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Abstract: Herein, we design a cathode material based on layered Na2/3(Mn1/2Fe1/2)O2 for practical
application by combining the Co substitution and MgO treatment strategies. The oxides are prepared
via solid-state reactions at 900 ◦C. The structure, morphology, and oxidation state of transition metal
ions for Co-substituted and MgO-treated oxides are carefully examined via X-ray diffraction, IR and
Raman spectroscopies, FESEM with EDX, specific surface area measurement, and XPS spectroscopy.
The ability of oxides to store sodium reversibly is analyzed within a temperature range of 10 to
50 ◦C via CV experiments, galvanostatic measurements, and EIS, using half and full sodium ion
cells. The changes in the local structure and oxidation state of transition metal ions during Na+

intercalation are monitored via operando XAS experiments. It is found that the Co substituents
have a positive impact on the rate capability of layered oxides, while Mg additives lead to a strong
increase in the capacity and an enhancement of the cycling stability. Thus, the highest capacity is
obtained for 2 at.%-MgO-treated Na2/3(Mn1/2Fe1/2)0.9Co0.1O2 (175 mAh/g, with a capacity fade of
28% after 100 cycles). In comparison with Co substituents, the Mg treatment has a crucial role in the
improvement of the lattice stability during the cycling process. The best electrode materials, with a
chemical formula of 2 at.%-MgO treated Na2/3(Mn1/2Fe1/2)0.9Co0.1O2, were also used for the full
cells design, with hard carbon as an anode. In the voltage window of 2–4 V, the capacity of the cells
was obtained as 78 mAh/g and 51 mAh/g for applied current densities of 12 mA/g and 60 mA/g,
respectively.

Keywords: sodium-ion batteries; layered oxides; Na0.67MnO2; co substitution; operando XAS

1. Introduction

Sodium-ion batteries (SIBs) have long been recognized as being among the most
competitive alternatives to Li-ion batteries due to their abundance on the planet, low
cost, and similar operation chemistry [1,2]. The main class of electrode materials for SIBs
comprises sodium transition metal oxides (NaxTMO2) due to their flexible layered structure
and metal constituents (comprising Ni, Fe, V, Mn, Co, Cr, etc.) changing the valence states
in a broad range [3,4]. The state-of-the-art studies showed that the cathode materials
consisting of mixed double and triple metal ions (such as Mn/Co, Mn/Ni, Mn/Ni/Ti,
Mn/Fe/Co, Cr/Ti, etc.) demonstrate better electrochemical properties than single ones [5].
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Among these cathodes, Nax(Mn, Fe)O2 materials are of particular significance due to
their cheap and abundant components, among other factors [6–9]. Depending on the Na
content, these oxides adopt a layered structure with two structural peculiarities: O3 and P2.
The unique Na capacity of Nax(Mn, Fe)O2 is a result of the participation of both Fe and
Mn ions in the electrochemical reaction (i.e., Fe3+/Fe4+ and Mn3+/Mn4+ redox couples).
However, despite its environmentally friendly properties, Nax(Mn, Fe)O2 displays poor
cycling stability and low moist air stability, which prevents its commercialization [6–9].
One approach to overcoming this drawback is to use a metal substitution for Mn/Fe with
electrochemically active (such as Cr, Co, etc.) and/or inactive elements (such as Ti, Al,
Mg, Cu, etc.). When the substituents participate in electrochemical reactions (such as Co,
etc.), both the capacity and cycling stability are improved, while the electrochemically
inactive elements contribute mainly to the cycling stability and rate capability [10]. The
replacement of Jahn–Teller Mn3+ ions with smaller Co3+ ions enables the attaining of a
higher capacity and the enhancement of the Na+ kinetics [11–13]. Contrary to Co-ions, Mg-
ions do not take part in the electrochemical reaction. However, the Mg-substituted oxides,
in which Mg2+ ions replace Fe-ions, display an enormously high storage capacity [14].
This is a consequence of the oxygen redox activity operating in addition to the TM redox
reaction [14–16]. In addition, the Mg-substitution yields an enhancement of the moist air
resistance of layered oxides, thus contributing to their practical applications [14].

The coating of the electrode surface is seen as an alternative to the metal substitution
material engineering process for improved battery performance. Different coating materials,
such as Al2O3, TiO2, MgO, etc., were used for the Na-ion cathode materials, and the
structured samples were found to have better cycling performance than the uncoated
samples [17–19]. Among the other examples, MgO coating studies have special importance
since an increase in the performance of the cells was observed. It is stated that the MgO layer
on Nax(Mn, Fe)O2 electrodes caused the decrease in the charge transfer resistance, which is
important for battery performance [20]. The MgO coating effect on Na0.67Ni0.33Mn0.67O2
and Na0.67Ni0.17Co0.17Mn0.66O2 was investigated, and it was found that the rate capability
and cycling stability of the cathodes were improved [21,22]. Similarly, A. Kamiyama et al.
investigated the effect of MgO template synthesis on hard carbon and found high coulombic
efficiency and stability [23]. Y. Zang et al. studied the doping of Mg in the transition metal
(TM) side in the NaTMO2 structure and claimed that Mg has a synergetic role in the lattice,
improving the Na-diffusion in the lattice [24].

Herein, we design a cathode material based on layered Na2/3(Mn1/2Fe1/2)O2 for
practical application by combining the Co substitution and MgO treatment strategies. This
strategy is developed in such a way as to improve the Na+ diffusion kinetics, specific
capacity, and lattice stability of layered Na2/3(Mn1/2Fe1/2)O2 simultaneously. The Co-
substituted and MgO-treated oxides are prepared via solid-state reactions at 900 ◦C. The
structure, morphology, and oxidation state of transition metal ions for Co-substituted
and MgO-treated oxides are carefully examined via X-ray diffraction, IR and Raman
spectroscopies, FESEM with EDX, specific surface area measurement, and XPS spectroscopy.
The ability of oxides to store sodium reversibly is analyzed within the temperature range
of 10 to 50 ◦C via CV experiments, galvanostatic measurements, and EIS, using half and
full sodium ion cells. The changes in the local structure and oxidation state of transition
metal ions during Na+ intercalation are monitored via operando XAS experiments.

