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Abstract: Lithium-ion power batteries, which are the foundation of electric cars and are expected
to play a significant role in a variety of operating environments and application situations, have
major development prospects. In order to obtain the optimal operation range of ternary Li-ion
batteries under various current rates and test temperatures, the characteristics of the voltage plateau
period (VPP) of batteries in different states are examined by piecewise fitting based on charging and
discharging cycle experiments. The findings demonstrate that while charging at current rates of
0.10C, 0.25C, 0.50C, 0.75C, and 1.00C under temperatures of 40 ◦C, 25 ◦C, and 10 ◦C, the battery’s
termination voltage changes seamlessly from 3.5–3.75 V, 3.55–3.8 V, 3.6–3.85 V, 3.7–4 V, and 3.85–4.05
V, the growth in surface temperature does not surpass its maximum level, and the charge capacity
exceeds 50%. Batteries operate more effectively. When the test temperature is −20 ◦C, the voltage
rebound stage that occurs in the initial period of charging at 0.50C, 0.75C, and 1.00C accounts for the
highest charge capacity, close to 70%. The study’s findings can be used as a guide when designing a
lithium-ion power battery’s model and control method for an electric vehicle’s energy storage system.

Keywords: ternary Li-ion battery; charge characteristic; segmentation fitting; voltage plateau period;
wide temperature range

1. Introduction

Due to their environmental protection and security features, electric vehicles have
emerged as one of the primary modes of transportation for the development of smart cities
in a low-carbon society [1–3]. The energy storage rate, service life (number of cycles), and
relatively cheap cost are crucial factors for electric car energy storage systems. According
to one theory [4], the storage system’s capital cost should be comparable to or lower than
$250/kWh with a life span of 3900 cycles in order to be competitive. Compared to batteries
such as lead–acid and nickel–hydrogen batteries, Li-ion batteries provide benefits such
as a high voltage plateau, compact size, low weight, no pollution, recyclability, and high
durability [5]. Currently, the lithium battery is starting to rule the sector of relatively brief
power storage.

LiFePO4 batteries and nickel-cobalt-manganese (NCM) ternary Li-ion batteries are two
types of lithium batteries that are most frequently used in electric vehicles. Table 1 compares
the performances of LiFePO4 batteries and NCM ternary Li-ion batteries. Ternary Li-ion
batteries, which are more suitable for cold climates and may also meet the needs of people
traveling long distances, are more energy dense and operate better at low temperatures than
lithium iron phosphate batteries [6–9]. The energy density of lithium batteries increases
with the nickel content because ternary lithium batteries, which use LiNixCoyMn1−x−yO2
as the cathode material, derive their energy mostly from the nickel material’s redox [10–12].
A high-nickel ternary Li-ion battery is prone to producing cubic halite facies, which reduce
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its ability to facilitate lithium ion de-embedding after several cycles and are unstable at high
temperatures [13]. The high-nickel ternary Li-ion battery is still one of the future trends, as
there is a significant need for high energy density in both the nation and the market.

Table 1. Performance comparison of a LiFePO4 battery and an NCM ternary Li-ion battery.

Type Specific Energy Platform Voltage Advantages Disadvantages

LiFePO4 battery 120–180 Wh kg−1 3.2 V High temperature resistance,
low cost, impact resistance

