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Abstract: Lithium batteries have recently attracted significant attention as highly promising energy
storage devices within the secondary battery industry. However, it is important to note that they
may pose safety risks, including the potential for explosions during use. Therefore, achieving stable
and safe utilization of these batteries necessitates accurate state-of-charge (SOC) estimation. In this
study, we propose a hybrid model combining temporal convolutional network (TCN) and eXtreme
gradient boosting (XGBoost) to investigate the nonlinear and evolving characteristics of batteries. The
primary goal is to enhance SOC estimation performance by leveraging TCN’s long-effective memory
capabilities and XGBoost’s robust generalization abilities. We conducted experiments using datasets
from NASA, Oxford, and a vehicle simulator to validate the model’s performance. Additionally,
we compared the performance of our model with that of a multilayer neural network, long short-
term memory, gated recurrent unit, XGBoost, and TCN. The experimental results confirm that our
proposed TCN–XGBoost hybrid model outperforms the other models in SOC estimation across
all datasets.
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1. Introduction

Lithium batteries have recently attracted considerable attention as the most promising
energy storage devices in the secondary battery industry because of their high energy
density, long service life, low memory effect, and low self-discharge rate [1,2]. Lithium-ion
batteries are widely employed in various fields, including mobile devices, electric vehicles,
and energy storage systems. However, these batteries have potential safety risks. In
particular, concerns arise owing to their potential to harm human life and damage properties
in cases where these batteries explode during usage. The safety problems associated
with lithium-ion batteries can be attributed to various factors, with the primary causes
being the following [3,4]: (1) battery explosions resulting from overheating; (2) battery
explosions caused by overcharging and overdischarging; and (3) battery explosions due to
physical damage. Herein, we propose a model for accurately estimating the state of charge
(SOC) of batteries to proactively prevent battery explosions caused by overcharging and
overdischarging [5–8]. The state of charge (SOC) of a battery is not a directly measurable
parameter; it is defined as the percentage of available capacity remaining in relation
to the nominal capacity. Therefore, SOC must be indirectly estimated using an SOC
estimation algorithm based on battery parameters obtained from sensor measurements.
However, accurately estimating the battery SOC is challenging due to the nonlinear nature
of lithium battery parameters and their susceptibility to change based on the operating
environment [9,10].

In recent times, numerous researchers have been engaged in exploring SOC estimation
methods. These methods can be broadly categorized into three main types: model-based,
data-driven, and coulomb counting methods [11]. Model-based methods are known for
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their robustness and high accuracy, primarily because they are built upon a comprehensive
understanding of the system. However, they can face practical and theoretical challenges
in creating a flawless model for the target system. On the other hand, data-driven methods
do not necessitate practitioners to possess in-depth, specific knowledge of the target system
since they rely on data analysis. Nevertheless, they do demand a substantial volume of
data for reliable performance. Coulomb counting methods entail measuring a battery’s
discharge current and integrating it over time to estimate the current capacity of the battery.
In Table 1, we present a summary outlining the advancements and limitations of these
three methodological approaches.

Table 1. Advantages and disadvantages of model-based, data-driven, and Coulomb counting methods.

Method Advancements Limitations Exemplary Model

Model-based
[12,13]

1. Reliability and precision
2. Broad applicability

1. Demands substantial
domain expertise
2. Involves a protracted
development period

1. Equivalent circuit model
2. Electrochemical model
3. Kalman filter

Data-driven
[14–21]