2. Materials and Methods

The Mg-treated Na0.67(Mn0.5Fe0.5)1−xCoxO2 oxides (where x = 0–0.3, x = 0 denote
NR0) were obtained via solid-state reaction using Na2O2 (Sigma Aldrich, St. Louis, MO,
USA, ≥95%), MnO2 (Alfa Aesar, Haverhill, MA, USA, 99.9%), Fe2O3 (Alfa Aesar, 99.9%),
Co3O4 (Alfa Aesar, 99.7%), and MgO (Sigma Aldrich, ≥99%) reagents. All reagents in
desired ratios were weighed on a Radwag-sensitive balance, and the powder mixture was
carried out via an agate mortar for 0.5–1 h in an inert atmosphere. The stoichiometrically
prepared powders were transformed into pellet forms under 5 tons and then heated at



Batteries 2023, 9, 497 3 of 19

900 ◦C for 6 h under air convection. Finally, the pellets in the furnace were quenched in
liquid N2. For the sake of convenience, the samples were named as set out in Table 1.

Table 1. Sample notation for the study oxides.

Co-Substituted Oxides Notation MgO-Treated Oxides Notation

Na0.67(Mn0.5Fe0.5)0.95Co0.05O2 NR1
Na0.67(Mn0.5Fe0.5)0.9Co0.1O2 NR2 1%MgO/Na0.67(Mn0.5Fe0.5)0.9Co0.1O2 NR2A

2%MgO/Na0.67(Mn0.5Fe0.5)0.9Co0.1O2 NR2B
3%MgO/Na0.67(Mn0.5Fe0.5)0.9Co0.1O2 NR2C

Na0.67(Mn0.5Fe0.5)0.8Co0.2O2 NR3 1%MgO/Na0.67(Mn0.5Fe0.5)0.8Co0.2O2 NR3A
2%MgO/Na0.67(Mn0.5Fe0.5)0.8Co0.2O2 NR3B
3%MgO/Na0.67(Mn0.5Fe0.5)0.8Co0.2O2 NR3C

Na0.67(Mn0.5Fe0.5)0.7Co0.3O2 NR4

The structural analysis was performed via Rigaku RINT2000 powder diffractometer
with CuKα radiation (λKα = 1.5405 Å). The Rietveld refinement of XRD patterns was
carried out using the GSAS-II software [25,26]. For the registration of FTIR spectra, a
Perkin Elmer Spectrum One spectrophotometer was applied, with the samples being mixed
with KBr tablets. An NRS-4500 Confocal Raman Microscope using a 532 nm laser with an
Air-cooled Peltier CCD detector and 20 mW power via a 5×magnification lens at the AYBU-
MERLAB, Ankara, Turkey, was utilized for collecting Raman spectra. The morphology and
element mapping were determined via a Leo EVO-40 VPX SEM microscope combined with
an EDX analyzer, Bruker X-flash detector 4010. The specific surface area was monitored via
Micromeritics-TriStar 3000 at DAYTAM, Erzurum, Turkey. The assessment of the oxidation
state and local structure around the transition metal ions was carried out in the frameworks
of X-ray absorption near-edge (XANES) and extended X-ray absorption fine structure
(EXAFS) spectroscopy utilizing ROCK Beamline at SOLEIL in France, with the spectra
being collected in a transmission mode. For calibration and alignment purposes, we used
Mn, Co, and Fe foils. For the operando XAS experiments, a specially designed cell is
used [27]. The cell is cycled between 1.5 and 4.3 V at a rate of C/10. XAS spectra were
calculated via Fastosh and Artemis programs [28,29].

The electrochemical testing of oxides was carried out in coin cells CR2032 with an
electrolyte (~0.2 mL for each cell) of 1M NaClO4 (PC/EC = 50/50, wt/wt). The electrodes
consist of a mixture of the active materials, super carbon, and PVDF in a weight ratio of
70:15:15. Using a doctor blade, the mixture was cast on Al-foil with a coating thickness of
100 µm. The electrodes were dried in a vacuum oven at 110 ◦C for 24 h then pressed with a
rolling press and punched on a disc with a 15 mm diameter. For each electrode, the active
mass varied between 1.4 mg and 1.9 mg. For the half-cell configuration, the anode consists
of Na foil, while for the full cell, commercial hard carbon was used as an anode.

The cyclic voltammetry (CV) curves were measured at Ivium Octostat30 potentio-
stat/galvanostat integrated with NUVE EN-120 in a temperature range of 10–50 ◦C. Gal-
vanostatic testing, including measurement of the specific capacity, cycling stability, and rate
capability, was performed via a Neware BTS4000 and Hefacycle BA100A battery analyzer.
ZIVE SP1 potentiostat/galvanostat from 0.1 mHz to 200 kHz, using 10 mV AC voltage,
was applied for the electrochemical impedance spectroscopy (EIS) analysis.

