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Abstract: As power sources for electric vehicles, lithium-ion batteries (LIBs) have many ad-
vantages, such as high energy density and wide temperature range. In the algorithm design process 
for LIBs, various battery models with different model structures are needed, among which the 
electrochemical model is widely used due to its high accuracy. However, the electrochemical model 
is composed of multiple nonlinear partial differential equations (PDEs) that make the simulating 
process time-consuming. In this paper, a physics-informed neural network single-particle model 
(PINN SPM) is proposed to improve the accuracy of the single-particle model (SPM) under high 
C-rates, while ensuring high solving speed. In PINN SPM, an SPM-Net is designed to solve the 
distribution of lithium-ion concentration in the electrolyte. In the neural network learning process, 
a loss function is designed based on the physical constraints brought by the PDEs, which reduces 
the error of the neural network under dynamic working conditions. Finally, the PINN SPM pro-
posed in this paper can achieve a maximum relative error of up to 1.2% compared with the 
high-fidelity data generated from the P2D model under various conditions. Additionally, the PINN 
SPM is 20.8% faster than traditional numerical solution methods with the same computational re-
sources. 

Keywords: lithium-ion battery; single particle model; electrolyte dynamics; physic-informed  
neural network; electrochemical model 
 

1. Introduction 
As the climate changes caused by traditional fossil fuels become increasingly severe, 

increasingly more countries are making the transformation of traditional resources into 
new energy sources as an important goal. Lithium-ion batteries (LIBs) are a highly 
promising energy storage technology due to their high energy density, low self-discharge 
property, nearly zero-memory effect, high open-circuit voltage, and long lifespan [1]. For 
better management of the battery system, establishing the battery model and studying 
the battery algorithm is of vital importance [2]. 

However, an LIB is a highly complex and nonlinear electrochemical system [3], so 
there is scarcely an LIB model that can simultaneously achieve high computational effi-
ciency and high accuracy. For example, in the battery management system (BMS), 
equivalent circuit models (ECMs) are commonly used as LIB models for algorithm de-
sign [4–6]. ECMs have a simple structure and calculate extremely fast, but their accuracy 
needs to be improved to meet the requirements for complex battery algorithms under 
certain operating conditions [7]. On the contrary, the LIB mechanism model represented 
by the pseudo-two-dimensional (P2D) model [8] is very detailed in describing the dy-
namic of lithium-ion intercalation and deintercalation in microscale. In terms of mecha-
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nism, it explains the occurrences of concentration polarization and ohmic polarization 
within the LIB. However, the mechanism model of LIBs often require dozens of electro-
chemical parameters to be described and are composed of nonlinear partial differential 
equations (PDEs), which hinder its application in the on-board BMS [9]. Currently, the 
P2D model is mainly solved using numerical methods, such as the finite volume method 
(FVM) [10] or finite element method (FEM). There are also more complex but computa-
tionally efficient methods, like the explicit–implicit Runge–Kutta–Chebyshev method 
[11], as well as a numerical method that iteratively solves each subequation in a specific 
order [12]. These studies have used many techniques to improve the computational effi-
ciency of the P2D model. However, due to the limitations of numerical methods, these 
approaches still demand a considerable amount of computing resources and time. Con-
sequently, these approaches can only be considered in situations where computational 
resources are relatively sufficient and time requirements are not strict [13]. 

The single-particle model (SPM) [14], as a reduced-order version of the P2D model, 
simplifies the PDEs in the P2D model into a single PDE by assuming uniform current 
density in the electrolyte. This assumption dramatically improves the calculation speed 
of the model, making it applicable to on-board BMS. However, precisely because of the 
uniform current density assumption, the SPM ignores the concentration polarization of 
lithium ions in the direction between the positive and negative collector under the con-
dition of a high C-rate. Due to the limited diffusion coefficient of the electrolyte, lithium 
ions cannot move smoothly, resulting in a significant deviation from the P2D model. To 
address this issue, many scholars have used methods to approximate the electrolyte 
lithium-ion concentration and potential inside the battery to eliminate the error of the 
SPM under high C-rate conditions [15–17]. Metha et al. [17] constructed a model with the 
parabolic equation and time-varying parameters, subject to boundary conditions and 
continuity conditions at interfaces of the P2D model. It approximates the lithium-ion 
concentration distribution in the cathode, anode, and separator. By solving a total of nine 
differential equations, the time-varying parameters for parabolic equations can be ob-
tained. This method can effectively improve the accuracy of the SPM under high C-rate 
charge and discharge conditions. Assuming a parabolic curve for the distribution in 
lithium-ion concentration can result in inaccurate modeling, leading to system errors. 

To speed the calculation process for PDEs in mechanism models, many scholars 
have attempted this in multiple directions, among which the recent research directions 
include a physics-based equivalent circuit [18,19] and order-reduction methods [20]. Li Y 
et al. [19] started from the P2D model, used FVM to divide the battery into multiple el-
ementary sections (ESs), and established equivalent circuit models for equations in the 
P2D model. This method can achieve a solution with high-precision results. However, 
the establishment of this model is relatively complex. Gopalakrishnan et al. [20] utilized 
reduced-order models (ROMs) for LIBs and improved the efficiency of the singular val-
ue decomposition (SVD) step. However, the order reduction also resulted in the model’s 
loss of details and nonlinear behavior. The emergence of physics-informed neural net-
works (PINNs) [21,22] inspires the design of a LIB model that considers both calculation 
accuracy and efficiency. PINN was first proposed by Raissi et al. in 2018 [21]. This article 
explored using neural networks’ nonlinear function-fitting capabilities to solve physical 
problems described by PDEs. When managing PDEs, these equations often provide ad-
ditional physical constraints that the neural network must consider. This is where PINN 
surpasses traditional neural networks, as it considers both data approximation and the 
information of PDEs when constructing the loss function. Training the neural network 
this way will lead to faster convergence and better generalization performance [22]. 
PINN has been successfully applied to many practical problems [23,24]. The excellent 
learning ability of PINN for the prior knowledge of physics provides a fast method for 
solving these complex PDEs. Misyris et al. [24] used PINN to predict the operation state 
of a power system, such as rotor angle and frequency. Chen et al. [23] designed Wa-
veY-Net to calculate the electromagnetic field distribution in the structural medium to 
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optimize and verify photonic devices. The network design is based on the classical en-
coder–decoder architecture and is realized by U-net based on a convolutional neural 
network. WaveY-Net only predicts the distribution of the magnetic field and uses Max-
well equation to calculate the electrical field, thus constraining the output of the neural 
network by physical information. WaveY-Net’s calculation speed is two to four orders 
faster than traditional methods. 