Poor consistency, poor
low temperature

performance

NCM ternary Li-ion
battery 200–300 Wh kg−1 3.7 V

High specific energy, low
temperature resistance, good

discharge linearity
Poor thermal stability

During this time, a significant variety of research procedures have essentially reached
maturity for the research of lithium iron phosphate batteries, serving as a kind of reference
for investigations on NCM ternary Li-ion batteries with different current rates and a broad
range of temperatures. Huang [14] found that an optimal temperature interval exists for the
batteries at a specific cycle multiplier by studying the cycle curves of lithium iron phosphate
batteries at different temperatures (5–55 ◦C). The dV/dQ−Q curve was also applied to
decompose the decay sources, and it was found that the loss of active lithium accounts
for more than 80% of the total loss after the total capacity decay reaches 20%, providing a
theoretical basis for the segmentation design and improvement of long-cycle-life lithium
iron phosphate batteries. Chen et al. [15] investigated the impact of temperature on LiFePO4
batteries’ median voltage. At low temperature, the median voltage and capacity rapidly
declined, and at high temperature, the median voltage and capacity rapidly increased, but
their change rate was lower than that at low temperature. The best working temperature
is between 20 and 50 ◦C. Ye et al. [16] proposed that the optimal operating temperature
range for lithium batteries is 20–40 ◦C. When the temperature is higher than 40 ◦C, the
heat production and heat production rate of lithium batteries will increase rapidly, and the
thermal performance under both steady-state and transient conditions will be significantly
reduced. It can be found that the research on the segmental performance of lithium iron
phosphate batteries has made some progress. According to the investigation of An [17]
on the effects of the degradation of the capacity and reduced life span of Li-ion batteries,
electrode thickness and permeability have a substantial influence on heat production and
capacity variations. Despite the fact that battery aging will not impair safety when being
charged at a high rate, according to Fleischhammer [18], the overaged lithium coating
might hasten heat buildup and increase safety issues in a high-temperature setting. Shi
et al. [19] investigated the link between the threshold charging voltage and cell capacity
at low temperatures, pulsed energy output, and the cyclic stability of Li-ion batteries at
high temperatures. It was found that the threshold charging voltage of 3.0 V led to high
cell capacity at low temperatures, while batteries with a threshold charging voltage of 3.8 V
had strong high-temperature cyclic durability. Wang [20] carried out high-rate (1C, 2C, 3C)
charge–discharge experiments at 25 ◦C, 10 ◦C, 0 ◦C, −10 ◦C, and −20 ◦C. The experimental
results showed that the charge–discharge time and capacity of the ternary lithium battery
decreased with the decrease in the ambient temperature, and the internal temperature
and internal strain increased with the decrease in the ambient temperature. When the
ambient temperature dropped by about 10 ◦C, the charge–discharge time also decreased
by about 10%. At 25 ◦C, 10 ◦C, and 0 ◦C, the battery presented a flat and long voltage
plateau. However, when the temperature was −10 ◦C and −20 ◦C, the voltage rebounded
at the initial stage of charging and discharging. It is challenging to satisfy the demands of
EVs in seeking the ideal operating phase of a Li-ion battery under various conditions of
operation because there are very few methodical trials to study charging character traits
of ternary Li-ion batteries throughout segments than there are for lithium iron phosphate
batteries [21–23].
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The plateau characteristics of different lithium-ion batteries with the same polymer
electrolyte may differ as a result of a number of variables, including differing element
response potentials, various ratios of element concentrations during the electric reactions,
and various manufacturing methods. Bloom et al. [24] employed the differential voltage
approach to analyze the charging/discharging processes of a lithium battery with the
decaying process of the battery capacity and obtained negative embedded lithium platforms
of batteries using various electrolyte proportions based on the peak of the dQ/dV curve.
Jia [25] studied the inflection point between the reaction stages of Li-ion batteries and
discovered that the curvature point locations of continuous charge curves for an identical
environment and the identical multiplicity were practically identical. Jia then suggested
a method for estimating battery capacity that was predicated on the continuous charge
curve. When charging and discharging batteries of the same specification at a rate of 0.1C,
Zhang et al. [26] constructed a LiFePO4/C electrode material using various techniques and
observed that the voltage plateau time and difference between the samples were different
due to variations in the fabrication process.

A lithium battery should be summarized using multiple-angle tests to determine its
regular properties, and then generic physical models should be built using parameter
identification [27]. A square high-nickel ternary Li-ion battery is the subject of this study,
and experiments with charge and discharge cycles at various current rates were conducted
to track changes in lithium battery’s temperature, voltage, and capacity. These experiments
were done to determine the lithium battery’s availability and safety at various test tempera-
tures in step utilization. In order to model and build a control strategy for Li-ion batteries
in the energy storage section of EVs, it is important to understand the characteristics of the
VPP while the ternary lithium battery is in various operating states.

2. Materials and Methods
2.1. Object

Li-ion batteries are composed of a positive collector, a positive porous electrode, a
microporous polymer diaphragm, a gel polymer electrolyte, a negative porous electrode,
and a negative collector laminate. The collector is a metal foil, and the microporous polymer
diaphragm achieves electrical isolation for the purpose of isolating electrons. As shown in
Figure 1, when charging, lithium ions are firstly disengaged from the positive electrode,
and with the flow of the electrolyte, they pass through the diaphragm and are finally
embedded in the negative electrode. During the whole process, the positive electrode is in
a lithium-poor state due to the continuous shedding of lithium ions, while the negative
electrode is in a lithium-rich state due to the continuous embedding of lithium ions, so
there will be a difference in the concentration of lithium ions inside the whole battery.
At the same time, in order to maintain the balance of the entire circuit, the electrons in
the positive electrode flow to the negative electrode through the external circuit. During
discharge, the movement of lithium ions and electrons is reversed. The ternary Li-ion
battery (manufactured by Contemporary Amperex Technology Co., Ltd., Ningde, China) is
the research object chosen for this paper. Table 2 displays the important technical data.