3. Results and Discussion
3.1. Structural Properties

The XRD patterns of Co-substituted and MgO-treated oxides are compared in
Figure 1a–d and Figure S1a–f. The indexation of all XRD patterns demonstrates a for-
mation of layered oxides with a P2-type structure (P63/mmc space group). In addition to
the P2-phase, an impurity P3-phase was observed for Co-substituted oxides with x ≥ 0.1.
For the MgO-treated layered oxides, there are the same P3- impurity phases on the samples.
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Through the Rietveld refinement method of XRD patterns (as seen in Figures 1 and S1),
the structural parameters and phase ratio of the P2 and P3 phases are calculated, and their
values are listed in Table S1. It is observed that Co substitution triggered the formation of P3-
phase in the sample, which agrees with the previous studies [30]. As one can see, the lattice
parameter a (expressing the intra-layer distance between metal ions) decreases smoothly
after the incorporation of Co ions (Figure S1g), which is in agreement with previously
reported data for Co-substituted sodium iron manganese oxides, and it is consistent with
the smaller ionic radius of Co3+ ions versus Fe3+ and Mn4+ ions [30–32]. Contrary to the
a-parameter, the c-parameter (expressing the inter-layer spacing) varies between 11.175 Å
and 11.210 Å (Figure 1c). As a result, the lattice volume is contracted with the increase of
Co content, following Vegard’s law (Figure 1c). This indicates a random incorporation of
Co3+ ions inside the Mn and Fe layers without any preferential substitution. It is worth
mentioning that previous studies have focused on the selective substitution of Fe or Mn by
Co ions [11–13]. It appears that the synthetic method based on solid-state reactions with the
participation of Na2O2 allows for the obtaining of Co-substituted oxides, where Co3+ ions
substitute for Mn and Fe ions simultaneously, thus keeping the Mn-to-Fe ratio constant. In
addition, small amounts of incorporated Co ions cause a strong extension of the interlayer
space (i.e., from 3.57 Å to 4.35 Å for x = 0.05), which remains nearly constant after a further
increase in the Co amount up to 0.3 (Figure 1c). This will make the Na+ diffusion between
the layers easier, which will be discussed in the next part.

The treatment of Co-substituted oxides with MgO has a small effect on their structural
parameters; in increasing the amount of MgO, there is a tendency for a slight decrease
in both the lattice volume and the interlayer space (Table S1). This indicates that Mg
incorporation into the structure of layered oxide is limited, and most of the Mg remains as
a separate phase of MgO.

The vibrational properties of Co-substituted and Mg-treated oxides provide further
insights into their structural peculiarities. Figure 2 shows the IR and Raman spectra of
the oxides. The IR spectra are dominated by three strong absorption bands in the spectral
range below 700 cm−1 (i.e., P3, P2, and P1 bands near 620, 545, and 480 cm−1, respec-
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tively), where the characteristic vibrational modes for layered oxides, NaxMO2, generally
appear [33–40]. The P3 and P2 bands are mostly due to the asymmetric stretching vibrations
of MO6 octahedra, while the P1 band corresponds to the bending M-O-M modes of MO6
octahedra [33–35,38,40]. The comparison of the IR spectra shows that the profiles and
positions of the bands are affected mainly by Co substituents and slightly by Mg additives.
The P3 and P1 bands exhibit a clear shift to higher wavenumbers with an increase in the Co
content, i.e., from 615 to 624 cm−1, and from 480 to 490 cm−1 for NR2 and NR3, respectively
(Figure 2a). Along with this, the intensity of the P3 band decreases considerably. The
systematic shift in the band supports once again the incorporation of Co-ions in the Mn and
Fe-layers. In comparison with Co-substituted oxides, the three bands for Mg-treated oxides
appear at higher wavenumbers (between 5–8 cm−1 for NR2B than that for NR2), while the
P2 band is blue shifted with around 10 cm−1 only for NR3B. These non-systematic shifts in
the band positions are consistent with XRD data, where some part of Mg ions are included
in the structure of layered oxides.
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In addition, the IR spectra display the bands near 665–700 cm−1 (P4, P5), 840–865 (P6),
1052 (P7), 1370 (P8), and 1455 cm−1 (P9) that can be assigned to the carbonate contamina-
tions [41–44]. The formation of carbonates on the surface of sodium-layered oxides, as well
as the insertion of the CO3

2− ions within the transition metal layer, is well documented in
the literature [45–48]. Close inspection of the IR spectra shows that the P8 band appears in
NR3B at a higher wavenumber (1410 cm−1) than in the other samples (around 1370–1375)
(Figure 2a). This could be attributed to the formation of separate phases of MgCO3, and
it is in agreement with the partial insertion of Mg into the layered structure. The spinel
impurities (detected by XRD) contribute, most probably, to the band at 660 cm−1. The band
near 1730 cm−1 (P11) probably originated due to the reaction of CO2 with lattice oxygen
atoms, as reported by Coluccia, or combination vibration [42]. The band at 1660 cm−1 (P10)
is associated with the bending vibrations of the adsorbed H2O molecules.

The Raman spectra of oxides in the range below 700 cm−1 display the typical features
of layered NaxMO2 oxides based on manganese and iron [8,36,37,39,49–51]. These are
three distinct bands at around 565–580 (R3, the strongest one), near 465 (R2) and 362 cm−1

(R1), and a shoulder at around 615 cm−1 (Figures 2b and S2). The strongest band in the
Raman spectra with a maximum at 564 cm−1 in NR2 is assigned to symmetric stretching-
mode A1g, which involves motions of the oxygen atoms only [33,35–37]. The motions
of both Na and O atoms contribute to three bands: the less intensive R2 and R1 bands
at 465 and 362 cm−1 and the shoulder at 615 cm−1, which could be attributed to the E2g
modes. The positions of all these bands are similar to those reported for compositions con-
taining simultaneously manganese and iron, for instance: Na1+x(Fey/2Niy/2Mn1−y)1−xO2

(x = 0.1 − 0.5) − 595, 488, 369 cm−1 [36]; NaNi1/3Fe1/3Mn1/3O2 −580, 490, and
340 cm−1 [51]. The presence of carbonate species is confirmed by the band at 1073 cm−1

(R4). The Raman bands of the Co-substituted oxides (NR2 and NR3) exhibit very close
wavenumbers of the three bands (the difference is about 2–3 cm−1, which is within
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the experimental resolution), which can be explained by the small difference in the Co
amount (Figures 2b and S2). On the other hand, the increase in the Mg addition in
the two sample series is found to give rise to a progressive blue shift of the R3 band:
564–578–580 cm−1 for NR2-NR2B-NR2C; accordingly, 562–570–580 cm−1 for NR3-NR3B-
NR3C (Figures 2b and S2). The observed shift to the higher wavenumbers of the R3 band
gives evidence for a decreased MO2 slab thickness [39] due to the partial Mg incorporation
in the oxide crystal structure, as was observed via XRD data. In addition, a new weak
band at around 670 cm−1 is seen in the spectra of the samples with the highest Mg content
(NR2C and NR3C) (Figure S2), but its origin is not clear.