1. Rapid development time
2. Minimal need for
specialized knowledge

1. Demands a significant
volume of data

1. Neural network
2. Deep learning
3. Look-up table

Coulomb counting
[22,23] Easy to implement Accumulation of errors occurs

over time Coulomb counting

In the table, the equivalent circuit model provides an abstract representation of a
lithium battery by combining parameters such as resistance, capacitance, and inductance.
However, due to its reliance on electrical characteristics, this model falls short of fully
elucidating the battery’s internal reactions [24]. In the case of the open-circuit voltage
(OCV)–SOC model, SOC estimation relies on modeling SOC based on the battery’s OCV.
While this approach is known for its ease of implementation and accuracy, it remains
susceptible to uncertainties stemming from factors such as temperature, aging, and driving
cycles [25]. In the Coulomb counting model, battery current capacity is estimated using
a cumulative current integration method. Although this approach is straightforward to
implement, prolonged use may result in the accumulation of measurement errors, leading
to a subsequent decrease in accuracy [26]. Within the context of the Kalman filter, it
becomes possible to learn and estimate the nonlinear characteristics of a battery in real-
time. However, as the predicted state variable increases, computational complexity grows,
which in turn extends the calculation times [27]. In the case of neural networks and deep
learning models, they acquire knowledge of the relationship between a battery’s capacity
and its parameters by analyzing measurements taken directly from the battery. The primary
challenge encountered by these models is the accurate capture of the battery’s aging process
through the extraction of valuable features from the measured signals [28].

This paper proposes a hybrid estimation method using a temporal convolutional net-
work (TCN) and eXtreme gradient boosting (XGBoost). TCNs and XGBoost are formidable
algorithms in the domains of time-series data processing and prediction, respectively, with
TCNs excelling at capturing temporal dependencies and XGBoost known for its ability
to enhance prediction accuracy. By combining these two algorithms, this study aims to
maximize the use of the time-series characteristics of battery data while improving the
accuracy of the prediction model. TCNs are primarily employed for extracting temporal
patterns, whereas XGBoost serves as a high-performance prediction model. TCNs effi-
ciently extract essential time-series features from input data and, by transmitting these
features to the XGBoost model, allow for the separation of feature extraction and prediction.
This separation facilitates model interpretability and adjustment. The main contributions
of this study are as follows:
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1. In the TCN part, the long-effective memory feature enables the learning of sequential
battery parameters. Additionally, it facilitates the extraction of battery parameter
features, enabling the model to learn the changing characteristics of batteries.

2. An information layer is employed to interface the TCN part with the XGBoost part.
The information layer determines how much past information from the output of the
TCN part to incorporate and transforms the output values into a one-dimensional
(1D) sequence data format.

3. The output of the information layer is used as the input of XGBoost. XGBoost involves
learning using a boosting algorithm, and it contributes to reducing errors in the SOC
estimated through a strong generalization model. This is confirmed through the
experimental results.

The remainder of the paper is organized as follows: Section 2 describes the proposed
TCN-XGBoost hybrid model. Section 3 presents the analysis of the experimental results
using battery data from NASA, Oxford, and vehicle simulator datasets. Section 4 provides
the conclusions.

2. Proposed Lithium Battery SOC Estimation Algorithm Using the TCN-XGBoost
Hybrid Model
2.1. TCN

TCN is a neural network architecture designed for processing time-series data. TCN
offers notable advantages, particularly when dealing with sequence data that present
challenges to traditional architectures, such as recurrent neural networks. The key char-
acteristics of TCN can be summarized as follows [29,30]. First, TCN employs causal
convolution, which ensures that information from the future is not leaked into the past.
This design choice is crucial for time-series data, as it restricts the model to using only past
time steps for predictions. In addition, TCN leverages dilated convolutions, allowing it
to capture information from a wide range of input positions effectively. This enables the
model to learn long-term dependencies and detect extended patterns within sequence data.
Finally, TCN is known for its efficiency, offering a lighter model compared to architectures
like WaveNet. Achieving this efficiency involves the removal of some connections and
gate activations.

The TCN receives the input (x0, . . ., xt) and predicts the output (y0, . . ., yt) correspond-
ing to each time. The key constraint is that to predict the output yt for some time t, only the
present and past inputs are used.

The sequence modeling network is shown through the following equation:

ŷ0, ..., ŷt = f (x0 , ..., xt ). (1)

The TCN operates based on two key principles: (1) the network generates outputs
of the same length as the input, and (2) it maintains a causal characteristic that prevents
information leakage from the future to the past. In practical terms, this means that during
the convolution operation, the output at time step t is convolved with elements from both
time step t and the previous time step.

In order to meet the first characteristic, the TCN utilizes a 1D fully convolutional
network (FCN), where the output hidden layer matches the length of the input hidden
layer. To achieve this consistency, zero padding is applied using the kernel size −1 to retain
the same length as the preceding layer. To satisfy the second causal characteristic, the TCN
uses a causal convolution operation in which the convolution operation at the time t only
comprises the time t of the previous layer and the time points before it. In other words,
TCN = 1D FCN + causal convolutions.

