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Abstract: This article presents a classification method that utilizes impedance spectrum features and
an enhanced K-means algorithm for Lithium-ion batteries. Additionally, a parameter identification
method for the fractional order model is proposed, which is based on the flow direction algorithm
(FDA). In order to reduce the dimensionality of battery features, the Pearson correlation coefficient is
employed to analyze the correlation between impedance spectrum features. The battery classification
is carried out using the improved K-means algorithm, which incorporates the optimization of the
initial clustering center using the grey wolf optimization (GWO) algorithm. The experimental results
demonstrate the effectiveness of this method in accurately classifying batteries and its high level of
accuracy and robustness. Consequently, this method can be relied upon to provide robust support
for battery performance evaluation and fault diagnosis.

Keywords: lithium-ion battery; fractional order model; Pearson correlation coefficient; battery
classification; clustering center

1. Introduction

The energy crisis and environmental pollution have greatly accelerated the rapid de-
velopment of electric vehicles (EVs) and battery energy storage systems (BESSs) [1]. Within
these systems, battery packs serve as critical components responsible for energy storage
and buffering. Lithium-ion batteries are the preferred choice for battery packs due to their
numerous advantages, including high energy density, long cycle life, memory-free effect,
and environmentally friendly nature [2]. However, due to limitations in materials and
manufacturing processes, variations in the initial performance of batteries are inevitable.
The inconsistent integration of batteries can further amplify differences in cell performance,
leading to a shortened service life and increased safety hazards [3]. Therefore, it is impera-
tive to strictly sort the cells before proceeding with the integrated manufacturing of battery
packs in order to ensure optimal performance [4].

There are two essential links in battery sorting: consistency feature extraction and
sorting methods. Consistency features are crucial for battery sorting. Capacity and internal
resistance are essential parameters for batteries, which can effectively characterize the
internal performance status of batteries. Ref. [5] proposes a battery classification method
based on the radial basis function neural network, which takes internal resistance and
capacity as consistency features. Voltage is one of the necessary signals for the battery
management system (BMS). It is used as a consistency feature for battery sorting combined
with a convolutional neural network [6]. A classification framework based on random
forest (RF) is proposed for battery sorting in Ref. [7]. The support vector machine (SVM)
can effectively handle minor sample classification problems [8]. A classification method
for retired batteries based on SVM is proposed in Ref. [9]. Clustering can more intuitively
display sample categories, which are widely used for battery classification and screening.
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Clustering can more intuitively display sample categories. Therefore, clustering methods
are widely used for battery classification and screening [10]. Ref. [11] extracts consistency
feature parameters from vehicle data and establishes a battery classification method based
on improved GK clustering. Capacity is one of the critical parameters of consistency. It is
used as one of the input features of the Gaussian mixture model for battery classification
in Ref. [12]. The charging voltage curve can intuitively reflect the consistency of batteries.
Ref. [13] mines consistent features from the voltage curve and combines them with the
improved K-means algorithm for battery classification. The current pulse testing can
capture more battery parameter information. A battery screening scheme based on an
improved bisecting K-means algorithm combined with fast pulse testing is proposed in
Ref. [14]. The consistent information is implied in the voltage-time series. Mode distance
is used to analyze the voltage dispersion in Ref. [15]. Battery sorting is achieved by
K-medoid clustering. Ref. [16] selects voltage as the feature and uses the density-based
spatial clustering of applications with noise (DBSCAN) algorithm for battery clustering.
Finding the optimal clustering center is a crucial aspect of battery classification algorithms
based on clustering, as it directly influences the accuracy of battery sorting.

This work acknowledges that extracting features based on external characteristics may
be straightforward, but it is challenging to accurately represent the actual performance
status of batteries. The random initialization of clustering centers may also hinder effective
battery clustering. To address these challenges, this study proposes a battery classifica-
tion method that utilizes electrochemical impedance spectroscopy (EIS) features and an
improved K-means algorithm. The key contributions of this work can be summarized
as follows:

(a) A parameter identification method for battery fractional order models is proposed,
utilizing the FDA and compared with other optimization algorithms such as the
dragonfly algorithm (DA), salp swarm algorithm (SSA), ant lion optimizer (ALO),
and particle swarm optimization (PSO) algorithm. This method aims to effectively
identify the parameters of fractional order models.