Table 2. Technical parameters of Li-ion batteries.

Performance Unit Parameter

Nominal voltage V 3.65
Working voltage V 2.75–4.2
Rated capacity Ah 40

Standard internal resistance mΩ 0.7
Specific energy Wh kg−1 206

Size mm 148 × 91 × 27
Weight kg 0.7
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Figure 1. Lithium-ion battery working principle diagram [28].

2.2. Method

Lithium-ion batteries must be subjected to experimental testing in both small- and
large-power output scenarios in order to determine the battery’s performance under various
conditions, which will serve as the experimental foundation for the creation of a battery
energy supply strategy [29,30].

Figure 2 depicts the exact experimental procedure. The lithium battery should first
be exposed to test temperatures of 40 ◦C, 25 ◦C, 10 ◦C, −5 ◦C, and −20 ◦C for 10 h before
being charged with a constant current of 1C to the charging cut-off voltage (4.2 V) and
then switching to constant-voltage charging. When the current rate is less than 0.05C,
charging should be stopped. After resting for 1 h, charging and discharging experiments
are performed. The protocol is to discharge the battery to the discharge termination voltage
(2.75 V) at various rates of 1.00C, 0.75C, 0.50C, 0.25C, and 0.10C and then charge to the
charge termination voltage at the same multiplier current [31].
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2.3. Platform

The experimental platform comprises a CT5002A battery test system (LANHE, Wuhan,
China), a programmable constant temperature and humidity chamber (Sanwood, Dong-
guan, China), a related detecting unit, a mainframe, and control software. Figure 3 displays
the equipment used for the tests.
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3. Results

Aiming at the availability and safety of square ternary lithium batteries under various
test temperatures and current rates, charge–discharge cycle experiments were carried out
to study the variation of the voltage, temperature, and capacity of lithium batteries, which
can lay a foundation for further exploration of the characteristics of the voltage plateau
period under different operating states.

Since the battery management system manages the charging and discharging of Li-ion
batteries and their equilibrium in the process of field service, it was presumed in this
study that there was no mutual distinction among each Li-ion battery, and the equilibrium
throughout the charge and discharge procedure was neglected [32].

3.1. Variations in the Test Temperature’s Impact on the Battery Charge Voltage

Figure 4 depicts the trend of the battery voltage change over time when charging
at the same current rate at various test temperatures of 40 ◦C, 25 ◦C, 10 ◦C, −5 ◦C, and
−20 ◦C. Except for −20 ◦C, the change pattern of the Li-ion battery voltage at the other
temperatures indicated that the voltage rises rapidly for a period of time before the battery
starts charging, and then the battery voltage changes more slowly as the charging time
progresses, and the voltage level substantially increases once the charging is finished. When
the test temperature is −20 ◦C, it can be seen that the terminal voltage of the lithium battery
has a rebound phenomenon at the early stage of charging, and the greater the current, the
greater the rebound amplitude. The 0.50C, 0.75C, and 1.00C charging stages rebounded by
0.0059 V, 0.045 V, and 0.0595 V, respectively.

At the same time, the charging initial terminal voltage exhibits a spike at the 2.75 V
plateau because of the presence of activation polarization and ohmic voltage loss. As the
test temperature rises and the charging speed slows, the initial terminal voltage decreases.
The preliminary voltage increases by 8.89% at 40 ◦C and 0.10C while it increases by 44.08%
at −20 ◦C and 1.00C; when it reaches the maximum of 3.9622 V, it is already more than 1 V
above the minimum.

Additionally, when the ambient temperature fluctuates between 40 ◦C and 25 ◦C with
the same current, the voltage curve virtually overlaps. When the test temperature drops to
−5 ◦C, the trend moves noticeably, and when it approaches −20 ◦C, the trend shifts even
more. The charging times of 0.10C to 1.00C are almost 600 min, 230 min, 105 min, 65 min,



Batteries 2023, 9, 42 6 of 22

and 40 min, respectively, at test temperature of 10 ◦C and above; for test temperature
of −20 ◦C, the charging periods are 454 min, 156 min, 69 min, 44 min, and 32 min. The
battery’s charging speed is quickened and the charging time decreases when the ambient
temperature drops and the charge rate rises.
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3.2. Various Test Temperatures’ Effects on the Rise in Temperature