The basic design of the TCN, comprising only FCN and causal conventions, has the
disadvantage of using a very deep network or a large filter size to obtain a long-effective
history in a long sequence. A dilated convolution is added to solve this problem.

Dilated convolution refers to a method of minimizing the amount of computation
while increasing the receptive field. In simple convolution, deep layers are limited in
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creating large receptive fields, making it difficult to deal with sequence data affected
in the distant past. On the contrary, dilated convolution makes it possible to increase
exponentially according to the depth of the layer. More formally, for a 1D sequence input
x ∈ Rn and a filter f : {0, . . . , k− 1} → R , dilated convolution is defined as follows:

F(s) = (x ∗ d f )(s) =
k−1

∑
i=0

f (i)·xs−d·i, (2)

where s is the sequence, d is the dilation factor, and k is the filter size. In the context of
convolution, s − d . . . i indicates shifting the filter by s − d . . . i units for each element s of
the input sequence. This effectively indicates that dilation is akin to inserting a fixed length
between adjacent filter elements. When d = 1, it corresponds to standard convolution,
while increasing d allows for representing a considerably broader range of the input. The
receptive field of the TCN can be extended by increasing the filter size k and the dilation
factor d or by extending the network depth. In the TCN, the dilation factor d exponentially
increases with the layer depth. This is illustrated in Figure 1.

Batteries 2023, 9, x FOR PEER REVIEW 4 of 22 
 

The basic design of the TCN, comprising only FCN and causal conventions, has the 
disadvantage of using a very deep network or a large filter size to obtain a long-effective 
history in a long sequence. A dilated convolution is added to solve this problem. 

Dilated convolution refers to a method of minimizing the amount of computation 
while increasing the receptive field. In simple convolution, deep layers are limited in cre-
ating large receptive fields, making it difficult to deal with sequence data affected in the 
distant past. On the contrary, dilated convolution makes it possible to increase exponen-
tially according to the depth of the layer. More formally, for a 1D sequence input 𝑥 ∈ ℝ  
and a filter 𝑓: {0, … , 𝑘 − 1} → ℝ, dilated convolution is defined as follows: 𝐹(𝑠) = 𝑥 ∗ 𝑓 (𝑠) =  ∑ 𝑓(𝑖) ∙ 𝑥 ∙ , (2) 

where 𝑠 is the sequence, 𝑑 is the dilation factor, and 𝑘 is the filter size. In the context of 
convolution, 𝑠 − 𝑑 · 𝑖 indicates shifting the filter by 𝑠 − 𝑑 · 𝑖 units for each element 𝑠 of the 
input sequence. This effectively indicates that dilation is akin to inserting a fixed length 
between adjacent filter elements. When 𝑑 = 1, it corresponds to standard convolution, 
while increasing 𝑑 allows for representing a considerably broader range of the input. The 
receptive field of the TCN can be extended by increasing the filter size 𝑘 and the dilation 
factor 𝑑 or by extending the network depth. In the TCN, the dilation factor 𝑑 exponen-
tially increases with the layer depth. This is illustrated in Figure 1. 

 
Figure 1. Dilated causal convolution. 

A residual connection is applied to every layer for stable training of the deep layers 
of the TCN. Figure 2 presents the residual block. The residual block includes dilated con-
volution layers with the same dilation factor 𝑑, ReLU, and dropout. At this time, the chan-
nel width of the input and the output may be different, so 1 × 1 convolution is applied to 
the input to match the channel width. The output of the residual block is shown in the 
following equation: 𝑜 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑥 + 𝐹(𝑥)). (3)

Figure 1. Dilated causal convolution.