From the spectroscopic data, it can be concluded that the P2-type layered structure
is preserved after Co substitution, and the Mg ions are partially incorporated in the crys-
tal structure.

The morphology of the layered oxides was examined via FESEM (Figure S3). Irrespec-
tive of the Co and Mg amount, layered oxides consist of plate-like particles with dimensions
varying between 1 and 3 µm. The specific surface area of Co-substituted oxides reaches a
value of 32 m2/g, and it decreases after the Mg treatment up to 2 m2/g (Table S2). A large
specific surface area for Co-substituted oxides can consume more ions in the electrolyte
and form a thicker SEI layer [52]. This SEI layer is responsible for a worsening of the
Coulomb efficiency of the electrode material (discussed in the next part). However, both
Co-substituted and Mg-treated oxides display Nitrogen adsorption/desorption curves of
the type III (Figure S4), which corresponds to nonporous material [53]. The Barrett–Joyner–
Halenda (BJH) pore size distribution curves of these three materials, presented as an inset
in Figure S4, confirmed that NR2, NR2B, and NR3B materials have nanopores structures.

The oxidation state of transition metal ions is monitored via X-ray photoelectron
spectroscopy (XPS). Figure 3a–f gives the XPS spectra of NR2B in the binding energy range
of Na, Mg, Fe, Mn, Co, and O. The Na 1s spectra show a single peak centered at 1071 eV,
which comes from Na atoms located in the layered structure. In the Mg 1s range, the peak
can be deconvoluted at two components centered at 1303 and 1304 eV. These values are
attributed to Mg atoms in the structure of layered oxides and in a separate MgO phase,
respectively [54]. The observation of the complex peak of Mg1s supports, once again, the
XRD and vibrational data on the partial incorporation of Mg2+ ions in layered oxides.
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NR2B sample.
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In the Fe2p binding energy range, the Fe2p3/2 peak can be deconvoluted into two
components at 711.1 and 713.6 eV that are associated with Fe(III) bonded to O [55]. Similarly,
two components at 724.1 eV and 725.8 eV can be distinguished for the Fe2p1/2 peak.
However, a peak at 718.5 eV is considered a satellite peak. It should be noted that the
large background creates difficulties in the chemical state analysis of Fe. The difference
of about 7.8 eV between the binding energies of the satellite peak and the main peak of
Fe2p3/2 is due to the presence of the Fe3+ ion [56]. The valence of Fe ions fluctuates due to
the reduction from Fe3+ to Fe2+ ions. Thus, it is seen that the Fe atoms mainly adopt the
oxidation state of +3 in the layered structure, which is consistent with previous data.

The Mn2p spectrum displays characteristic Mn2p3/2 and Mn2p1/2 components
centered at 643 eV and 654 eV, respectively. These values imply that Mn atoms are stabilized
as Mn4+ in layered oxides (Figure 3d) [57]. The binding energies of Co2p1/2 and Co2p3/2
and the difference between them (i.e., peaks at 797.4 and 783.6 eV and Co2p1/2 − Co
2p3/2 ≈ 13.8 eV) correspond to Co3+ ions (Figure 3). In addition, the Co2+ ions could also
be resolved in the Co2p spectra: the binding energies of Co2p1/2 and Co2p3/2 for Co2+

ions at 795 and 780 eV and the difference between them, respectively (Figure 3e) [58]. The
satellite peaks for Co2p1/2 and Co2p3/2 have appeared at 805 and 789.0 eV, respectively.

The O1s spectrum contains at least three components at 529.5 eV, 531.5 eV, and
534.8 eV. They come, most probably, from lattice O2−, contamination of surface hydrox-
ides/carbonates, and adsorbed H–O–H species, respectively [59,60].

In conclusion, we identify Fe3+, Mn4+, and Co3+ ions as main constituents in Co-
substituted oxides. The Mg additives are partially incorporated in the structure of layered
oxides, and the rest of the Mg appeared as separate MgO/MgCO3 phases.

3.2. Electrochemical Analysis for Half Cells

The redox properties of Co-substituted and Mg-treated oxides during Na+ intercalation
are monitored via CV experiments (Figure S5). The CV curves consist of two well-separated
peaks in the voltage ranges of 2.0–2.5 V and 3.5–4.2 V. Based on previous studies, the redox
peak around 2.5 V corresponds to Mn3+/Mn4+, while the second peak around 4.0 V is due
to Fe3+/Fe4+ [61–63].

The peak at 4.2 V superimposed on the peak due to Fe3+/Fe4+ could be related to the
oxygen redox activity operating in addition to Mn and Fe ions [64]. Wang et al. stated that
the king around 3.5 V is related to John–Teller distortion (JTD) effects of Mn3+ ions [65].
In general, the redox reactions of Mn3+/Mn4+ and Fe3+/Fe4+ couples also operate for the
Co-substituted and MgO-treated oxides. Close inspection of the CV curves indicates that
in addition to the high-voltage peak due to Fe3+/Fe4+, a new peak at around 3.9 V grows
in intensity with increasing the Co-content. This additional peak can be ascribed to the
redox couple Co3+/Co4+. The incorporation of Co3+ ions in the layered structure seems to
suppress the peak due to the oxygen redox reaction (i.e., the peak at 4.2 V). Contrary to the
Co-ions, Mg2+ ions are electrochemically inactive, but they look likely to contribute to the
oxygen redox reaction by intensifying the peak at 4.2 V. The same feature was observed for
Mg-substituted NaxMnO2 oxides.