(b) The correlation between battery model parameters is analyzed using Pearson correla-
tion coefficients. These coefficients are then presented as thermodynamic diagrams
to guide feature dimensionality reduction. This analysis helps to understand the
relationships between different battery model parameters.

(c) An improved K-means algorithm is introduced for battery classification. It employs
the GWO algorithm to optimize the cluster centers. This adaptation addresses the
issue of traditional K-means algorithms being highly sensitive to the initial cluster
center selection.

The subsequent sections of the paper are organized as follows. Section 2 provides an
introduction to the fractional order model. Section 3 outlines the parameter identification
method based on the FDA algorithm. Section 4 presents the experimental setup and
validation process. Finally, Section 5 concludes the paper and summarizes the findings.

2. Battery Modeling

Electrochemical impedance spectroscopy (EIS) is a non-destructive measurement tech-
nique and an effective method for understanding the dynamic behavior of batteries. It is
widely utilized for battery state estimation [17], health assessment [18], and fault diagno-
sis [19]. During an EIS measurement, a small amplitude sine wave voltage signal with
frequency w1 is applied to the battery system. In response, the system generates a sine wave
current with frequency w2. The ratio of excitation voltage to response current represents
the battery’s impedance spectrum, commonly referred to as the Nyquist curve [20].

Figure 1a illustrates the Nyquist diagram of lithium-ion batteries, presenting approxi-
mate representations of high-, medium-, and low-frequency bands. The internal resistance
of a battery refers to the overall resistance across the electrode, electrolyte, and separa-
tor, which is denoted by the initial x-axis intercept value on the Nyquist diagram. The
impedance spectrum at medium to high frequencies reflects the impedance of the battery’s
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solid electrolyte and the polarization impedance of the electrode. The high-frequency part
of EIS reflects the characteristics of charge transfer process and interface reaction inside the
battery. In the high-frequency part, the impedance of the battery is mainly influenced by
the charge transfer process and interface reactions, which are related to the electrolyte con-
ductivity inside the battery, the electrochemical reaction rate on the electrode surface, and
the interface characteristics between the electrode and electrolyte. The medium-frequency
of EIS describes the diffusion effect of charges. The constant phase element (CPE) is used
in parallel with the transfer resistor representing charge diffusion to describe the diffusion
effect of charges [21]. In the low-frequency portion, the Nyquist curve approximately
forms a 45◦ straight line, indicative of the concentration polarization impedance [22]. The
impedance spectrum of the battery electrochemical system at low frequencies can be used
to reflect the diffusion dynamic characteristics inside spherical particles described by Fick’s
second law [23]. Due to the non-standard semicircular shape of the Nyquist curve in the
mid- to high-frequency range, conventional integer order polarization networks fail to
accurately represent it. Hence, fractional-order RC networks serve as effective models for
describing this characteristic [24].
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Figure 1. Battery model. (a) Nyquist diagram of battery. (b) Fractional order model.

Figure 1b displays the fractional-order model of lithium-ion batteries, encompassing
an open-circuit voltage source, an ohmic internal resistance, a Warburg element, and a
polarization network. The polarization network consists of a polarization resistor and a
constant phase element (CPE) connected in parallel. The difference between the terminal
voltage Vt and the open circuit voltage Vocv is defined as:

V(t) = Vt(t)−Vocv(t) (1)

The transfer function of the model can be expressed as:

V(s)
I(s)

= R0 +
R1Zcpe(s)

R1 + Zcpe(s)
+ Zw(s) (2)

where Zcpe and Zw denote the impedances of the CPE and Warburg elements, respectively.
They are defined as:

Zcpe(s) =
1

Ccpesα
(3)

Zw(s) =
1

Cwsβ
(4)

where Ccpe and CW represent the capacitive resistance coefficient and capacitance coefficient,
respectively. α and β denote the derivative order of the CPE and Warburg elements, which
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are taken to be in the interval [0, 1]. Equation (2) is inversely transformed by Laplace to the
time domain as follows:(

Cw∇β + R1CcpeCw∇α+β
)

V(t) =
(

1 + (R0 + R1)Cw∇β + R1Ccpe∇α + R0R1CcpeCw∇α+β
)

I(t) (5)

where∇j (j = α, β, α + β) represents the jth order derivative, which is defined as Equation (6).