A residual connection is applied to every layer for stable training of the deep layers
of the TCN. Figure 2 presents the residual block. The residual block includes dilated
convolution layers with the same dilation factor d, ReLU, and dropout. At this time, the
channel width of the input and the output may be different, so 1 × 1 convolution is applied
to the input to match the channel width. The output of the residual block is shown in the
following equation:

o = Activation(x + F(x)). (3)

2.2. XGBoost

XGBoost is a decision tree-based ensemble machine learning algorithm that uses the
gradient boosting framework. Gradient boosting is a supervised learning algorithm that
uses a gradient to sequentially fit new models that compensate for the weaknesses of
previous models and then linearly combine them to generate models. However, gradient
boosting can cause overfitting when there is noise. XGBoost adds the parameters γ and λ

to prevent the overfitting problem of gradient boosting [31,32].
XGBoost uses advanced regularization to improve its model generalization capability.

Herein, the characteristics of XGBoost were combined with the TCN output.
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XGBoost uses a classification and regression tree (CART) model. CART represents one
value, where each node represents each dataset. The XGBoost algorithm is as follows. First,
the initial model is set as a constant, as shown in the following equation:

ŷi = φ(oi) =
K

∑
k=1

fk(oi), f k ∈ F , (4)

where F is the space of the regression trees, K is the number of CARTs, yi is the predicted
value of oi, and oi is the output of the TCN layer. The objective function for training each
CART model is shown in the following equation:

obj(θ) = ∑n
i l(yi, ŷi) + ∑K

k=1 Ω( fk), (5)

where the left term represents the training loss, which is the difference between the actual
and predicted values, while the right term serves as a regularization term to control the
complexity of the tree model and prevent overfitting. l(yi, ŷi) is the objective function
calculated from the target value yi and the predicted value ŷi, and Ω is the normalization
function of the model to prevent overfitting. The parameters to be learned are the structure
of each tree and the scores of the leaf nodes, represented as θ = f1, f2,. . ., fk.

In Equation (5), f contains the structure of the tree and the predicted value of the
node. It is impossible to train all the trees at once. XGBoost adds a model that predicts
unexpected parts in all steps at each step. The new objective function (e.g., at step t) takes
the form of an expansion represented by Taylor’s theorem, generally including up to the
second order, as follows:

obj(t) = ∑n
i=1

[
gi ft(oi) +

1
2

hi ft
2(oi) + Ω( ft)

]
, (6)

where gi and hi are the primary and secondary partial differential values, respectively. The
model complexity of XGBoost is shown in the following equation:

obj(t) = ∑n
i=1 Ω( f ) = γT +

1
2

λ∑T
j=1 ω2

j, (7)



Batteries 2023, 9, 544 6 of 21

where ω represents a vector for node scores and T represents the number of nodes. γT
represents the number of leaves, adjusting the complexity of the model in relation to its
accuracy. 1

2 λ∑T
j=1 ω2

j is the L2 norm function of the leaf scores.

2.3. Proposed TCN-XGBoost Hybrid Model

The SOC of lithium batteries changes under the influence of their characteristics, degra-
dation, and operating environment. To improve the SOC estimation accuracy, considering
internal and external factors, the estimation model must model the important characteristics
of the battery parameters. Therefore, we designed a TCN-XGBoost hybrid model.

This hybrid model was designed to accurately estimate the SOC by receiving the inter-
nal parameters of a battery as sequence data from the TCN, extracting the characteristics of
the data, and increasing the generalization performance by inputting the characteristics of
the data into XGBoost. The structure of the proposed model is presented in Figure 3.
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The battery parameters used as input to the proposed model using the NASA and
Oxford datasets were discharge voltage, current, operation time, and temperature, while
those using the vehicle simulator dataset were the discharge voltage of each cell, current,
battery pack voltage, operation time, and temperature. The information layer transforms
the output values of TCN into an input form for XGBoost. In the information layer, o1, . . .,
on represents the output values of TCN containing past information.

This model progresses through data preprocessing, feature extraction, past informa-
tion usage, and generalization. Data preprocessing involves processing the dataset to
standardize it and transform it into the appropriate format for input. Feature extraction
uses residual blocks with dilated causal convolutions in TCN to extract features from the
data using information from both the past and present, thereby creating long-effective
memory features. To transmit the information from both past and present data from the
output of TCN to the input of XGBoost, an information layer is defined. The information
layer is responsible for configuring the number of input parameters when passing the
output of the TCN to the XGBoost model and converting the 2D output of the TCN into
a 1D format suitable for XGBoost input. The reason for configuring the number of input
parameters is to enhance the prediction accuracy of XGBoost using the current input, in-
cluding past information, as the input for XGBoost. In other words, if the information layer
has two nodes, on−2, on−1, and on are used as input to XGBoost when making predictions.
Through the boosting algorithm, XGBoost sequentially trains multiple weak learners. By
assigning weights to incorrectly predicted data and iteratively updating these weights,
the weak learners are progressively strengthened, culminating in the formation of a final
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predictor, resulting in a more generalized and robust model. Subsequently, XGBoost esti-
mates the SOC and outputs the result. Generalization involves transmitting the data from
the information layer to XGBoost. Subsequently, XGBoost estimates the SOC and outputs
the result.