As seen in Figure 5, while charging at the same current rate at various test temperatures
of 40 ◦C, 25 ◦C, 10 ◦C, −5 ◦C, and −20 ◦C, the trend of the battery surface temperature varies
over time. At the beginning and end of charging due to the existence of the polarization
phenomenon, the surface temperature of the Li-ion battery has a faster decline; the higher
the charging current, the greater the decline. While in the VPP, the temperature will have a
certain increase. The general trend of the battery surface temperature change curve appears
to drop, then rise, and then decrease. When the test temperature is as low as −5 ◦C and
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−20 ◦C, or when the charging current increases to 0.75C and 1.00C, the decrease in the
surface temperature of the battery at the beginning and end of charging is not obvious.

3.3. Effects of Various Test Temperatures and Charge Currents on the Capacity

A comparison of the charging capacity under different experimental conditions is
shown in Figure 6. It is clear that a greater ambient temperature will result in a slower
charging rate and a larger charging capacity. At the identical test temperature and various
currents, the maximum capacity differences between the groups are 10.79 Ah, 14.06 Ah,
12.95 Ah, 14.33 Ah, and 13.46 Ah. The greatest variance is approximately 36% of the rated
capacity, which shows that the current rate has a greater impact on the charging capacity.
As the charging rate increases, the faster the active material reacts, the faster the battery
voltage increases, and the energy loss generated increases. Therefore, the actual charging
capacity of the Li-ion battery with high current charging is lower than the charging capacity
when charging with low current.

The charging capacity at the rate of 0.1C can practically accomplish the rated capacity
of 40 Ah at test temperatures of 40 ◦C, 25 ◦C, and 10 ◦C; however, when the test temperature
drops to −20 ◦C, the charging capacity at the rate of 1C is only 19.47 Ah, which is already
less than 50% of the nominal capacity. Numerous factors contribute to the large drop in
the lithium-ion battery capacity at low temperatures, and the electrolyte’s physical and
chemical properties as well as its composition significantly affect the battery’s performance
at low temperatures. Low temperature causes a lithium-ion battery’s electrolyte to become
more viscous, which lowers the ion conduction rate. This mismatch among the exterior
circuit and the internal electron relocation rate causes the battery to become severely
polarized. On the other hand, in low temperature environments, the diffusion coefficient of
the active material diminishes, the charge transfer impedance increases noticeably, and the
battery charging capacity decreases dramatically [33].
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Figure 6. Charge capacity comparison chart.

4. Discussion
4.1. Brief Introduction of VPP and Its Division Method

The polarization resistance is brought about through the polarization phenomenon of
Li-ion batteries, and the ohmic resistance affects the change in the voltage platform when
charging. Activation polarization and concentration polarization are two categories of the
polarization phenomena. When an external load is connected, the effective battery output
voltage can be expressed as [34]:

U = U0 − [(ηct)a + (ηc)a]− [(ηct)c + (ηc)c]− iRi (1)

where U0 represents the open-circuit potential of the battery, (ηct)a, (ηct)c represent the
activated polarization overpotential of the anode and cathode, (ηc)a, (ηc)c represent the
concentrated polarization overpotential of the anode and cathode, i represents the operating
current of the battery when there is a load, and Ri represents the internal resistance of
the battery.

A change in voltage jump is the physical manifestation of activation polarization,
which is caused when the speed of an electrochemical reaction occurring on the electroac-
tive particle surface is somewhat less rapid than the speed of an electron movement. This
leads to a shift in the actual potential on the electroactive particle surface by the equilibrium
value, which results in activation polarization. The electrode electrochemical reaction’s
activation energy is the primary determinant of this polarization phenomenon. As the
name suggests, the concentration difference is what leads to the phenomenon known as
concentration polarization. Li-ion batteries experience a concentration difference polariza-
tion during the charging process because the diffusion coefficient of Li+ within electrostatic
particles is considerably lower than that of an electrolyte and much lower than the rate of
the electrochemical reaction on its surface. This will make the anode and cathode potentials’
departure from the equilibrium value even worse, which will cause the terminal voltage to
move more quickly when charging initially begins. Equation (2) defines the concentration
polarization overpotential ηc according to the Nernst equation [34], and as the diffusion
process continues, ηc decreases significantly because of the change in the CB/CE concentra-
tion ratio, leading to a flattening of the change of the voltage plateau, which is closer to the
ideal voltage curve. The energy loss due to polarization is also lower in this phase.