∇jg(t) = lim
T→0

1
T j

bt/Tc

∑
i=0

(−1)i
(

j
i

)
g(t− iT) (6)

where g and T are the function and the sampling period, respectively. bt/Tc is the memory

length. The binary coefficient
(

j
i

)
is expressed as Equation (7).

(
j
i

)
=

j!
i!(j− i)

=
Γ(j + 1)

Γ(i + 1)Γ(j− i + 1)
(7)

where the Gamma function Γ(x) is defined as:

Γ(x) =
∫ ∞

0
τx−1e−τdτ (8)

where x is the independent variable. The terminal voltage can be expressed as:

Vt(t) = Vocv(t)−Vcpe(t)− R0 · I(t)−Vw(t) (9)

where Vcpe and Vw are the voltages of the CPE and Warburg elements, respectively. Vocv is
a nonlinear function of the state of charge (SOC), as follows:

Vocv(t) = k0 + k1 · SOC(t) + k2 · SOC(t)2 + k3 · In(SOC(t)) + k4 · In(1− SOC(t)) (10)

where ki (i = 0, 1, . . ., 4) is the function coefficient. SOC is defined as an ampere-hour
integral form as Equation (11).

SOC(t) = SOC(t0) +
η

Q

∫ t

t0

I(τ)dτ (11)

where Q, η, and t0 denote the battery capacity, Coulombic efficiency, and initial time,
respectively.

3. Parameter Identification

This work proposes a parameter identification method based on FDA for the fractional
order model. The objective is to identify the model parameters by minimizing the root
mean square error (RMSE) of the voltage. The objective function f is defined as follows:

f = g(Vt, Vocv, Θ)

=

(
1
N

N
∑

k=1
(Vt
(
k)− V̂t(k, Θ))

2
)0.5 (12)

where Vt and Vocv represent the sequence of measured voltage and open circuit voltage,
respectively. N denotes the sequence length. V̂t(k) denotes the estimated voltage at time k,
which is described as Equation (9). Θ denotes the parameter vector, which is expressed as:

Θ =
[
R0, R1, Ccpe, Cw, α, β

]
(13)

The FDA is a physics-based algorithm that simulates the flow direction of the exit
point with the lowest height in a watershed [25]. The water flow moves to a neighbor with
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the lowest, highest, or best objective function. In the FDA algorithm, the initial location of
the ith flow X f (i) is expressed as:

X f (i) = bl + (bu − bl)× rand(·) (14)

where bu and bl are the upper and lower bounds of the decision variables, respectively.
rand(·) is a random function with values between 0 and 1. The position of the jth neighbor-
hood around the ith flow X f (i) is defined as:

Xn(j) = X f (i) + ∆× rand(·) (15)

where ∆ denotes the neighborhood radius. A more significant value ∆ is beneficial for
global search, but it is challenging to find the optimal value. A smaller value ∆ is beneficial
for the algorithm to perform the refined search, but it is prone to falling into local optima.
In order to balance the two aspects of the algorithm’s capabilities, ∆ is taken as follows:

∆ =
(

Xrand × rand(·)− X f (i)× rand(·)
)
×
∥∥∥Xbest − X f (i)

∥∥∥×W (16)

where Xbest is the optimal decision vector. Xrand is a randomized position, which is defined as:

Xrand =
N

∑
i=1

(Ri − ϕ× ∆t) (17)

where Ri, ∆t, ϕ, and N represent rainfall, time interval, hourly rainfall (cm/h), and number
of time steps, respectively. W is a nonlinear weight, which is defined as:

W =

((
1− niter

Nmax

)2×rand(·)
)
×
(

Ṽ × niter
Nmax

)
× Ṽ (18)

where niter and Nmax are the current and maximum iterations, respectively. Ṽ is a random
vector with uniform distribution. The flow velocity of the fluid is V, which is related to the
slope gradient.