The next parameter affecting the electrochemical performance of layered oxides Is the
temperature at which the redox reaction takes place. For this purpose, the CV curves at
elevated temperatures are given in Figure 4. By increasing the temperature from 10 ◦C to
50 ◦C, the peak due to the Mn3+/Mn4+ redox reaction becomes dominant at the expense
of the Fe3+/Fe4+ redox reaction. This means that the Mn3+/Mn4+ redox reaction proceeds
more easily at high operating temperatures, while the Fe3+/Fe4+ redox reaction proceeds
more easily at low operating temperatures. To quantify the effect of the operating tempera-
ture on the redox reaction, the dependence of the peak current on the scan rate is calculated
(i.e., Ip-ν0.5 (V/s)0.5 (Figure S4d)). The peak current obeys a v0.5-dependence, which indi-
cates that both Mn3+/Mn4+ and Fe3+/Fe4+ redox reactions are diffusion controlled. Using
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the Randles–Sevcik equation, the diffusion rate of the Na-ions in the battery cells can be
calculated as follows [66]:

Ip = 0.4463·n
3
2 F

3
2 ·C·A·R−

1
2 T−1/2D1/2v1/2, (1)

where the Ip is the current value in the redox peak of the CV graphs, F is the Faraday
constant, n parameter is the number of electrons, the C value is the Na-ion concentration
in the cell, the A value is the surface area of the electrode, R is the gas constant, T is the
temperature in Kelvin, D is the diffusion rate, and v is the scan rate of CV measurement.
The calculated D values of the Mn3+/Mn4+ redox reaction for the NR2B at 10 ◦C, room tem-
perature, and 50 ◦C are 0. 7 × 10−12, 2.2 × 10−12, and 5.5 × 10−12 m2/s, respectively, while
for the Fe3+/Fe4+ redox reaction, the diffusion coefficients at 10 ◦C and room temperature
are 1.5 × 10−12 and 3.0 × 10−12. It is worth noting that at 50 ◦C, the high voltage peak due
to Fe3+/Fe4+ is perturbed as a result of the intensifying of the oxygen redox reaction, which
causes difficulties in the correct calculation of Ip-ν0.5 (V/s)0.5 dependence. Even in this
case, the comparison reveals that the diffusion coefficient of the Mn3+/Mn4+ redox reaction
increases with the operating temperature more quickly than that of the Fe3+/Fe4+ redox
reaction. This could be explained in terms of the Jahn–Teller effect of Mn3+ ions, which
is overcome at elevated temperatures. Contrary to Mn ions, the easy oxidation of Fe at
low temperatures could be associated with possible electron hopping between neighboring
Fe3+ and Fe4+ ions, as was observed by Delmas et al. using Mossbauer characterization of
P2-NaxMn1−yFeyO2 [8].
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Figure 4. CV-curves at 10 ◦C, room temperature, and 50 ◦C for NR2B (scan rates of 0.1, 0.2, 0.3, 0.4,
and 0.5 mV/s are used).

Figure S6 shows the charge–discharge curves and cycling stability for Co-substituted
oxides at 30 mA/g current load. The capacity after the 1st and 100th cycles, as well as the
capacity loss, are listed in Table 2. The highest capacity is reached for the Co-substituted
oxides with x = 0.01 (i.e., 169 mAh/g for NR2). This is associated with the activation of
Co3+/Co4+ redox couples in addition to Fe3+/Fe4+ and Mn4+/Mn3+ couples. In addition,
the enlargement of the interlayer space by Co substituents could also contribute to the
enhancement of the capacity of oxides. Further increase in the Co-content causes a decrease
in the capacity. This corresponds to a suppression of the Fe3+/Fe4 reaction at a high amount
of Co substituents, as well as to a slight reduction in the interlayer space (Figures S5 and 1).
However, the capacity loss decreases with the increase in the Co content. This evidences a
positive role for Co substituents in the cycling stability of layered oxides.
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Table 2. Oxide performance parameters of the half cells.

Sample
Code

1st Cycle
(mAh/g)

100th Cycle
(mAh/g)

Capacity
Loss (%)

NR-1 130 67 48.5
NR-2 169 96 43.2
NR-3 121 81 33.1
NR-4 51 53 ~0

NR-2A 131 100 23.6
NR-2B 175 125.5 28.3
NR-2C 96 41.5 43.8
NR-3A 138 88 36.2
NR-3B 123 86 30
NR-3C 118 80 32.2

The treatment of Co-substituted oxides with MgO leads to a drastic enhancement in
both the capacity and cycling stability, especially for the oxide with x = 0.1 and 2% of MgO
(i.e., for NR2B, Figures S7 and S8). Figure 5 summarizes the charge–discharge curves for
the best-performed oxides. The improvement in the capacity of Co-substituted oxides after
treatment with electrochemically inactive MgO is related to the high-voltage peak ascribed
to oxygen redox activity, as was observed via CV experiments (Figures 4 and S5).
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Figure 5. Capacity–voltage curves for NR2, NR2B, NR3, and NR3A after first cycle.

The cycling stability and rate capability for Co-substituted and MgO-treated oxides are
compared in Figure 6 (see also Figure S9). The comparison demonstrates that NR2B delivers
the highest capacity at low current rates, while the best capacity is observed for NR3A
at high current rates. Thus, it is predicted that a certain amount of Mg in Co substituted
Na0.67Mn0.5Fe0.5O2 caused the improvement of the Na insertion/deinsertion properties.

