltage, respectively, considering all conditions of
oil temperature, oil flow rate, and discharge rate. The prediction accuracy of the
ANN_LM-Tan algorithm was superior compared to the ANN_LM-Log algorithm for
all thermal and electrical performances under the considered operating conditions.

(e) The ANN_LM-Tan algorithm is recommended as the best neural network model to
generate data of thermal and electrical performances under influential conditions for
batteries with direct oil cooling. The reliability of the best neural network model was
further established by predicting the maximum temperature and voltage for various
discharge capacities, reflecting a maximum R2 and COV of 0.99 and 1.66, respectively.

(f) The proposed prediction model and prediction database could guide mapping the
relationship between operating conditions and performance, which could be utilized
to design and fabricate a direct liquid cooling system for high energy density batteries
in electric vehicles. In future, tests will be conducted to develop prediction models
for a battery module with direct oil cooling under fast charging and discharging
conditions to assure the safety and reliability of the proposed next-generation battery
thermal management technique.
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