V = S× rand(·) (19)

where the slope vector can be represented as:

S(i, j, d) =
Ff it, f (i)− Ff it,n(j)∥∥∥x f (i, d)− xn(j, d)

∥∥∥ (20)

where S(i, j, d) is the slope vector in the dth direction of the ith flow to the jth neighbor.
f f it, f (i) and f f it,n(j) are the objective function values for the ith flow to the jth neighbor,
respectively. The new location of the ith flow X f ,new(i) can be represented as:

X f ,new(i) = X f (i) + V ×
X f (i)− Xn(j)∥∥∥x f (i)− xn(j)

∥∥∥ (21)

If the objective function of a neighboring flow is found to be smaller than the objective
function of the current flow, the flow will move in the same direction as the neighboring
flow. On the other hand, if the objective function of the neighboring flow is greater, the
flow will move in the direction of the dominant slope. This process can be formulated as:X f ,new(i) = X f (i) + Ṽ ×

(
X f (r)− X f (i)

)
Ff it, f (r) < Ff it, f (i)

X f ,new(i) = X f (i) + 2
(

Xbest − X f (i)
)
× rand(·) Ff it, f (r) ≥ Ff it, f (i)

(22)
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where f f it, f (r) is the fitness function of the neighbor flow. The pseudo-code of the FDA-
based parameter identification of fractional-order models is shown in Table 1.

Table 1. The pseudo-code of the FDA-based parameter identification.

Require: The number of flows N, the maximum number of iterations Nmax, upper and lower
bounds of decision variables bu, bl, etc.

1. Initialize the positions of flows:
2. Xf = [X1, X2, . . ., XN]T, Xi = [xi

1, xi
2, . . ., xi

d]
3. Calculate the fitness function for each flow.
4. Ffit = [ffit,1, ffit,2, . . ., ffit,N]
5. Sort the results and select the best result.
6. Initialize the velocity of flows.
7. Vmax = 0.1 × (bu − bl), Vmin = −0.1 × (bu − bl)
8. For (niter = 1 to Nmax) do
9. Update the nonlinear weight as Equation (18).
10. For (i = 1 to α) do
11. For (j = 1 to β) do
12. Calculate the location of the ith flow as Equation (14).
13. Calculate the neighborhood radius as Equation (15).
14. Calculate the fitness value of neighbor flow Ffin,n(j).
15. End for
16. Sort position of neighborhoods as [~,indx] = sort(Ffin,n).
17. If Ffin,n(indx(1)) < Ffin,f (i)
18. Calculate the slope to the neighborhood as Equation (20).
19. Update the velocity of each flow as Equation (19).
20. If V < Vmin than
21. V = −Vmin
22. else V > Vmax than
23. V = −Vmax
24. End if
25. Flow moves to the best neighborhood as Equation (21).
26. Flow moves to rth flow as Equation (22).
27. End for
28. Calculate the fitness function of new flow Ffit,f,new(i).
29. If Ffit,f,new(i) < Ffit,f (i)
30. Xf(i) = Xf,new(i)
31. Ffit,l(i) = Ffit,f,new(i)
32. End if
33. If Ffit,l(i) < Ffit,best
34. Xbest = Xfit,l(i)
35. Ffit,best = Ffit,l(i)
36. End if
37. End for

4. Experiments and Discussions
4.1. Experimental Platforms and Schemes

To validate the efficacy of the proposed scheme, an experimental platform is set up, as
depicted in Figure 2. The platform comprises a battery testing system (ITECH ITS5300), a
thermostat (HJ-223251), and an industrial computer. It is employed to perform battery open
circuit voltage (OCV) and dynamic voltage testing. The parameters of the tested battery
can be found in Table 2. Detailed parameters can be found in Ref. [26].