For practical application, it is important to understand the storage property of oxides
at elevated temperatures. Figure 7 shows the charge/discharge curves at 10 ◦C, room
temperature, and 50 ◦C for the best-performing oxide NR2B at a current load of 100mA/g.
By increasing the operating temperature, the first capacity increases, reaching a value of
150 mAh/g at 50 ◦C, but the cycling stability becomes poor. These results are in good
agreement with CV experiments (Figure 4), where it was found that Mn3+/Mn4+ redox
reactions are amplified at high operating temperatures.
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Figure 6. (a) Cycling stability and (b) rate capability for NR2, NR2B, NR3, and NR3A half cells.
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To rationalize the electrochemical performance of layered oxides, EIS experiments are
undertaken (Figures 8 and S10). The EIS data are analyzed with an equivalent circuit model,
where Rct, Rc, and Rq correspond to the charge transference resistor, capacitive resistor, and
constant phase element resistor, respectively. C, Q, and W represent capacitance values,
constant phase element, and Warburg element in the cell, respectively. The semi-circle in
EIS (Rct) corresponds to Na+ diffusion in the high-frequency region, and C is associated
with the pseudo-capacitance at the electrode/electrolyte interface [67]. The model fitting
parameters are given in Table S3.

The Rs values fall within the same range, which implies that the Na+ migration is
slightly affected by the Mg and Co modification in the structure. The pseudocapacitive
effect is the lowest level for the Mg-added NR2 samples, and we can say that Mg addition
for NR2 caused a decrease in the capacitance of the system. The highest value of W was
also obtained for the Mg-added NR2 samples. So, we can say that EIS analysis results also
support the best performance of NR2B among the others in this study.
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3.3. Operando Study of NR2B

The operando XAS is undertaken to understand the oxidation state and local structure
changes of Fe, Mn, and Co atoms during Na+ intercalation. The subject of study is the
best-performing oxide NR2B. The Fe, Mn, and Co K-edge XANES spectra of the sample of
NR2B during charge and discharge processes are shown in Figure 9. The XANES spectra
undergo clear changes, thus revealing the variation in the valence state of metal constituents
during the charging and discharging processes; the shift in the XANES spectrum to higher
energies is an indication of an increase in the valance state [64]. When Na+ ions are removed
from their crystallographic sites, the valence state of the metal ions increases to higher
values, causing the XANES spectrum to shift to higher energies. So, we observed from
in situ XAS spectra that the TM ions contribute to Na+ migration during the charge and
discharge processes.
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Figure 9. Fe, Mn, and Co K-edge XANES analysis of the NR2B during the charging and discharg-
ing processes.

To determine the local structure around Fe and Mn ions, a Fourier transform (FT)
EXAFS analysis of Fe and Mn K-edge XAS spectra is performed (we did not produce enough
EXAFS data for Co since the Mn and Co edges are very close to each other). Applying FT
analysis, the contour map is calculated (Figure 10). After the resting period, the calculated
FT for Fe and Mn elements, including baseline subtraction, is used as reference data. The
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first and second peaks in the counter map for Fe and Mn K-edges come from the Fe/Mn-O
and Fe/Mn-Fe/Mn bonds, respectively [68]. The extraction of Na+ during charge up to
4.3 V causes changes in bond lengths for both Fe and Mn. The comparison shows that in
the Mn-O bond region, there is a loss in the intensity of the FT, while in the Mn-Fe(Co)
bond region, an increase in the FT occurs. The variation in the intensity of the metal-
O distribution has previously been explained via a change in the local environment of
the metals [69]. Thus, the EXAFS data imply the participation of Mn ions in the redox
electrochemical reaction, as was discussed in CV-experiments.
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Figure 10. Counter map of EXAFS of (left) Fe-K edge and (right) Mn K-edge for NR2B during the
charging and discharging processes.

The bond lengths and coordination numbers of transition metal ions for the P63/mmc
symmetry were calculated in the framework of the Artemis program [70,71]
(Figures 11 and S11). The optimization of the fitting parameters for each case can be
found in [71]. Each calculation was made in acceptance of only one TM in the structure
since Artemis does not allow for partial substitution in the structure. The calculated
structural parameters are provided in Table 3.
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Figure 11. Artemis analysis graphs for Mn and Fe EXAFS data at 1.5 V.

It is clear that both manganese and iron bond distances (i.e., RMn-O, RFe-O, RMn-TM, and
RFe-TM) smoothly decrease and increase during cell charging and discharging processes.
When Na-ions are removed from the lattice, the electrostatic field around the metal ions
changes. The oxygen ions are attracted by the other anions and cations in the lattice.
When the attractive force between oxygen and Na disappears, the oxygen ions will move
to another position in the lattice to provide electrostatic equilibrium in the lattice [72].
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We attribute the bond length changes to the electrostatic interactions in the lattice. The
Debye–Waller factor (σ2), expressing the correlation of atomic motion over crystallographic
positions, can be used to assess the vibrational properties of the crystal lattice [73]. Thus,
the observed changes in σ2 during cell charging and discharging are in agreement with the
redox reaction discussed above.

Table 3. The XAFS fitting parameters of the cells were obtained via the Artemis program.
(S0

2 = amp*N (amp = 0.725 for Fe and Mn; and ∆E = −7.129 for Fe and −11.44 for Mn); N is
the coordination number of ions; the R and k ranges were chosen as 1–3 Å and 3–14 Å−1 for all metals,
respectively).