There are also relevant studies using PINN [25–28] in the field of batteries. Li et al. 
[25] used 2d-LSTM to build a state observer for the key parameters for the P2D model. 
The network input is the voltage, applied current, temperature, and other sequence data 
during battery operation. The outputs are five key parameters for the battery model, one 
being the lithium-ion concentration. The highlight of this research is that it uses the sim-
ulation data from the P2D model calculated by FVM as the data set, which provides an 
idea for the application of PINN in the field of batteries. Pang et al. [26] used the PINN 
and constructed the bidirectional LSTM (BiLSTM) network model based on the Bayesian 
optimization algorithm (BOA) to predict the heat production rate (HGR) of the battery 
under specific applied current, a method that achieved good results. However, these 
mentioned researchers just drew lessons from the PINN because they did not use the 
additional physical constraints brought by the electrochemical model in constructing the 
loss function of neural networks. The training of neural networks in these studies relies 
more on the fitting of simulated data, which limits the ability of these networks to learn 
the mechanism of LIBs. Ref. [28] utilized physics-informed neural networks as a solver 
for the PDE of lithium-ion concentration diffusion in electrode particles. The established 
battery model was then used to estimate the battery’s state-of-charge (SOC) and 
state-of-health (SOH). In training the PINN network, the fully connected network (FCN) 
is used as the architecture of the PINN to approximate the particle concentration distri-
bution of electrode particles under certain applied currents. Compared with other articles 
that describe constructing the loss function [25,26], it considers the physical constraints of 
differential equations and their boundary conditions. The network has a simple structure 
and only takes in particle radial coordinates R and time T as inputs. As a result, it can 
only learn about the lithium-ion diffusion process under specific applied current and 
electrochemical parameters, which severely restricts the application of the LIB model; 
when the applied current of the battery changes, the network needs to be retrained. 
Networks described in Ref. [29] can take any current sequence as input and output the 
terminal voltage of the cell. However, this method treats the battery as a black box and 
does not consider the mechanism of the battery. Therefore, it can only be an ag-
ing-independent model. 

In contrast, our approach builds a LIB model using a recurrent neural network 
(RNN) as the architecture of the PINN and is based on the SPM. The network’s inputs are 
the coordinates x, initial lithium-ion concentration 0c , and applied current I. This net-
work, called SPM-Net, is used as a solver of the diffusion equation in the electrolyte. 
Compared with the network described in Refs. [28,29], this network can solve the dis-
tribution of electrolyte lithium-ion concentration under various applied current condi-
tions, which has stronger adaptability and is extensible. The main contributions of this 
paper are as follows: 
(1) Establishment of an SPM with electrolyte dynamics called PINN SPM. This model 

greatly improves the accuracy of the SPM under high C-rates. It uses a PINN to ap-
proximate the lithium-ion distribution in electrolytes and then calculates the elec-
trolyte potential distribution so that the error of the SPM can be eliminated. 

(2) Creation of a physics-informed neural network called SPM-Net, which is the central 
part of PINN SPM. It can quickly solve the one-dimensional diffusion equation of 
the LIB model, which means the network can approximate the electrolyte lithi-
um-ion concentration distribution under various applied currents with specific bat-
tery parameters. 
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(3) Better performance of the battery electrochemical model. Using the physical con-
straints from PDE to design the loss function, SPM-Net can approximate the con-
centration results more accurately than the traditional neural network under dy-
namic conditions. Additionally, it is 20.8% faster than the traditional numerical 
method under dynamic conditions. 
The remainder of this paper is organized as follows. Section 2 introduces the PINN 

SPM proposed in this paper. Section 3 introduces the structure of SPM-Net, data prepa-
ration, loss-function design approach, and training details of SPM-Net. The following 
part, Section 4, analyzes the accuracy and calculation efficiency of the PINN SPM com-
pared with other methods. The conclusion of this paper is provided in Section 5. 

2. Modeling of the LIBs 
2.1. P2D Model 

It is challenging to create an accurate 3D model of the electrode and electrolyte in 
batteries practically when using the microscale model. This is due to the electrode mate-
rial’s porous nature and irregular shape, as shown in Figure 1. Therefore, it is necessary to 
simplify the microscale model further. For most LIBs, there is only polarization in the 
direction between the cathode and anode that significantly affects the battery terminal 
voltage. Hence, the microscale model can be simplified into one dimension. By averaging 
microscopic quantities over a finite but small unit of volume, a continuum-scale model 
can be established [30]. As shown in Figure 1, each point along the X dimension of the 
battery represents the average values in a small volume of the microscale model, where 
there are both electrode and electrolyte phases. Therefore, it is necessary to use the vol-
ume fraction of each phase to correct the material parameters at this point, such as the 
diffusion coefficient and the conductivity. The formula for the effective coefficient is 
given by: 

, , ,
eff brug
x s e x s e x s eθ θ ε= = ==  (1)

where ,x s eθ =  represents any material parameter for the electrode phase or electrolyte 
phase, ,x s eε =  is the volume fraction of this phase, and brug  is called Bruggman’s expo-
nent. According to experience and experimental data [31], brug  is generally taken as 3.3. 