Our battery SOC estimation process based on the proposed model is as follows:

1. To use the battery data as input to the proposed model, the data were set in sequence.
Voltage, current, temperature, and operation time were used as input parameters.

2. The input data were used as the input for TCN, and the output of TCN was obtained
using the dilated convolution operation in Equation (2) and the activation function in
Equation (3). Herein, the ReLU function was used as the activation function.

3. The information layer determines how much past information from the output of
TCN to use. For instance, if n pieces of past information are chosen, the sequential
data o1, o2, . . ., on−1, on are used as inputs for the subsequent XGBoost model.

4. The information layer transfers the data to XGBoost, and XGBoost ultimately estimates
the SOC based on Equation (7).

3. Experiments and Results

In this study, the proposed model’s performance was evaluated through training on
datasets from NASA, Oxford, and a vehicle simulator. The training was conducted on
a computer equipped with a The AMD Ryzen 5600X processor from the United States,
California, an The NVIDIA RTX 3070 graphics card from the United States, California, and
16 GB of RAM, using Python 3.6, TensorFlow 2.2, and the Keras library.

In the conducted experiments, a multilayer neural network (MNN) [33], long short-
term memory (LSTM) [34], a gated recurrent unit (GRU) [35], XGBoost, and a temporal
convolutional network (TCN) were employed to assess their performance in comparison to
the proposed hybrid TCN-XGBoost model. The hyperparameters for each model used in
the experiments are provided in Table 2.

For the TCN model in Table 2, nb_filter is the number of filters to use in the con-
volutional layers, kernal_size is the size of the kernel to use in each convolutional layer,
nb_stack is the number of stacks of residual blocks to use, dilations is a dilation list,
padding is the padding to use in the convolution, “causal” means a causal network, and
use_skip_connections is the setting to add skip connections from the input to each resid-
ual block.

In the XGBoost model, ‘n_estimators’ represents the number of gradient-boosted
trees, ‘max_depth’ is the maximum tree depth for base learners, ‘gamma’ signifies the
minimum loss reduction required to initiate an additional partition on a leaf node of
the tree, ‘reg_alpha’ and ‘reg_lambda’ denote L1 and L2 regularization terms applied to
weights, and ‘subsample’ stands for the subsample ratio of the training instances.

The experiments used battery data provided by the NASA Ames Research Center
and Oxford. NASA’s battery dataset includes periodic charge and discharge cycles using
lithium-ion 18650 batteries. These experiments yielded information on temperature, load
voltage, current, and time. Charging was conducted at a constant current of 1.5 A until
the battery voltage reached 4.2 V, while discharging proceeded at a constant current of
740 mA until reaching 2.7 V. Herein, data from Battery #5 were used. Oxford’s dataset
includes periodic charge and discharge experiments using small lithium-ion pouch cells in
a 40 ◦C environment, performed at constant current and constant voltage. In this study,
data from Battery Cell 1 were used. The vehicle simulator dataset was generated by serially
connecting eight lithium-ion 18650 battery cells and conducting discharge experiments
using a vehicle simulator. This vehicle simulator was based on the The Hyundai Motor-
manufactured Avante Sports AD 16 vehicle produced in Ulsan, South Koreaand was
custom-built to match the wheel size and motor RPM specifications for the experiments.
The vehicle simulator operated in FTP-75 mode, and the experiments continued until the
battery pack was fully discharged. For the NASA dataset, the B0005 battery dataset was
used, and a total of 6 and 144 cycles were used for the tests and learning, respectively. The
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Cell 2 battery dataset from the Oxford dataset was utilized, with a total of 6 cycles for
testing and 71 cycles for training. In the case of the vehicle simulator dataset, 1 cycle was
used for testing, and 10 cycles were used for training. The experimental data is visualized
in Figures 4–6.