Batteries 2023, 9, 491 7 of 15

Batteries 2023, 9, x FOR PEER REVIEW 7 of 15 
 

26.          Flow moves to rth flow as Equation (22). 
27.    End for 
28.    Calculate the fitness function of new flow Ffit,f,new(i). 
29.    If Ffit,f,new(i) < Ffit,f(i) 
30.      Xf(i) = Xf,new(i) 
31.      Ffit,l(i) = Ffit,f,new(i) 
32.    End if 
33.    If Ffit,l(i) < Ffit,best 
34.      Xbest = Xfit,l(i) 
35.      Ffit,best = Ffit,l(i) 
36.    End if 
37. End for 

4. Experiments and Discussions 
4.1. Experimental Platforms and Schemes 

To validate the efficacy of the proposed scheme, an experimental platform is set up, 
as depicted in Figure 2. The platform comprises a battery testing system (ITECH ITS5300), 
a thermostat (HJ-223251), and an industrial computer. It is employed to perform battery 
open circuit voltage (OCV) and dynamic voltage testing. The parameters of the tested bat-
tery can be found in Table 2. Detailed parameters can be found in Ref. [26]. 

Table 2. The parameters of the tested battery [26]. 

Parameters Values Units 
Nominal capacity 2500 mAh 
Nominal voltage 3.6 V 

Maximum charge voltage 4.2 V 
Minimum discharge voltage 3.0 V 

Operating temperature −20~+60 °C 
Cathode material Nickel-cobalt-manganese - 
Anode material Graphite - 

Thermostat

Battery test system

Computer

 
Figure 2. The experimental platform. 

In Figure 3, the capacity and OCV testing schemes are presented. The battery under-
goes three cycles of constant current constant voltage (CCCV) charging and constant cur-
rent (CC) discharging. The average discharge capacity obtained from these cycles repre-
sents the actual capacity of the battery. To ensure that the battery can be fully charged, the 
charging current is set at 1 C, the maximum voltage is limited to 4.2 V, and the cut-off 

Figure 2. The experimental platform.

Table 2. The parameters of the tested battery [26].

Parameters Values Units

Nominal capacity 2500 mAh
Nominal voltage 3.6 V

Maximum charge voltage 4.2 V
Minimum discharge voltage 3.0 V

Operating temperature −20~+60 ◦C
Cathode material Nickel-cobalt-manganese -
Anode material Graphite -

In Figure 3, the capacity and OCV testing schemes are presented. The battery un-
dergoes three cycles of constant current constant voltage (CCCV) charging and constant
current (CC) discharging. The average discharge capacity obtained from these cycles rep-
resents the actual capacity of the battery. To ensure that the battery can be fully charged,
the charging current is set at 1 C, the maximum voltage is limited to 4.2 V, and the cut-off
current is 0.03 C in CCCV charging. For the constant current discharge, the discharge
current is −1 C, and the cut-off voltage is 3.0 V. Before OCV testing, the battery is rested for
1 h. The purpose of battery shelving is to achieve electrochemical balance within the battery
to eliminate internal polarization effects. Then, the battery is discharged with the current
of −0.05 C for battery OCV testing. When the OCV testing is completed, the battery is
fully charged using CCCV. Subsequently, the battery is subjected to dynamic testing under
urban dynamometer driving schedule (UDDS) conditions.
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4.2. Parameter Identification and Validation

The coefficients of the OCV-SOC function are determined by fitting. The function
coefficients are listed in Table 3. The identification results of battery 1# are shown in
Figure 4. The UUDS working condition is an internationally standardized battery testing
condition that can effectively capture the internal parameters of the battery [27]. Its current
profile is plotted in Figure 4a. In this work, the DA, SSA, PSO, and ALO algorithms were
compared with FDA in parameter identification. The boundary ranges of the parameters
are listed in Table 4. Figure 4b shows the voltage estimation results. It can be seen that the
estimated voltage and measured values have a good degree of coincidence. The voltage
errors are basically not within ±15 mV, as shown in Figure 4c. The mean absolute error
(MAE) [28], RMSE [29], and parameter identification results are listed in Table 5. The
FDA algorithm has the lowest RMSE and MAE, which means it has a higher identification
accuracy. Figure 4d shows the fitness curves of algorithms. The FDA algorithm converges
with lower fitness values in approximately the 28th generation. The identification results of
the other 23 batteries are listed in Table 6.