 
Figure 1. Illustration of various LIB models at different scales, including microscale models, P2D 
models, and SPM, from left to right. From model 1 to model 2, the simulation difficulties caused by 
complex boundary shapes are simplified, while from model 2 to model 3 the computational com-
plexity caused by coupling PDEs is simplified. However, simultaneously, the simplification sacri-
fices the model’s accuracy at high C-rates. 

To describe the diffusion process of lithium ions in the solid phase, the continuum 
model assumes that there is a spherical electrode particle to approximate the lithium-ion 
concentration diffusion in the electrode at each X coordinate. The model assumes a con-
centration gradient only in the radial direction. Therefore, the final model has two di-
mensions: X in the direction of cell thickness and R, specifically used to describe the ra-
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dial gradient. Because dimension R is only related to sc , this is why the continuum 
model is also called the pseudo-two-dimensional model. P2D is the most widely used 
mechanism model for LIBs. It was first proposed by Doyle et al. [8] based on the concen-
trated solution theory and Fick’s diffusion law. It describes the dynamics of lithium-ion 
concentration and potential in the electrode particles and electrolytes through the con-
servation of mass and charge at microscale. Then, the Butler–Volmer equation couples the 
lithium-ion concentration distribution, potential distribution, and flux density on the 
particle surface. PDEs and boundary conditions for the P2D model are listed in Table 1. 

Table 1. Governing equations and boundary conditions for the P2D model [8]. 

 Governing Equations Boundary Conditions  
Lithium-ion mass 
transport in elec-

trolyte phase 

0( ) 1effe e e
e

c c tD j
t x x F

ε +∂ ∂ −∂  − = ∂ ∂ ∂ 
 

0,

0
tot

e

x L

c
x =

∂
=

∂
 (2) 

Lithium-ion mass 
transport in spher-

ical particles 

2
2 0s s sc D c

r
t r rr

∂ ∂∂  − = ∂ ∂ ∂ 
 0

0s

r

c
r =

∂
=

∂
 

,p

s i

s ir R

c j
r a F=

∂
=

∂
 

(3) 

Ohm’s law in elec-
trolyte phase 

ln( ) ( )eff effe e
D

c
j

x x x x
φκ κ∂ ∂∂ ∂− − =

∂ ∂ ∂ ∂
 

0,

ln 0
tot

eff effe e
D

x L

c
x x
φκ κ

=

∂ ∂
+ =

∂ ∂
 (4) 

Ohm’s law in elec-
trode phase 

eff s j
x x

φσ ∂∂   = ∂ ∂ 
 

0, tot

s

x L

I
x
φ

=

∂
= ±

∂
 (5) 

Butler–Volmer 
equation 0 exp ( ) exp ( )a cF F

j j
RT RT

α αη η− = − 
 

 — (6) 

2.2. Single-Particle Model 
PDEs of the P2D model describe the mass conservation of lithium ions in the elec-

trolyte and electrode of LIBs and the charge conservation in both electrolyte and elec-
trode based on Ohm’s law, which makes it describe the polarization of the LIB during 
operation. However, because five PDEs couple it, solving these equations requires ex-
tensive computational resources. When the applied current is low, the internal polariza-
tion of the LIB is not apparent. It can be assumed that the electrolyte conductance is infi-
nite, and the exchange current density is uniform in the X direction, so simply two 
spherical electrode particles can represent the LIB’s cathode and anode, respectively. This 
reduced-order model is called SPM, in which the terminal voltage can be expressed as 
[32]: 

, ,

, , , ,

( ) ( ) ( )
       ( ) ( )

s p s n

p p se p e p n n se n e n

V t t t
U C U Cη φ η φ

= Φ − Φ

= + + − − −
 (2)

where iU , ,i n p=  represents the open circuit voltage (OCV) of the positive and negative 
electrode materials varying with the lithium-ion concentration on the electrode surface, 
and iη , ,i n p=  is the overpotential of the positive and negative electrodes. It is related 
to the flux across the solid–electrolyte interface ij , ,i n p= . The relationship between 
overpotential and flux density is described by the Butler–Volmer equation, which is given 
by: 

0,
(1 )exp( ) exp( )a i a i

i i
F F

j j
RT RT

α η α η− = − −  
 (3)
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where 
1

0, max, , , ,0( ) a a a
i i i se i se i ej k C C C Cα α α−= − . 

Under the assumption of uniform current density, the molar flux density can be di-
rectly calculated from the battery applied current I , and the formula is: 

,
i

s i i

Ij
a FL

= ±  (4)

Ignoring the influence of the voltage drop on the electrolyte and the change in lith-
ium-ion concentration in the electrolyte, the final formula for calculating the battery 
terminal voltage of the SPM can be expressed as: 

, ,

1 1

, 0, , , 0, ,

( ) ( ) ( )
       ( ( ) ( ))

           + sinh sinh
2 ( ) 2 ( )

s p s n

p se n se

a s p p p se p a s n n n se n

V t t t
U c U c

RT I RT I
F a FL j C F a FL j Cα α

− −

= Φ − Φ

= −

   
− −   

     

 
(5)

2.3. Establishment of PINN SPM 
2.3.1. SPM with Electrolyte Dynamics 

Two assumptions were made while establishing the SPM: lithium-ion concentration 
remains constant during battery operation, and the electrolyte potential is negligible. 
These two assumptions lead to large errors between the SPM and P2D model simulation 
results under high C-rates. To improve the accuracy of traditional single-particle models, 
a considerable number of studies have been made to establish the SPM with electrolyte 
dynamics [17,33,34]. Among these, Ref. [17] uses quadratic polynomials to model the 
lithium-ion concentration distribution of electrolytes in the cathode, anode, and separa-
tor: 

2
, ,0 ,1 ,2( ) ( ) ( )e i i i i i iC a t a t x a t x= + +  (6)

With the constraints of the boundary conditions and continuity conditions at inter-
faces introduced in formulas (2)–(6), the time-varying parameters ,i ka  can finally be 
solved from total nine differential equations, where , ,i n s p= , 0,1, 2k = . 