ηc =
RT
nF

ln
CB
CE

(2)
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where R represents the gas constant, T represents the thermodynamic temperature, n
represents the number of electrons in the stoichiometric reaction equation, F represents the
Faraday constant, CB represents the body concentration of electroactive particles, and CE
represents the electrode surface concentration.

From the experimental results, there is a relatively flat changing process between the
start and final phase of the voltage waveform. In contrast to LiFePO4, the ternary lithium
battery’s reaction plateau is smaller, and the overall trajectory is not quite as smooth
as that of the LiFePO4 battery. This occurs because lithium takes a long time to embed
in lithium iron phosphate batteries, converting FePO4 to LiFePO4, and Ni, Co, and Mn
elements present in ternary Li-ion batteries tend to form several reaction plateaus with
separate potentials [35]. As a consequence, the response tendency of the voltage plateau
steadily increases.

When a voltage plateau appears, a curve turning point is present. The concavity
and convexity of the bight are used to assess the complete charging bight. The spinodal
into the plateau response period is shown as a convex curve, i.e., the spinodal where the
second-order conductance is less than 0 and the third-order conductance is extremely large,
and the spinodal into the next reaction stage at the end of the plateau is shown as a concave
curve, i.e., the spinodal where the second-order conductance is greater than 0 and the
third-order conductance is extremely large. Accordingly, the location of the spinodal is
established and the charging curve is then separated into three stages as a result: the initial
period, the VPP, and the end period. The VPP is fitted in segments to produce the fitting
diagram and the fitting equation for further analysis [36].

4.2. Effect of Various Test Temperatures on the VPP
4.2.1. 0.10C Charge

The fitted curve and fitted equation for the VPP at the 0.10C charge rate are depicted
in Figure 7. It is clear that a linear regression equation can be used to fit the voltage plateau
duration for each temperature environment, and the coefficient of determination, R2, is
higher than 0.96. The slope of the equation is 7.7 × 10−4, and the ∆x values are 306, 302,
290, 262, and 213 at the respective test temperatures of 40 ◦C, 25 ◦C, 10 ◦C, −5 ◦C, and
−20 ◦C. The time of the VPP decreases sequentially, and the low temperature effect in the
charging phase is more obvious than that in the discharging phase [37].

Figure 8 depicts a graph of the voltage variation interval at 0.10C charging during the
VPP. In light of this, it is investigated how the battery’s surface temperature and charging
capability change when the voltage increases from 3.5 V to 3.75 V at test temperatures of
40 ◦C, 25 ◦C, and 10 ◦C and from 3.53 V to 3.74 V at −5 ◦C.

The results indicated that the temperature varies gradually and prevents the peak
value. The charging capabilities are 20.2 Ah, 20.27 Ah, 20.07 Ah, and 18.87 Ah, supplying
50.17%, 50.40%, 50.69%, and 50.04%, respectively, of the total charging capacity, all of which
are higher than 50%, indicating that the battery has excellent performance during the VPP,
which offers a reference for the staged control strategy of the charging process and provides
a basis for the design of the charging protocol for the on-board energy recovery process. In
addition, the charging capacity during the time when the voltage rises from 3.63 V to 3.82 V
at a test temperature of −20 ◦C is found to be only 46.93%, which is lower than 51.97% at
the end period (3.82 V to the charging cutoff voltage), demonstrating that the VPP at low
temperatures is brief and the behavior is not exceptional.
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Figure 8. The voltage fluctuation intervals during the VPP with 0.10C charging.

4.2.2. 0.25C Charge

The fitted curve and fitted equation for the VPP at a charge rate of 0.25C are shown in
Figure 9. It is clear that a linear regression equation can be used to fit the voltage plateau
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duration for each temperature environment, and the coefficient of determination, R2, is
higher than 0.97. The slope of the equation is 2 × 10−3, and ∆x is approximately 120 at the
test temperature of 10 ◦C, 25 ◦C, and 40 ◦C. At ambient temperatures of −5 ◦C and −20 ◦C,
the slopes of equations are 1.83 × 10−3 and 1.55 × 10−3, and the ∆x values are 102 and 69,
respectively. Consistent with the overall charging curve trend, the voltage plateau time is
shorter at a low temperature.
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Figure 10 displays a graph of the voltage variation interval during the VPP at 0.25C
charging. In light of this, it is investigated how the battery’s surface temperature and
charging capability change while the voltage increases from 3.55 V to 3.8 V at test tempera-
tures of 40 ◦C, 25 ◦C, and 10 ◦C and from 3.61 V to 3.81 V under the condition of −5 ◦C.
The charging capabilities are 19.83 Ah, 20.01 Ah, 19.17 Ah, and 17 Ah, supplying 51.21%,
52.30%, 52.01%, and 50.42%, respectively, of the entire charging capacity, each of which
is higher than 50%. It is discovered that the temperature varies gradually and avoids the
maximum point, indicating that the battery has excellent performance during the VPP,
which offers a reference for the staged control strategy of the charging process and provides
a basis for the design of the charging protocol for the on-board energy recovery process. In
addition, the charging capacity during the time while the voltage rises from 3.79 V to 3.91 V
at a test temperature of −20 ◦C is found to be only 44.30%, which is lower than 53.13% at
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the end period (3.91 V to the charging cutoff voltage), demonstrating that the VPP at low
temperatures is brief and the behavior is not exceptional.
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Figure 10. The voltage fluctuation intervals during the VPP with 0.25C charging.