Table 2. Hyperparameter settings for each model used in the experiments.

Model Hyperparameter Value

TCN

nb_filter 128
kernal_size 3

nb_stack 2
deliations [1,2,4,8,16,32]
padding Causal

use_skip_conections Ture

XGBoost

n_estimators 1000
max_depth 5

gamma 0
reg_alpha 0
reg_lamda 1
subsample 0.75

learning rate 0.001

MNN
hidden layer, one node 64

hidden layer, two nodes 32
learning rate 0.01

LSTM
LSTM layer, one node 32

LSTM layer, two nodes 16
learning rate 0.01

GRU
GRU layer, one node 32

GRU layer, two nodes 16
learning rate 0.01
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The error was calculated using the mean absolute error, which is shown in the follow-
ing equation:

MAE =
1
n∑n

i=1|yi − ŷ|, (8)

where n is the total number of parameters, yi is the target value, and ŷ is the estimated value.
The experimental results obtained for each model using the NASA dataset are pre-

sented in Table 3. The mean absolute errors (MAEs) for MNN, LSTM, and GRU are 0.1408,
0.1296, and 0.1313, respectively. XGBoost and TCN exhibit MAEs of 0.1275 and 0.128,
respectively, while TCN-XGBoost (one node) and TCN-XGBoost (two nodes) demonstrate
MAEs of 0.1005 and 0.0955, respectively. The evaluation revealed that the SOC estimation
by the proposed TCN-XGBoost hybrid model outperformed those by other models for 150
cycles, representing the battery test dataset under degraded conditions. Additionally, for
the remaining NASA test dataset, the proposed model exhibited greater accuracy compared
to the other models.

Figure 7 shows the SOC estimation results of each model used in the experiments and
the results for 150 cycles using the NASA dataset. The upper graph presents the estimation
results of the model, and the lower graph presents its estimation error.
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Table 3. SOC estimation results of each model for the mean absolute error using the NASA dataset.

41 Cycle 63 Cycle 78 Cycle 100 Cycle 125 Cycle 150 Cycle Average

MNN 0.076 0.101 0.083 0.136 0.115 0.334 0.1408

LSTM 0.09 0.141 0.096 0.103 0.126 0.222 0.1296

GRU 0.185 0.084 0.131 0.134 0.066 0.188 0.1313

XGBoost 0.176 0.097 0.083 0.093 0.088 0.228 0.1275

TCN 0.126 0.117 0.125 0.105 0.098 0.197 0.128

TCN-XGBoost
(one node) 0.112 0.081 0.093 0.078 0.067 0.172 0.1005

TCN-XGBoost
(two nodes) 0.093 0.080 0.094 0.081 0.063 0.162 0.0955

The experimental results obtained using the Oxford dataset indicate that the MAEs for
MNN, LSTM, and GRU are 0.2105, 0.1563, and 0.1253, respectively (Table 4). XGBoost and
TCN exhibit MAEs of 0.142 and 0.1767, while TCN-XGBoost (one node) and TCN-XGBoost
(two nodes) demonstrate average estimation errors of 0.1003 and 0.0983, respectively. The
proposed TCN-XGBoost hybrid model, incorporating the information layer, achieves an
MAE of 0.0983. When comparing the proposed model to MNN, the difference in MAE
is 0.112. Notably, the error is lower than that of the existing TCN and XGBoost models,
indicating good estimation performance of the TCN-XGBoost model with the information
layer when using the Oxford dataset. Figure 8 depicts the SOC estimation results of each
model employed in the experiments and the results for 78 cycles using the Oxford dataset.
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Table 4. SOC estimation results of each model for the mean absolute error using the Oxford dataset.