The average value of electrolyte lithium-ion concentration inside the positive and 
negative electrodes is used to correct the effect on 0,ij , and the time-varying parameters

,i ka  are used to correct the effect of ignoring the electrolyte potential. Therefore, the 
terminal voltage of the SPM with electrolyte dynamics can be expressed as [17]: 

1 1

, 0, , , , 0, , ,

( ) ( ( ) ( ))

           + sinh sinh
2 ( , ) 2 ( , )

          
3 3 3 3

         

p se n se

a s p p p se p e avg a s n n n se n e avg

p ps n n
eff eff eff eff eff
p s n p n

V t U c U c

RT I RT I
F a FL j C C F a FL j C C

L LL L LI

α α

κ κ κ σ σ

− −

= −

   
− −   
      

 
− + + + + 

  
0

,1,1 ,2 ,1 ,2 ,1

,0 ,1 ,2 ,0 ,1 ,2 ,0 ,0

22( 2 ) ( 2 )( 1)  
3( ) ( ) 3

pn n s s s

n n n s s s s p

aa a a a aRT t
F a a a a a a a a

+
 + +−

− + + + 
+ + + +  

 (7)

where eff
iκ  is the effective conductivity of electrolyte. 

The SPM with electrolyte dynamics modifies the traditional SPM by considering 
electrolyte concentration and potential distribution. This method uses quadratic poly-
nomials with time-varying parameters to fit the distribution of electrolyte lithium-ion 
concentration and electrolyte potential. However, systematic errors exist in modeling the 
electrolyte lithium-ion concentration distribution through a parabola. The lithium-ion 
concentration distribution has some error compared with that simulated by the P2D 
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model. Aiming to establish a more accurate and efficient SPM, the kernel part of the 
model called PINN SPM proposed in this paper is as follows. 
(1) In the PINN SPM, it is assumed that the exchange current density is uniform inside 

the battery, so the electrolyte lithium-ion concentration distribution can be obtained 
by only solving the diffusion equation in formula (2). 

(2) Based on the previous step, the distribution of lithium-ion concentration in the 
electrolyte is solved by formula (2) under different applied currents. These solved 
results are divided into data set, validation set, and test set, which are utilized for 
SPM-Net training. 

(3) SPM-Net is a PDE solver and replaces numerical methods for solving the diffusion 
equation to accelerate the solving speed. 
The specific process of the PINN SPM can be seen in Figure 2. Figure 2a shows the 

process of the SPM and Figure 2b illustrates how to consider electrolyte dynamics to 
correct the SPM result. In Figure 2b, SPM-Net, which is trained from solved results, takes 
current as input and approximates the lithium-ion concentration. The concentration af-
fects the conductivity of electrolyte, and then the electrolyte potential can be integrated 
according to the conductivity. Finally, with the rectification from electrolyte potential, 
results from the SPM are more accurate. Theoretically, the neural network can fit any 
function. Therefore, compared with the time-varying parabolic equation, it can greatly 
improve the accuracy for the approximation of lithium-ion concentration in LIBs so that 
the accuracy of the LIB model is also improved. 

 
Figure 2. Illustration of the PINN SPM process. (a) The SPM calculates the cell voltage through the 
applied current without considering the electrolyte dynamics. (b) Electrolyte dynamics corrects the 
voltage of the SPM by electrolyte potential obtained from the lithium-ion concentration. Moreover, 
the concentration is approximated from SPM-Net. It is a PINN and is trained by simulated data. 
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2.3.2. Physics-Informed Neural Networks 
As an effective method for solving PDEs, PINNs have the characteristics of high 

accuracy and high efficiency. PINNs were first proposed in 2018 [21,22]. Compared with 
the traditional neural network, which fits the data, the physics-informed information 
from PDEs is also considered in the training process for the PINN. As shown in Figure 3, 
using a neural network framework like Pytorch, the derivative of the neural network 
output with respect to the input can be obtained, which can be substituted in the PDEs to 
construct the loss function. The neural network trained through this method is more 
generalized. 

 
Figure 3. Illustration of the basic concept and implementation approach of the PINN. It takes mesh 
x , loaded current I , and initial concentration 0c  as inputs, and outputs solutions to the PDE. 
Then, it uses the derivative of the result as a loss function to train the neural network. 

SRM-Net proposed in this paper is the solver for the diffusion equation in the elec-
trolyte. It establishes the relationship between applied current and lithium-ion concen-
tration of the electrolyte. Specifically, the input of SPM-Net is the applied current at time
t ; the mesh x , where the concentration is to be calculated; and the initial lithium-ion 
concentration distribution 0c . The output of the network is the lithium-ion concentration 
vector on mesh x  at time 1t + . The network is used to manage sequence problems, that 
is to say, the output of the lithium-ion concentration of the network at the current time t  
is used as the input for the initial lithium-ion concentration distribution 0c  at the next 
time 1t + . To achieve this, SPM-Net uses the gated recurrent unit (GRU) as the network 
architecture. 

The GRU was proposed by Cho et al. [35] in 2014. Compared with the traditional 
RNN, it can be trained to retain information from further back. Additionally, its network 
architecture is more concise, which means that GRU uses fewer training parameters and 
therefore uses less memory and executes faster than long short-term memory (LSTM) 
[36], while its performance is not inferior to that of LSTM. In Section 4, the learning abili-
ties of different recurrent network units for the diffusion equation solver are specifically 
discussed. Similar to LSTM, GRU calculates internal states tH  at each time step based on 
the output 1t−H  of the previous time and the input tX  of the present time. The calcula-
tion of internal state tH  is achieved through the use of two gates, including the update 
gate tZ  and reset gate tR . The calculation formula is given by: 
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1

1

1
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( )

tanh( ( ) )
(1 )
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 
 

 (8)

where ,W b  are network parameters and tH  is the candidate hidden state. The specific 
architecture of GRU is shown in Figure 4. 

 
Figure 4. Basic architecture of GRU. 