Table 3. The coefficients of OCV-SOC function.

Coefficients k0 k1 k2 k3 k4

Values 3.9194 −0.8259 1.1141 0.1656 0.0062
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Table 4. The boundary range of parameters.

Boundary R0 (Ω) R1 (Ω) Ccpe (F/sα) Cw (F/sβ) α β

Lower 0.05 0.05 50 50 0.3 0.3

Upper 0.5 0.7 120 4000 1.0 1.0

Table 5. Identification results of battery parameters.

Algorithms R0 (Ω) R1 (Ω) Ccpe (F/sα) Cw (F/sβ) α β RMSE/V MAE/V

FDA 0.0186 0.0215 97.12 3801.34 0.539 0.303 0.0123 0.0087

DA 0.0230 0.0201 19.37 1039.32 0.302 0.430 0.0126 0.0091

SSA 0.0141 0.0246 51.40 1407.23 0.415 0.320 0.0123 0.0088

PSO 0.0350 0.2054 100.94 3901.52 0.301 0.308 0.0131 0.0093

ALO 0.0072 0.0252 20.020 630.90 0.470 0.322 0.0124 0.0088

Table 6. Identification results of battery parameters.

Cell R0 (Ω) R1 (Ω) Ccpe (F/sα) Cw (F/sβ) α β

1# 0.0198 0.0198 99.75 3986.39 0.362 0.769

2# 0.0186 0.0215 97.12 3801.34 0.5393 0.3026

3# 0.0181 0.0245 95.98 1924.54 0.5561 0.3049

4# 0.0165 0.0276 89.21 3716.70 0.4473 0.3130

5# 0.0183 0.0239 90.52 3999.86 0.3072 0.7709

6# 0.0229 0.0284 95.99 3989.25 0.3223 0.7604

7# 0.0184 0.0241 96.68 3994.72 0.3066 0.7596
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Table 6. Cont.

Cell R0 (Ω) R1 (Ω) Ccpe (F/sα) Cw (F/sβ) α β

8# 0.0098 0.0303 32.23 3894.95 0.3602 0.3040

9# 0.0122 0.0261 40.00 3655.87 0.4752 0.3254

10# 0.0185 0.0261 92.83 3971.76 0.5183 0.3387

11# 0.0181 0.0134 61.37 3823.72 0.8489 0.3053

12# 0.0190 0.0360 94.36 3899.55 0.3749 0.3019

13# 0.0212 0.0153 94.04 3912.60 0.6721 0.3142

14# 0.0179 0.0185 90.08 351.67 0.4921 0.3047

15# 0.0203 0.0463 85.69 2754.04 0.3486 0.3128

16# 0.0203 0.0151 94.36 3709.59 0.7767 0.3103

17# 0.0181 0.0022 86.21 3943.02 0.9457 0.3004

18# 0.0217 0.0245 93.80 3605.42 0.5573 0.3099

19# 0.0209 0.0267 96.61 3718.61 0.4681 0.3188

20# 0.0210 0.0209 94.63 3702.66 0.5748 0.3053

21# 0.0184 0.0278 98.47 3717.06 0.4050 0.3028

22# 0.0228 0.0125 93.51 3825.61 0.6030 0.3327

23# 0.0170 0.0217 22.88 3037.73 0.8204 0.3013

4.3. Clustering-Based Battery Classification

Clustering is an unsupervised learning method that classifies samples into different
categories or clusters based on their similarity. In the context of battery classification
problems, clustering algorithms can identify similarities among battery samples. In this
study, battery parameters are utilized as clustering features. To reduce feature redundancy,
the correlation between parameters is analyzed using the Pearson correlation coefficient.
The absolute values of the correlations between the six features are visualized in a thermal
map (Figure 5). The range of Pearson correlation coefficient values is [−1, 1], where
1 represents complete positive correlation, −1 represents complete negative correlation,
and 0 represents no correlation. Based on the correlation coefficient, features with a higher
correlation can be selected for preservation, while features with a lower correlation can be
ignored for feature dimensionality reduction. When the correlation coefficient between two
samples exceeds 0.5, it indicates a relatively strong correlation [30]. From the thermal map,
we observe that the absolute values of the correlation between R0 and Ccpe, R1 and α, and α