EXAFS
Region

Voltage→
1.5 V 2.5 3.5 4.3 3.5 1.5 VParameter↓

RMn-O (Å) 1.926 1.940 1.937 1.902 1.933 1.931
RMn-TM (Å) 2.913 2.909 2.904 2.899 2.915 2.921

Mn K-edge σ2
Mn-O × 10−3 3.22 2.71 2.35 2.71 2.68 2.19

σ2
Mn-TM × 10−3 5.18 4.34 5.02 4.16 4.90 4.73

NMn 5.504 5.370 5.246 5.155 5.137 4.864
R-factor 0.155 0.234 0.247 0.028 0.162 0.137

RFe-O (Å) 2.005 2.039 1.960 1.995 1.988 2.001
RFe-TM (Å) 2.943 2.961 2.926 2.935 2.933 2.948

Fe K-edge σ2
Fe-O × 10−3 7.78 7.66 8.18 8.28 7.68 7.00

σ2
Fe-TM × 10−3 8.84 9.38 9.28 8.78 8.60 8.55

NFe 7.697 7.675 7.757 7.697 6.377 6.219
R-factor 0.012 0.089 0.081 0.009 0.021 0.007

3.4. Electrochemical Analysis of Full Cells

For practical application, the full cell containing NR2B as a cathode was further
examined. The commercial hard carbon, as an anode, and the same electrolyte as in the
case of half cells were used for the tests. It should be noted that the SEI formation on
hard carbon was one of the main problems in the full cell design, and we performed a
pre-sodiation process for three cycles of the hard carbon–separator–Na metal configuration
of the cells in the glove box [74]. After the pre-sodiation process was finished, the anode
was used immediately for the NR2B/hard carbon full cells. The CV graphs of the NR2B
full cells measured between 2V and 4V were presented in Figure 12a. Two redox reaction
regions are clearly distinguished: one at around 2.4 V due to Mn, and the second at around
3.8 V due to Fe. The EIS measurement of the full cells displays three different regions,
which are fitted by the model given in the insert of Figure 12b: the lower impedance region
corresponds to the ohmic part (which is related to the current collector), the small half
circle is due to the cathode, the second half circle is explained by the anode part, and the
last linear part for low-frequency response is due to mass transfer of the cells. It should be
noted that the EIS of the full cells is different from that of the half-cell configuration.
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The best-fitting model was used by the ZMan program. The fitting parameters are
presented in Table 4. Thus, it was predicted that the full cell of NR2B would show the
expected properties. The first Rs value is due to ohmic resistance, which is low enough for
the full cell, as expected; the Q1/R1 region corresponds to the small half circle due to the
surface film resistance; the Q2/R2 and Q3/R3 are related to the cathode and anode; and the
last linear part for low-frequency response is due to mass transfer of the cells. The C-rate
measurements show that the highest capacity was found to be 61 mAh/g for 20 mA/g, and
it decreases to 29 mAh/g for 150 mA/g (Figure 12c).

Table 4. EIS fitting parameters where Qn were 1
sQan (n = 1,2,3) and s = jw.

Rs Qy1 Qa1 R1 Qy2 Qa2 R2 Qy3 Qa3 R3

0.0002 0.0132 0.538 701 4.6 ×
10−5 0.566 6.98 9.6 ×

10−4 0.789 59

The cycling tests were performed using an activation cycle for low current density,
and then we started galvanostatic measurements to obtain better performance. The cycling
stability is carried out at a current load of 12 mA/g up to 100 cycles (Figure 13a,b) and
60 mA/g up to 500 cycles (Figure 13c,d). Under 12 mA/g, the capacity decreases from
78 mAh/g and 51 mAh/g, while under 60 mA/g, the cell delivers around 35 mAh/g
after 500 cycles. These values indicate the suitability of NR2B as a cathode material for
practical application.
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Figure 13. (a,c) Charge/discharge curves and (b,d) cycling stability of NR2B/hard carbon full cells at
12 mA/g for 100 cycles and 60 mA/g for 500 cycles, respectively. The cycling of the cells were made
as 4 mA/g for 2 cycles, 6 mA/g for 2 cycles and 12 mA/g for 98 cycles as indicated in the Figure 13b.
The Coulombic efficiency (red lines) are also given.

4. Conclusions

Solid-state reactions via quenching at high temperatures yield Co-substituted Na0.67
(Mn0.5Fe0.5)1−xCoxO2 oxides with a P2-type of structure (0 ≤ x ≤ 0.3), where Co3+ ions
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substitute for Fe3+ and Mn4+ simultaneously. Applying the same synthesis procedure, Mg
is partially inserted in the layered structure, and the rest of Mg is separated as MgO and/or
MgCO3 phases. The method of synthesis allows for obtaining nonporous plate-like oxides
with a high specific surface area (around 30 m2/g).

Between 2.0 and 4.3 V, the intercalation of Na+ into oxides is accomplished due to the
reversible redox reactions of Mn3+/Mn4+ and Fe3+/Fe4+ ions. By increasing the operating
temperature from 10 to 50 ◦C, the redox reaction of Mn3+/Mn4+ becomes dominant at
the expense of the redox Fe3+/Fe4+ reaction. The Co3+ substituents in layered oxides also
participate in the electrochemical reaction due to the redox couple Co3+/Co4+. At higher Co
content (i.e., x > 0.1), the Co3+ ions suppress the Fe3+/Fe4+ reaction without affecting that of
Mn3+/Mn4+. In addition, Mg additives cause an amplification of the oxygen redox activity,
which takes place in addition to the Co/Fe/Mn metal ions. As a result, Co substituents
have a positive impact on the rate capability of layered oxides, while Mg additives lead
to a strong increase in the capacity and an enhancement of the cycling stability. Thus, the
highest-performing oxide is achieved for 2 at.%-MgO-treated Na2/3(Mn1/2Fe1/2)0.9Co0.1O2
(175 mAh/g with a capacity fade of 28% after 100 cycles).