In SPM-Net, the input vector tX  is the applied current I  at time t concatenated 
with the mesh x , and the initial value of the hidden state is the initial lithium-ion con-
centration distribution 0c  on the mesh. The output vector of SPM-Net is the lithium-ion 
concentration ec

  at each time step. The step length of the time series is 1 s. In this way, 
the network can act as a diffusion equation solver. See Section 3 for the specific structure 
and training methods for SPM-Net. 

According to the electrolyte charge conservation, Equation (4), assuming that the 
exchange current is uniformly distributed, the electrolyte potential distribution can be 
calculated by a numerical method: 

0
, ,ln2 (1 )e i s ie

i
eff

a FcRT t j dx
x F x

φ
κ

+∂ ∂−
= −

∂ ∂ 
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 (9)

0
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0
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e tot e e tot e i

eff
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So far, the PINN SPM can be expressed as: 
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          + ( ) (0)
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L

α α

φ φ
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= −

   
− −   
      

−

 
 

 (11)

  



Batteries 2023, 9, 511 10 of 23 
 

3. Method 
3.1. Data Preparation 

The data set for SPM-Net proposed in this paper is simulated by MATLAB and the 
P2D model results are simulated through the software COMSOL Multiphysics 5.6. The 
electrochemical parameters for the LIB are shown in Table 2 [31,37]. The cell chemistry 
comprises LixC6 as the negative electrode, LiyMn2O4 as the positive electrode, and LiPF6 in 
2:1 EC: DMC as the electrolyte. The 1C-current density of the cell is 17.5 2A/m . The open 
circuit voltage (OCV) of the positive and negative electrode materials is approximated by 
formulas (24) and (25), where , ,i i p nθ =  is the ratio of the lithium-ion concentration on 
the particle surface to the maximum lithium-ion concentration of the electrode, which is 
the SOC of the electrode. The SPM [14] and the SPM with electrolyte dynamics in Ref. 
[17] are also solved and simulated by MATLAB. For the proposed model, it is also simu-
lated using MATLAB, where the concentration distribution of electrolyte lithium ions is 
obtained by calling the Pytorch framework. All simulations are performed on a PC with a 
6-core AMD Ryzen 5 5600H CPU and Radeon Graphics @ 3.3 GHz, with 16 GB (3200 
MHz) of memory. 

Table 2. Simulation parameters for the LIB cell [31,37]. 

Parameter Anode Cathode 

Length [ ]L m  100 × 10−6 174 × 10−6 

Particle radius [ ]pR m  8.5 × 10−6 12.5 × 10−6 

Electrode volume fraction sε  0.471 0.276 

Electrolyte volume fraction eε  0.529 0.724 

Max. solid phase concentration 3
max[ ]C mol m−⋅  26,390 22,860 

Stoichiometric at 100% state of charge 0.563 0.171 
Stoichiometric at 0% state of charge 0.047 0.650 

Diffusivity in the electrode 2 1[ ]sD m s−  3.9 × 10−14 10 × 10−14 

Normalized effective reaction-rate constant 
2.5 1 0.5

0, [ ]normk m s mol− −  2.2987 × 10−5 2.2042 × 10−5 

Burg’s exponent brug  3.3 

Universal gas constant 1[ ( ) ]R J mol K −⋅  8.3145 

Temperature [ ]T K  298.15 

Faraday’s constant 1[ ]F c mol−⋅  96875 

Initial electrolyte concentration 
3

0[ ]c mol m−⋅  2000 

Diffusivity in the electrolyte 2 1[ ]eD m s−  7.5 × 10−11 

The lithium-ion concentration distributions of the positive and negative electrolyte 
of the battery under different current rates and dynamic conditions are simulated. The 
static current varies from −4.3 to −1 C and 1 to 4.3 C. When the battery terminal voltage 
reaches the battery cutoff voltage or the simulation time exceeds the maximum time, the 
simulation ends. In this simulation, the cutoff voltage of the battery is set to 4.2-3 V, and 
the maximum simulation time is 10,000 s. There are 47 nodes on mesh x , and the dis-
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tance between them is not equal. The grid is denser near the discontinuous parts, where 
there are interfaces between cathode, anode, and separator. The training set and valida-
tion set of the network are the data simulated from charge and discharge conditions with 
static current, and the test set consists of the data obtained from the battery under the 
condition of dynamic applied current. 

3.2. Network Architecture 
To better learn the distribution of electrolyte lithium-ion concentration under dif-

ferent applied current conditions, the network uses double-layer GRU architecture, 
which has more training parameters and better learning ability. The specific network 
architecture is shown in Figure 5. 

 
Figure 5. Architecture of the diffusion equation solver SPM-Net and the design method of loss 
function. (a) The architecture of SPM-Net comprises two layers of GRU. Inputs of SPM-Net are two 
vectors. One is applied current concatenated with the mesh x , the other is the initial lithium-ion 
concentration 0c . (b) The predicted result of SPM-Net is a tensor composed of lithium-ion concen-
tration vectors at each time step. Two items are in total loss, dataLoss  and pdeLoss . dataLoss  is ob-
tained by calculating the root mean squared error (RMSE) between the predicted result and the 
ground truth, while pdeLoss  is obtained through differentiating the predicted result and substitut-
ing it into the PDE. 