and β are 0.7231, 0.7314, and 0.5224, respectively. These correlations exceed the threshold of
0.5, signifying a strong association between the corresponding parameters. Consequently,
we reduce the feature dimensionality to [R0, Cw, α], which effectively captures the battery’s
characteristics at high, low, and medium frequencies.

The K-means clustering algorithm is a widely utilized unsupervised classification
technique. Its objective is to minimize the sum of squared errors (SSE) within each cluster,
ensuring that samples within the same cluster are as similar as possible, while samples
between different clusters are as dissimilar as possible. This algorithm is known for its
simplicity and efficiency, as it facilitates fast calculations. However, one drawback is its
sensitivity to the initial selection of clustering centers, which can result in convergence to
local optima. In order to address this issue, we employ the GWO algorithm to optimize
the selection of centers for the K-means algorithm. The fitness value reflects the similarity
between data objects within each class, and a smaller fitness value indicates a closer degree
of integration of data within the class, resulting in a better clustering performance. In this
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work, the sum of Euclidean distances from the intra class data to the cluster center is used
as the fitness value. The objective function is constructed as follows:

J =
K

∑
i=

Ni

∑
j=1

dist
(
Cij, Centeri

)
(23)

where J is the fitness value. K is the number of categories. Ni is the total number of
samples included in ith category. Centeri and Cij are the ith cluster center and the jth sample,
respectively. Due to the normalization of the samples, the range of Centeri is [0, 1]. This
integration helps to enhance the overall performance of the clustering process.The principle
of the improved K-means is summarized in Table 7.
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Table 7. The principle of the improved K-means.

1: Initialize the number of cluster centers K, generate K grey wolves (cluster centers) randomly,
and calculate initial fitness.
2: Determine the current optimal Alpha Grey Wolves, suboptimal Beta Grey Wolves, and
third-best Delta Grey Wolves based on their fitness.
3: The positions of other wolves are updated based on the positions of Alpha, Beta, and Delta
Grey Wolves.
4: Recalculate the fitness of each grey wolf based on its new location.
5: If the termination condition is met (reaching the maximum number of iterations or fitness
reaching a threshold), the algorithm ends. Otherwise, return to Step 3.
6: The output result shows that the final Alpha Grey Wolf position is the optimized K-means
clustering center.

Figure 6 presents the effectiveness of the two algorithms in battery classification.
In Figure 6a, the fitness function value of the GWO is plotted. It can be observed that
convergence occurs around the 85th generation. To avoid the impact of feature dimension
and magnitude on clustering performance, features are normalized before clustering.
Figure 6b,c depict the clustering performance of the K-means algorithm before and after
improvement, respectively. In the traditional K-means algorithm, the clustering effect is
relatively average. Due to its sensitivity to the initial clustering centers, the algorithm



Batteries 2023, 9, 491 12 of 15

is prone to falling into local optima, which may result in deviations or inaccuracies in
the clustering results. However, after applying the Grey Wolf algorithm to optimize
the K-means algorithm, the selection of clustering centers is improved. As a result, the
clustering effect is enhanced. The GWO effectively boosts overall clustering performance
by simulating the collaborative search behavior of individuals in a grey wolf population.
This simulation leads to more accurate and stable clustering results. In order to better
quantify the clustering performance of algorithms, the SSE, silhouette coefficient (SC),
Davies–Bouldin (DB), and Calinski–Harabasz (CH) indexes are adopted, which are defined
as follows:

SSE =
K

∑
k=1

∑
∀xi∈Ck

‖xi − µk‖2 (24)

where K and Ck represent the number of categories and the k-th category, respectively. xi
and µk represent the i-th sample and the centers of the k-th category, respectively. The
smaller the SSE, the more accurately the sample is classified.