4.2.3. 0.50C Charge

Figure 11 depicts the fitted curve and fitted equation for the VPP at the 0.50C charge
rate. As can be observed, linear regression equations with R2 values higher than 0.96 may
be used to match the voltage plateau durations for ambient temperatures of 40 ◦C, 25 ◦C,
10 ◦C, and −5 ◦C. The slopes of the equations are 4 × 10−3, 3.91 × 10−3, 3.78 × 10−3,
and 3.12 × 10−3, and the ∆x values are 59, 56, 49, and 46, respectively. As the ambient
temperature decreases, the variation amplitude of the VPP decreases and the duration
shortens.

At the test temperature of −20 ◦C, the terminal voltage of lithium batteries bounces
back to 0.0059 V at the beginning of charging, and the reason for this is that the lithium
battery has a high initial internal resistance at low temperature, and the battery will generate
a lot of heat when working under this condition, which leads to the temperature of the
battery itself rising. For the lithium battery in a low-temperature environment, this heat
helps to improve the rate of the internal electrochemical reaction and will reduce the
internal resistance of the battery. This also indicates that the heat generation of the lithium
battery itself at low temperature is beneficial to enhance the electrochemical behavior of
the battery to some extent. The polynomial equation fitted to the voltage rebound phase is
shown in the following equation.

y = 6.77 × 10−5x2 − 2.5 × 10−3x + 4.03 (3)

Figure 12 displays a graph of the voltage variation interval during the VPP at 0.50C
charging. In light of this, it is investigated how the battery’s surface temperature and
charging capacity vary while the voltage increases from 3.6 V to 3.85 V at test temperatures
of 40 ◦C, 25 ◦C, and 10 ◦C and from 3.74 V to 3.89 V at −5 ◦C.

The charging capabilities are 19.01 Ah, 20.34 Ah, 17.34 Ah, and 15.34 Ah, representing
51.63%, 55.39%, 50.61%, and 50.48% of the total charging capacity, all of which are higher
than 50%. It is discovered that the temperature varies gradually and avoids the maximum
point, indicating that the battery has excellent performance during the VPP, which offers a
reference for the staged control strategy of the charging process and provides a basis for
the design of the charging protocol for the on-board energy recovery process. At the test
temperature of −20 ◦C, charging capacity in this voltage rebound stage reaches 15.67 Ah,
accounting for 68.69% of the total charging capacity.
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4.2.4. 0.75C Charge

Figure 13 depicts the fitted curve and fitted equation for the VPP at 0.75C charge
rate. As can be observed, linear regression models with R2 values higher than 0.97 may
be used to match the voltage plateau durations for ambient temperatures of 40 ◦C, 25 ◦C,
10 ◦C, and −5 ◦C. The slopes of the equations are 6.23 × 10−3, 6.07 × 10−3, 5.47 × 10−3,
and 3.87 × 10−3, and the ∆x values are 36, 34, 33, and 28, respectively. As the ambient
temperature decreases, the variation amplitude of the VPP decreases and the duration
shortens. When the test temperature is −20 ◦C, the terminal voltage of the lithium batteries
rebounds by 0.045 V in the initial period of charging. The fitted polynomial equation of the
voltage rebound stage is shown in the following equation.

y = 2.55 × 10−4x2 − 9.92 × 10−3x + 4.16 (4)
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Figure 14 displays a graph of the voltage variation interval during the VPP at 0.75C
charging. In light of this, it is investigated how the battery’s surface temperature and
charging capacity vary while the voltage increases from 3.7 V to 4 V at test temperatures
of 40 ◦C, 25 ◦C, and 10 ◦C and from 3.86 V to 3.97 V under the condition of −5 ◦C. The