Combining the effect of Co substituents and Mg additives, the best electrochemical
performance is achieved for the layered oxide substituted with 1 at.% Co and treated with
2 at.% MgO. The oxide operates between 10 and 50 ◦C, with a satisfactory capacity varying
between 30 and 50 mAh/g under 100 mA/g for 200 cycles. The full sodium cells are
composed of layered oxide as a cathode and hard carbon as an anode, which function
between 2.0 and 4.0 V and deliver after 500 cycles of more than 40 mAh/g at a current
load of 60 mA/g. The examination of this oxide in full cells discloses its huge potential for
possible commercialization.
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64. Altin, S.; Altundağ, S.; Altin, E.; Harfouche, M.; Bayri, A. An investigation of the improvement in energy storage performance of
Na2/3Mn1/2Fe1/2O2 by systematic Al-substitution. J. Mater. Sci. Mater. Electron. 2020, 31, 14784–14794. [CrossRef]

65. Wang, H.; Gao, R.; Li, Z.; Sun, L.; Hu, Z.; Liu, X. Different Effects of Al Substitution for Mn or Fe on the Structure and
Electrochemical Properties of Na0.67Mn0.5Fe0.5O2 as a Sodium Ion Battery Cathode Material. Inorg. Chem. 2018, 57, 5249–5257.
[CrossRef] [PubMed]

66. Walczak, K.; Kulka, A.; Molenda, J. Alluaudite-Na1.47Fe3(PO4)3: Structural and electrochemical properties of potential cathode
material for Na-ion Batteries. Solid State Sci. 2019, 87, 21–26. [CrossRef]

67. Li, J.-Y.; Wu, X.-L.; Zhang, X.-H.; Lü, H.-Y.; Wang, G.; Guo, J.-Z.; Wan, F.; Wang, R.-S. Romanechite-structured Na0.31MnO1.9
nanofibers as high-performance cathode material for a sodium-ion battery. Chem. Commun. 2015, 51, 14848–14851. [CrossRef]
[PubMed]

68. Griese, J.J.; Kositzki, R.; Schrapers, P.; Rui, X.; Branca, M.M.; Nordström, X.A.; Lehtiö, J.; Haumann, M.; Högbom, X.M. Structural
Basis for Oxygen Activation at a Heterodinuclear Manganese/Iron Cofactor. J. Biol. Chem. 2015, 290, 25254–25272. [CrossRef]

69. Gholam, T.; Zheng, L.R.; Wang, J.O.; Qian, H.J.; Wu, R.; Wang, H.Q. Synchrotron X-ray Absorption Spectroscopy Study of Local
Structure in Al-Doped BiFeO3 Powders. Nanoscale Res. Lett. 2019, 14, 137. [CrossRef]

70. Taylor, N.T.; Davies, F.H.; Rudkin, I.E.M.; Price, C.J.; Chan, T.H.; Hepplestone, S.P. ARTEMIS: Ab initio restructuring tool enabling
the modelling of interface structures. Comput. Phys. Commun. 2020, 257, 107515. [CrossRef]

71. Raut, A.V.; Agrawal, A.; Bagde, A.; Fulzele, P.; Syed, Z.Q. 3-D Bioprinting in cartilage tissue engineering for bioinks-short review.
Mater. Today Proceeding 2021, 44, 3296. [CrossRef]

72. Yang, L.; López del Amo, J.M.; Shadike, Z.; Bak, S.-M.; Bonilla, F.; Galceran, M.; Nayak, P.K.; Buchheim, J.R.; Yang, X.-Q.; Rojo, T.;
et al. A Co- and Ni-Free P2/O3 Biphasic Lithium Stabilized LayeredOxide for Sodium-Ion Batteries and its Cycling Behavior.
Adv. Funct. Mater. 2020, 30, 2003364. [CrossRef]

https://doi.org/10.3390/batteries9020144
https://doi.org/10.1016/j.ensm.2020.11.037
https://doi.org/10.1021/acs.chemmater.2c00522
https://doi.org/10.1016/j.carbon.2016.04.008
https://doi.org/10.1016/j.micromeso.2012.04.043
https://doi.org/10.3390/coatings9100649
https://doi.org/10.1039/C9SE00240E
https://doi.org/10.1021/ie2005516
https://doi.org/10.1039/C7CC03749J
https://doi.org/10.1021/cs501724v
https://doi.org/10.1016/j.apsusc.2007.09.063
https://doi.org/10.1063/1.4935042
https://doi.org/10.1002/er.5820
https://doi.org/10.1002/smtd.201800032
https://doi.org/10.1111/jace.18494
https://doi.org/10.1007/s10854-020-04042-x
https://doi.org/10.1021/acs.inorgchem.8b00284
https://www.ncbi.nlm.nih.gov/pubmed/29688010
https://doi.org/10.1016/j.solidstatesciences.2018.10.017
https://doi.org/10.1039/C5CC05739F
https://www.ncbi.nlm.nih.gov/pubmed/26344149
https://doi.org/10.1074/jbc.M115.675223
https://doi.org/10.1186/s11671-019-2965-3
https://doi.org/10.1016/j.cpc.2020.107515
https://doi.org/10.1016/j.matpr.2021.05.625
https://doi.org/10.1002/adfm.202003364


Batteries 2023, 9, 497 19 of 19

73. Meyer-Klaucke, W.; Gnida, M.; Henkel, G. X-ray Absorption Spectroscopy in Biology. Mol. Sci. Chem. Eng. 2014. [CrossRef]
74. Moeez, I.; Jung, H.G.; Lim, H.-D.; Chung, K.-Y. Pre-Sodiation Strategies and Their Effect on Electrode-Electrolyte Interphases for

High-Performance Electrodes for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2019, 11, 41394–41401. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/B978-0-12-409547-2.10774-7
https://doi.org/10.1021/acsami.9b14381

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Structural Properties 
	Electrochemical Analysis for Half Cells 
	Operando Study of NR2B 
	Electrochemical Analysis of Full Cells 

	Conclusions 
	References