SC =
1
N

N

∑
i=1

b(i)− a(i)
max{a(i), b(i)} (25)

where N is the total number of samples. a(i) is the average distance of the i-th sample
in its own category. b(i) is the average distance of the i-th sample in another category
closest to it. SC represents the ratio of the average distance between each sample and its
cluster to the average distance from the nearest cluster, with a value close to 1, indicating
better clustering.

DB =
1
N

N

∑
i=1

max(j 6= i)

(
σi + σj

d(ci, cj)

)
(26)

where σs (s = i, j) represents the degree of dispersion of the s-th category. d(·) represents
the distance between the centers of the i-th and j-th category. DB represents the ratio of the
average distance between clusters to the average distance within the cluster, with a smaller
value indicating a better clustering performance.

CH =
tr(Bk )(N − K)
tr(Wk)(K− 1)

(27)

Bk =
k

∑
j=1

nj
(
cj − ce

)(
cj − ce

)T (28)

Wk =
k

∑
j=1

∑
x∈cj

(
x− cj

)(
x− cj

)T (29)

where tr(Bk) represents the trace of the dispersion matrix between categories. tr(Wk)
represents the trace of the intra-category dispersion matrix. Ce represents the center of the
dataset. nj represents the number of samples in the j-th category. CH represents the ratio of
the variance between clusters to the variance within clusters, with a more significant value
indicating a better clustering performance.

The quantitative results of the four indexes are depicted in Figure 6d and Table 8. Com-
parative to the traditional K-means algorithm, the improved K-means algorithm exhibits a
reduction of approximately 19.85% and 19.72% in SSE and DB, respectively. Moreover, in
terms of SC and CH, the improved K-means algorithm showcases an improvement of about
10.64% and 22.59%, respectively. The main reasons can be summarized as follows. The
K-means algorithm optimized by the GWO algorithm achieves a higher accuracy in battery
classification. This is primarily due to the fact that the K-means algorithm, when enhanced
by the GWO algorithm, can effectively identify optimal clustering centers. Consequently,
the battery samples are more accurately categorized. On the contrary, the traditional K-
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means algorithm is more susceptible to limitations in the selection of initial clustering
centers, thereby resulting in a lower classification accuracy. Overall, the improved K-means
clustering algorithm has a better classification ability.
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Table 8. Clustering evaluation indexes.

Algorithms SSE DB SC CH

K-means 1.3186 1.6985 0.5642 13.4763

Improved K-means 1.1002 1.4187 0.6314 17.4081

5. Conclusions

In the context of electric vehicles and renewable energy storage systems, lithium-ion
batteries serve as crucial energy storage devices. Therefore, accurately classifying their
performance is of significant importance. This research introduces a battery classifica-
tion approach that leverages impedance spectrum features and an improved K-means
algorithm. The methodology begins with conducting an impedance spectroscopy test
on lithium-ion batteries to obtain their electrochemical impedance spectra at various fre-
quencies. Subsequently, a fractional order model of the battery is established. To identify
impedance parameters, an algorithm based on the FDA is proposed. Furthermore, the
Pearson correlation coefficient is employed to measure the correlation between the obtained
features, facilitating dimensionality reduction. This step aids in reducing the complexity
of the dataset without sacrificing critical information. An improved K-means algorithm
is proposed for battery classification. This enhancement involves optimizing the initial
centers of the K-means algorithm using the GWO algorithm. By integrating GWO, the
clustering process is improved, leading to more accurate and stable battery classification.
The experimental results demonstrate that the proposed method achieves high accuracy
and stability in lithium-ion battery classification tasks. This approach holds promise for
effectively assessing the performance of lithium-ion batteries in practical applications. In
our future research endeavors, we will expand our exploration of battery mechanisms and
behavioral consistency features, including electrical, thermal, and health characteristics.
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We will attempt to explore the mapping relationship between internal and external char-
acteristics of batteries and reveal the evolution mechanism of battery pack consistency.
Furthermore, we plan to enhance the development of battery classification algorithms,
striving for greater efficiency.
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