Batteries 2023, 9, 42 16 of 22

charging capabilities are 22 Ah, 21.5 Ah, 20 Ah, and 14 Ah, which represent 67.67%, 66.63%,
66.91%, and 51.43%, respectively, of the total charging capacity and are all higher than
50%. It is discovered that the temperature varies gradually and avoids the maximum
point, indicating that the battery has excellent performance during the VPP, which offers
a reference for the staged control strategy of the charging process and provides a basis
for the design of the charging protocol for the on-board energy recovery process. At the
test temperature of −20 ◦C, the charging capacity in this voltage rebound stage reaches
15.01 Ah, accounting for 69.32% of the total charging capacity.
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Figure 14. The voltage fluctuation intervals during the VPP with 0.75C charging.

4.2.5. 1.00C Charge

Figure 15 depicts the fitted curve and fitted equation for the VPP at a 1.00C charge
rate. As can be observed, linear regression models with R2 values higher than 0.97 may be
used to match the voltage plateau durations for test temperatures of 40 ◦C, 25 ◦C, 10 ◦C,
and −5 ◦C. The slopes of the linear equations are 8.5 × 10−3, 8.5 × 10−3, 7.2 × 10−3,
and 3.72 × 10−3, and the ∆x values are 24, 23, 24, and 18, respectively. As the ambient
temperature decreases, the VPP basically maintains the law that the variation amplitude
decreases and the duration shortens. When the test temperature is −20 ◦C, the terminal
voltage of the lithium batteries rebounds by 0.0595 V at the initial period of charging. The
fitted polynomial equation of the voltage rebound stage is shown in the following equation.

y = 5.19 × 10−4x2 − 1.46 × 10−2x + 4.17 (5)

Figure 16 displays a graph of the voltage variation interval during the VPP at 1.00C
charging. In light of this, it is investigated how the battery’s surface temperature and charg-
ing capability change while the voltage increases from 3.85 V to 4.05 V at test temperatures
of 40 ◦C, 25 ◦C, and 10 ◦C and from 3.99 V to 4.06 V under the condition of −5 ◦C. The
charging capabilities are 15.33 Ah, 14.67 Ah, 15 Ah, and 12 Ah, accounting for 57.20%,
56.66%, 56.31%, and 50.74%, respectively, of the total charging capacity, all of which are
higher than 50%. It is discovered that the temperature varies gradually and avoids the
maximum point, indicating that the battery has excellent performance during the VPP,
which offers a reference for the staged control strategy of the charging process and provides
a basis for the design of the charging protocol for the on-board energy recovery process.
When the test temperature is −20 ◦C, the charging capacity in this voltage rebound stage
reaches 13 Ah, accounting for 66.77% of the total charging capacity.
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4.3. Study on Surface Temperature Range during the VPP

Figure 17 depicts the highest temperature difference of the battery surface during the
charging process and demonstrates that in general, the higher the charging rate, the lower
the ambient temperature, and thus the larger the temperature difference. The temperature
difference of the battery surface is merely 0.49 ◦C under the condition of −5 ◦C and 0.1C;
at −20 ◦C and 1C, the temperature differential is 10.82 ◦C, which is 22 times the minimal
level. Since the diffusion and migration of lithium ions slow down at low temperatures
and the electrolyte viscosity increases, the temperature rise of a lithium-ion battery is
larger at low temperatures than at high temperatures. This is because the battery’s internal
resistance rises as a result. Li-ion batteries produce heat at a rate that is proportional to their
internal resistance while they are operating; therefore, an increase in internal resistance at
low temperatures causes the battery to produce more heat and rise in temperature more
quickly [38].
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Figure 17. Analysis of the highest temperature variation of the battery’s surface.

It is discovered that the temperature rising of the battery surface under each testing
setting during the VPP is negligible and does not approach the maximum value. The
temperature rise of the stage under the condition of −20 ◦C and 1C accounts for 45% of
the peak variation in temperature, showing that the change in temperature during the
VPP is reasonably constant and does not readily result in abnormal occurrences such as
spontaneous combustion.

4.4. Charge Energy Comparison during the VPP

The stage charge energy of the VPP under various experimental settings is compared
and analyzed in Table 3, and the accuracy of the fitting is assessed by computing the sample
standard deviation of the actual outcome ∆Et and the fitted outcome ∆E f . Equations (6)
and (7), respectively, are used to calculate ∆Et and ∆E f .

∆Et = Et2 − Et1 (6)

∆E f =
∫ t2

t1
UIdt (7)
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Table 3. Charge energy comparison during the VPP.