The input of the GRU network is the applied current at each time step concatenated 
with the mesh x , and the output ec

 is the corresponding electrolyte lithium-ion con-
centration on the grid at each time step. Using the autograd function in Pytorch, the 
second derivative of the SPM-Net output with respect to the input mesh x  can be ob-
tained as: 

2 , 2

2 2

( , )i t
e i

i i

c NN I x
x x

∂ ∂
=

∂ ∂


 (12)

The time derivative of lithium-ion concentration is replaced by the first-order 
backward difference equation, which is: 

, , , 1i t i t i t
e e ec c c
t t

−∂ −
=

∂ Δ

  
 (13)

where ,i t
ec
  represents the electrolyte lithium-ion concentration at the ith sampling point 

in the x direction of the battery model at time t. 
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The loss function is divided into two parts: one part is the root mean squared error 
(RMSE) between data and predicted results, called dataLoss ; The other part is the value 
generated by substituting the derivative of the network output into the differential equa-
tions, called pdeLoss . The total loss can be expressed as: 

(1 ) data pdeLoss Loss Lossβ β= − +  (14)

( ) ( )
2

1

1 N
n n

data e e
n

Loss c c
N =

= −   (15)

2
0

, 2
1 2

1 (1 )
N

e e
pde e e eff s i

n

c c
Loss D a t j

N t x
ε +

=

∂ ∂
= − − −

∂ ∂
 

 (16)

where β  is a hyperparameter in which 0.2 is used for optimal performance; its influ-
ence on the training of PINN is discussed in the next section. ec  represents the data 

obtained by the MATLAB simulation, while 
2

2, ,e e
e
c cc
t x

∂ ∂
∂ ∂

 
  in formulas (17) and (18) is the 

derivative of the prediction result from the PINN with respect to the network input. 

3.3. Training Method 
To ensure the convergence of training, the original simulation data should be nor-

malized after it is obtained. For the lithium-ion concentration of electrolyte, the initial 
concentration 3

0 2000mol/mc =  is set as the reference lithium-ion concentration refc , and 
the normalized lithium-ion concentration data ec  is: 

/ 1e e refc c c= −  (17)

The input , ,ix i n p=  with respect to its electrode length , ,iL i p n=  is normalized: 

/ , ( ) /n n p n s px x L x x L L L= = − −  (18)

The learning rate for training is set to 1 × 10−3, and when the 300th and 600th epochs 
are trained, the learning rate becomes 30% of that before. This learning rate schedule is 
determined after multiple attempts to ensure smooth and fast convergence of the net-
work. Using Adam as the optimizer, the final training results are analyzed and discussed 
in Section 4. All training is conducted on a workstation with a 12-core Intel (R) Xeon (R) 
Platinum 8255C CPU @ 2.50 GHz. 

0.16 1.32exp( 3 ) 10exp( 2000 )n n nU θ θ= − + − + −  (19)

8
0.492465

4.19829 0.0565661tanh( 14.5546 8.60942)

10.0275479 1.90111 0.157123exp( 0.04738 )
(1 )

0.810239 exp 10( 0.133875)

p p

p
p

p

U

y

θ

θ

θ

= + − +

 
− − − − 

−  
 + − − 

 (20)

4. Simulation Results 
4.1. Verification of the Solving Methods for Diffusion Equation in the Electrolyte  

To obtain more accurate results for the battery terminal voltage, the accuracy of the 
lithium-ion concentration distribution should be ensured. This part demonstrates the 
most accurate method for obtaining lithium-ion concentration distribution. We compare 
solving the diffusion equation with fitting the parabolic equation [17]. 

Figure 6 compares the calculation results from the method proposed in this paper, 
the simulation results from the P2D model, and the results of the parabola method pro-
posed in Ref. [17] under a 3 C discharge condition. In the following part of this article, the 
method in Ref. [17] is called SPM2, which is calculated by solving a total of nine differ-
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ential equations and substituting the results in formulas (14) and (15). The method, which 
solves the diffusion equation numerically to obtain the concentration, is called the diffu-
sion equation method (DEM), and the SPM uses electrolyte dynamics from the DEM is 
called the DEM SPM. There is an error between the DEM, SPM2, and P2D model results. 
Due to the assumption of uniform current density, the error is concentrated at both ends 
of the battery near the collector. It can be clearly observed from Figure 6c,e that compared 
with SPM2, the error of electrolyte lithium-ion concentration calculated by the DEM is 
lower. 

Moreover, the electrolyte potential distribution eφ  can be calculated by substituting 
the calculated lithium-ion concentration distribution into formula (15). By observing 
Figure 7, it can be found that under high C-rate, the electrolyte potential distribution 
obtained by the DEM is closer to the results of the P2D model. Therefore, solving the 
diffusion equation can provide more accurate terminal voltage results, which qualifies 
the PINN SPM as having a more solid theoretical basis. 

 
Figure 6. Under 3C discharge current, the lithium-ion concentration distribution calculated by the 
DEM (b,c) and SPM2 method (d,e) and their relative errors. The electrolyte lithium-ion concentra-
tion distribution simulated by the P2D model is shown in (a). 
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Figure 7. Simulation results for the electrolyte potential of the DEM and SPM2 methods and P2D 
model under 1C (a), 3C (b), −1c (c), and −3c (d). 

4.2. Comparison of Various Neural Networks 
For a faster solver of the diffusion equation, the PINN SPM uses SPM-Net instead of 

the DEM to solve the diffusion equation. In this part, we discuss why GRU is to be used 
as the architecture for SPM-Net and why the PINN is used as the solver for the 
one-dimensional diffusion equation. 

The PINN is constructed based on neural network architecture with a strong learn-
ing ability for accurate data fitting. Therefore, this part analyzes the learning ability of 
different architectures of recurrent neural networks for the one-dimensional diffusion 
equation. RNN, GRU and LSTM cells are used to learn the generated data, and the 
learning rate and optimizer are set according to the description provided in Section 3. 
Figure 8 records the changes in the RMSE for the training set and validation set in dif-
ferent epochs. It can be found that the RNN cell has the worst learning ability on this 
problem because of its simple architecture. LSTM and GRU cells perform well on the 
training set and can achieve high accuracy. Among them, GRU cells can achieve deeper 
overfitting for this problem. At the same time, the GRU training is faster with fewer pa-
rameters. Therefore, the GRU cell is chosen as the basis architecture for SPM-Net. In ad-
dition, it can also be found that when the number of epochs reaches more than 600, the 
loss of the validation set barely decreases, while the loss of the training set decreases 
slightly. Too many training times lead to overfitting of the neural network, so the number 
of iterations for the final training of SPM-Net is set to 650. The training-time comparison 
is shown in Table 3. 
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Figure 8. The loss of different recurrent neural network cell varies with epochs. 