6 Cycle 15 Cycle 28 Cycle 42 Cycle 70 Cycle 78 Cycle Average

MNN 0.303 0.205 0.164 0.191 0.167 0.233 0.2105

LSTM 0.269 0.088 0.145 0.182 0.122 0.132 0.1563

GRU 0.21 0.103 0.115 0.132 0.095 0.097 0.1253

XGBoost 0.102 0.126 0.198 0.119 0.146 0.161 0.142

TCN 0.163 0.12 0.203 0.161 0.222 0.191 0.1767

TCN-XGBoost
(one node) 0.116 0.045 0.135 0.092 0.123 0.091 0.1003

TCN-XGBoost
(two nodes) 0.113 0.049 0.134 0.090 0.110 0.094 0.0983

Table 5 presents the results obtained from experiments conducted using the vehicle
simulator dataset. MNN, LSTM, and GRU demonstrate MAEs of 1.857, 1.624, and 1.648,
respectively. XGBoost and TCN exhibit MAEs of 1.456 and 1.393, while TCN-XGBoost
(one node), TCN-XGBoost (two nodes), and TCN-XGBoost (three nodes) achieve MAEs of
1.413, 1.386, and 1.381, respectively. Despite the frequent data fluctuations in the vehicle
simulator dataset, the proposed model outperforms the other models. Figure 9 depicts the
SOC estimation results for each model used in the experiments and the results for cell 7
using the vehicle simulator dataset.

To validate the performance of our proposed model, we compared its results with
those of other battery SOC estimation studies [36,37] that used data from Battery #5 in
the NASA dataset. Zhang et al. [36] proposed an SOH–SOC simultaneous estimation
model based on the GWO-BP neural network. The algorithm in [36] exhibited an average
SOC estimation error within 5%. The model presented in our paper demonstrates battery
SOC estimation with an accuracy of <1%, indicating its ease of use compared to BP-based
models [36]. Furthermore, Li et al. [37] estimated battery SOC using the FCNN, 2DCNN,
and 3DCNN models based on CNN. Among the proposed models, FCNN achieved the
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best performance, with a MAE of 0.4694. The model proposed in this paper shows easy
battery SOC estimation, with an MAE of 0.095.
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Table 5. Results of each model for the SOC estimation error using the vehicle simulator dataset.

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Average

MNN 3.173 1.36 1.154 2.772 1.989 1.008 1.862 1.545 1.857

LSTM 2.616 1.137 0.74 2.387 1.909 1.035 1.877 1.297 1.624

GRU 2.685 1.035 0.772 2.62 1.731 1.08 1.933 1.331 1.648

XGBoost 1.235 1.219 0.745 2.36 1.699 0.991 1.686 1.715 1.456
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Table 5. Cont.

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Average

TCN 0.957 1.219 0.934 2.253 1.604 0.95 1.797 1.428 1.393

TCN-XGBoost
(one node) 1.143 1.14 0.938 2.333 1.598 1.028 1.712 1.514 1.413

TCN-XGBoost
(two nodes) 1.121 1.114 0.937 2.212 1.569 1.011 1.667 1.459 1.386

TCN-XGBoost
(three nodes) 1.107 1.127 0.92 2.211 1.57 0.997 1.672 1.441 1.381
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4. Conclusions

This paper proposes a hybrid TCN-XGBoost model for estimating the SOC of lithium
batteries. The proposed model integrates a TCN with long-effective memory features,
leverages XGBoost for enhanced estimation performance, and incorporates an information
layer to use past information as the next input. Within this framework, the TCN extracts
data features, while the information layer sequentially transforms past information into a
1D matrix. XGBoost is employed to optimize the model structure to effectively align it with
the extracted features. Experimental results validate that the proposed model effectively
captures battery SOC characteristics, resulting in improved estimation accuracy.
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For the validation of the proposed model, MNN, LSTM, and GRU were employed.
TCN and XGBoost were also used to compare the performance of single and hybrid models.
Furthermore, to validate the proposed model across diverse battery characteristics, battery
data from the NASA, Oxford, and vehicle simulator datasets were employed. Experimental
results indicate that the proposed model outperformed the other models, with MAEs
of 0.095, 0.0983, and 1.381 using the NASA, Oxford, and vehicle simulator test datasets,
respectively, confirming its superior estimation performance. Moreover, the proposed
model exhibited superior estimation performance to single models, underscoring the
effectiveness of the model.

In future research, we plan to apply the proposed model to a real-world environment
to evaluate its practical utility.
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