Table 3. The training time of various recurrent neural networks per epoch. 

 GRU LSTM RNN 
time 3 min 5 s 3 min 35 s 1 min 11 s 

Discussion of the difference between training results from the traditional neural 
network and the PINN is in this section. While training the GRU, we tried to add physical 
constraints to the loss function (PINN) and not add (only-data). Table 4 shows these two 
neural networks’ final performance on the validation and test sets. The only-data neural 
network and the PINN can be effectively used as the diffusion equation solver, and the 
RMSE can be very low in the validation set, 6.63 × 10−5 of only-data and 6.72 × 10−5 of the 
PINN. However, it is insufficient to just ensure the excellent results of dataLoss . To obtain 
better results in pdeLoss  is also vital, which is closely related to the performance of the 
neural network under dynamic conditions. Low pdeLoss  leads to a better understanding 
of the physical information from the changes in the applied current in the test set with 
dynamic conditions. From Table 4, it can be seen clearly that the PINN performs better 
than only-data on test set: 2.18 × 10−4 for only-data and 1.23 × 10−4 for the PINN. Addi-
tionally, the PINN also has lower pdeLoss : 1.03 × 10−2 for only-data and 2.02 × 10−4 for the 
PINN. These results demonstrate that the PINN has better generalization than the on-
ly-data network. 

The impact of different values of hyperparameters β  in formula (19) on training 
the PINN is also discussed. If β  is too small, the neural network cannot learn additional 
information from physical constraints. However, when β  is too large, the neural net-
work has difficulty capturing the information owned by the data itself, and thus cannot 
obtain a good training effect. Figure 9 shows the training results for the PINN under 
different values of hyperparameter β . It can be found that when β  is 0.2, the training 
result is improved. Setting β  to 0.2 in SPM-Net, then the final PINN SPM is con-
structed. 
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Table 4. Comparison of learning results with and without the PINN for the diffusion problems. 

  Validation Test 

Only-data 
dataLoss  6.63 × 10−5 2.18 × 10−4 

pdeLoss  42.21 1.03 × 10−2 

PINN 
dataLoss  6.72 × 10−5 1.23 × 10−4 

pdeLoss  8.37 × 10−2 2.02 × 10−4 

 
Figure 9. Plot of the RMSE between the ground truth and the predicted lithium-ion concentration 
with respect to hyperparameter β . 

4.3. Model Assessment 
This part describes the accuracy and efficiency of the PINN SPM in contrast to other 

SPMs with electrolyte dynamics. The terminal voltage of the cell can be obtained by 
substituting the lithium-ion concentration obtained by SPM-Net into formulas (14)–(16). 
Figures 10 and 11 show the comparison of the terminal voltage from the PINN SPM, P2D 
simulation results, SPM results, and SPM2 results under different applied currents. Fig-
ure 11 compares the PINN SPM with the SPM2 and the SPM to demonstrate its accuracy. 
The simulation currents of ±1C and ±3C are chosen as they are the most representative 
conditions for these battery models. The reason behind selecting these currents is that 
±1C can represent the most commonly occurring operation condition in practice, and ±3C 
can represent the battery model under high C-rates. As can be seen in Figure 11, the 
maximum error in terminal voltage from the PINN SPM is no more than 1% under both 
high and low applied currents. At high C-rate, the error of the PINN SPM is significantly 
lower than that of the SPM and SPM2. It is worth noting that the error of the PINN SPM 
increases at the end of the simulation under 1C discharge. This is because the change in 
lithium-ion concentration in the electrolyte at low current is trivial, and the exchange 
current density conforms to the assumption of uniform current density. However, with 
the discharging, the exchange current density distribution changes and gradually does 
not conform to the uniform current distribution, so the error becomes larger than in the 
previous period. 
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Figure 10. Comparison between the simulation results for different loading currents (±0.5c, ±1C, 
±2c, ±3C, and ±4C) and the P2D model, where (a) is under the charge condition and (b) is the under 
the discharge condition. 

This part also includes the discussion of the comparison between the PINN SPM, 
SPM, and SPM2 under dynamic discharge conditions. Figure 12a shows the plot of dis-
charge current, and its maximum current does not exceed 270A/m , which is 4C. It can be 
found that under the dynamic discharge condition, the PINN SPM can still capture the 
electrolyte dynamics of the battery and obtain better effect than the SPM2. The maximum 
relative error is 1.2% when the applied current increases rapidly. 

Table 5 shows the mean absolute error (MAE) between the SPMs and P2D models. 
SPMs with electrolyte dynamics are excellent models whether or not it is a static or dy-
namic condition. Due to a more precise approximation of lithium-ion concentration, the 
DEM SPM and PINN SPM have better accuracy under all conditions. Approximation of 
the PINN SPM is obtained from SPM-Net; errors may be present when compared to the 
result of DEM SPM. As a result, the accuracy of the PINN SPM may be slightly lower 
than DEM SPM. 

Table 5. Mean absolute error (MAE) in voltage for the DEM SPM, SPM2, PINN SPM under con-
stant current discharge from 4.2 to 3 V and dynamic discharge condition. 

Discharge Rate DEM SPM SPM2 PINN SPM 
0.5 C 0.0020 0.0020 0.0020 
1 C 0.0046 0.0050 0.0052 
2 C 0.0099 0.0142 0.0118 
3 C 0.0153 0.0216 0.0168 
4 C 0.0141 0.0318 0.0207 

Dynamic 0.0094 0.0110 0.0099 



Batteries 2023, 9, 511 18 of 23 
 

 
Figure 11. Comparison of terminal voltage results and relative errors between the proposed 
method, SPM2, and SPM methods under 3C (a,b), 1c (c,d), −3c (e,f), and −1c (g,h) conditions. 



Batteries 2023, 9, 511 19 of 23 
 

 
Figure 12. Calculation results (b) and relative error (c) of the PINN SPM under dynamic conditions 
(a). 

Table 6 shows the comparison of the solving time for different battery models. The 
DEM SPM comprises one diffusion equation, the SPM2 comprises nine differential equa-
tions, while the P2D model comprises five PDEs. It can be found that the time to solve 
five PDEs is longer than that to solve a single PDE, and the time to solve a single PDE is 
higher than that to solve nine differential equations. Applying the PINN can significantly 
reduce the time consumption for solving the diffusion equation. Especially under dy-
namic current, the application of the PINN makes the calculation time for voltage 46 
times faster than that for the P2D model, and 20.8% faster than that for the DEM SPM, 
which needs to solve partial differential equations. Although the calculation speed of the 
PINN SPM is slightly inferior to the SPM2, it has more accurate results than the SPM2, 
which is a compromise between accuracy and efficiency. 

Table 6. Time consumption comparison of various battery models under 1C, 2C, 3C, 4C, and dy-
namic discharge conditions. 

Discharge Rate PINN SPM DEM SPM SPM2 P2D 
1 C 0.53 s 0.73 s 0.68 s 15 s 
2 C 0.44 s 0.52 s 0.37 s 8 s 
3 C 0.24 s 0.28 s 0.22 s 6 s 
4 C 0.20 s 0.29 s 0.17 s 5 s 

Dynamic 0.76 s 0.96 s 0.69 s 36 s 
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5. Discussions 

5.1. Limitations and Future Directions 
In this paper, a SPM with electrolyte dynamics is studied. It mainly utilizes the 

PINN to solve the electrolyte diffusion equation quickly and accurately to improve the 
accuracy of the SPM. It has made some progress in the combination of the PINN and LIB 
models, but at the same time, the method still has some limitations. First, the influence of 
the approximation of the solid phase diffusion equation on the model’s performance 
should have been considered. The main focus of this paper is on the efficiency and ac-
curacy of different methods to obtain the lithium-ion concentration distribution in elec-
trolytes instead of in the solid phase. This process has many calculation methods, and the 
results significantly affect the final SPM results. Second, the model established in this 
paper needs to consider battery degradation, which limits the application of this model in 
the on-board BMS. The battery will age with use, and the capacity and maximum power 
will decline. When aging occurs, the existing model may need to be retrained. The 
training process may be a problem when the battery is put into operation. The overall 
complexity can be even more complex than conventional physical model parameter 
identification schemes. 

Because of the two shortcomings mentioned above, we plan to improve them in 
subsequent research. For the first point, we plan to use different methods to approximate 
the solid phase diffusion process in the next step. The methods will be compared, and 
they will be combined with the proposed method in this paper to obtain a more efficient 
and accurate model. For the second point, we plan to expand our existing model to in-
clude the aging factor of the battery. At present, there have been many studies on elec-
trolyte-enhanced SPMs considering ageing, such as Refs. [33,38]. These studies can pro-
vide ideas for our follow-up research. When we incorporate aging factors into the model 
and ignore the influence of aging on the electrochemical parameters of electrolyte, 
SPM-Net does not need to be retrained. We will also conduct corresponding experiments 
in the follow-up research to study the effectiveness of this model with battery aging and 
hope to apply this model to battery SOC and SOH estimation. 

5.2. Prospects for the Application of the PINN SPM 
The modeling of LIBs is to estimate internal status better and evaluate the safety 

risks [39]. A growing body of literature has established approaches to these goals, in-
cluding data-driven methods [40] and electrochemical methods [41]. Combined with 
these two methods, the PINN SPM presented in this paper is a new exploration in this 
field, which has the excellent characteristics of high accuracy and speed in dynamic and 
static conditions. With these characteristics, this hybrid model will be promising in esti-
mating SOH and SOC. The PINN SPM can be used as the digital twin of LIB in BMS. As 
shown in Figure 13, because the calculation speed of the model is fast enough, the inter-
nal parameters for the battery can be obtained in a shorter time with a genetic algorithm. 
The internal parameters for the battery can be followed during the battery’s entire life, 
and they can be input as extracted features of the LIB into the data-driven model for SOC 
and SOH estimation. 
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Figure 13. Illustration of the future application of the PINN SPM. 

6. Conclusions 
This paper proposes a more accurate SPM with electrolyte dynamics at high C-rates, 

called the PINN SPM, which has achieved good results compared with the traditional 
SPM with electrolyte dynamics. Firstly, a more accurate lithium-ion concentration dis-
tribution in the electrolyte can be obtained by solving the diffusion equation. Then, a 
GRU-based PINN called SPM-Net is designed to speed the solution of the diffusion 
equation. The PINN method exhibits better generalization performance compared to 
traditional neural networks under dynamic current conditions. Using SPM-Net as the 
solver for the diffusion equation, the calculation time of the battery model is 20.8% faster 
than that of the traditional method under dynamic conditions. Compared with the tradi-
tional SPM with electrolyte dynamics, the calculation accuracy of this model is higher, 
and the maximum relative error of the PINN SPM is less than 1.2% under dynamic and 
static charge conditions. 

Nevertheless, the model proposed in this paper also has some drawbacks. For in-
stance, the PINN SPM is higher in accuracy than the SPM2, but not in efficiency. There-
fore, in future research, we plan to refine the SPM-Net architecture further to achieve 
improvements in both accuracy and efficiency. In addition, in the process for establishing 
the model, the PINN SPM only used simulated data and did not establish a connection 
between the model and the experiments. Therefore, establishing a PINN SPM based on 
the experimental data of the battery is also an important plan for future research. The 
purpose of all the modeling work for the LIB is to improve management. A genetic algo-
rithm can be used to achieve parameter identification based on the model from experi-
mental data. Then, by inputting these identified parameters as extracted features into the 
SOH and SOC estimation model, a hybrid method for BMS application can be finally 
achieved. 
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