Charge Rate
Ambient

Temperature
(◦C)

∆Et (Wh) ∆Ef (Wh) σ (Wh) Fitting
Accuracy (%)

0.1C

40 74.32 74.40 0.0566 99.8925
25 73.29 73.32 0.0212 99.9591
10 70.41 70.44 0.0212 99.9574
−5 63.69 63.75 0.0424 99.9059
−20 53.15 53.20 0.0354 99.9060

0.25C

40 73.73 73.68 0.0354 99.9321
25 73.20 73.18 0.0141 99.9727
10 66.41 66.37 0.0283 99.9397
−5 63.34 63.25 0.0636 99.8577
−20 44.34 44.39 0.0354 99.8874

0.5C

40 70.98 71.03 0.0354 99.9296
25 69.62 69.64 0.0141 99.9713
10 61.60 61.56 0.0283 99.9350
−5 58.57 58.59 0.0141 99.9659
−20 63.05 63.06 0.0071 99.9841

0.75C

40 66.21 66.18 0.0212 99.9547
25 65.32 65.34 0.0141 99.9694
10 64.16 64.22 0.0424 99.9066
−5 54.88 54.91 0.0212 99.9454
−20 61.18 61.24 0.0424 99.9020

1C

40 63.61 63.62 0.0071 99.9843
25 61.09 61.05 0.0283 99.9345
10 63.62 63.65 0.0212 99.9529
−5 48.43 48.37 0.0424 99.8760
−20 57.44 57.21 0.1626 99.5980

The charge energy parameters at the beginning and end of the VPP from the testbed
are represented in the formula by Et1 and Et2, respectively.

It can be seen that the fitting accuracies are all higher than 99%. The fitting results
have very little error, and the fitted equations indicate high confidence. The energy values
at 25 ◦C and 40 ◦C at either current rate are almost the same. The stage charging energy
of the VPP essentially declines with the reduction of test temperatures and the rise of the
current rates. As the charging rate increases, the effect of low temperature on energy loss
becomes more significant. The charging energy at −5 ◦C drops by 14.31% compared to
that at a test temperature of 40 ◦C at the 0.1C rate and by 23.86% compared to that at a test
temperature of 40 ◦C at the 1C rate.

5. Conclusions

Lithium-ion power batteries, which are the foundation of electric cars and are expected
to play a significant role in a variety of operating environments and application situations,
have significant development potential. This paper aims to investigate the charging cycle
of a ternary Li-ion battery at various rates and test temperatures, examining the voltage
plateau period for these operating states to be used as a guide when designing the battery’s
modelling and control. Following an investigation of the features of the VPP under various
operating settings for lithium batteries, the following results are drawn:

(1) The duration, capacity, and energy of the VPP decrease as the ambient temperature
decreases and the current rate rises, which is congruent with the general pattern of the
charging curve. The VPP essentially coincides at 25 ◦C and 40 ◦C based on an arbitrary
current. When the indicators change visibly at a test temperature of −20 ◦C, the voltage
plateau increases by 0.15 V to 0.4 V in comparison to other ambient temperatures. In order
to minimize energy loss, batteries should not operate for an extended amount of time at
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extremely low temperatures as this has an adverse effect on their performance during
the VPP.

(2) The voltage increases from 3.5–3.75 V, 3.55–3.8 V, 3.6–3.85 V, 3.7–4 V, and 3.85–4.05 V
when charging through the current of 0.10C to 1.00C, respectively, at test temperatures of
10 ◦C, 25 ◦C, and 40 ◦C. At a temperature of −5 ◦C, the voltage increases from 3.53–3.74 V,
3.61–3.81 V, 3.74–3.89 V, 3.86–3.97 V, 3.99–4.06 V. The terminal voltage fluctuates gradually
during these times, the rise in surface temperature does not reach its maximum, and the
charging capacity exceeds 50%. While creating the working prototype and formulating the
control approach, it can be seen that the battery operating margin is better at this point,
which serves as a foundation for determining the optimal battery operating section.

(3) The charging capacity at the stage between the plateau cut-off voltage and the charg-
ing cut-off voltage when charging at 0.1C and 0.25C accounts for the highest percentage
at −20 ◦C, while the capacity during the VPP just accounts for about 45%, demonstrating
that the VPP’s performance at low temperature is not particularly impressive. The highest
percentage of charging capacity, close to 70%, occurs in the initial period of the voltage
rebound stage when charging at 0.50C, 0.75C and 1.00C.

In order to build a more precise physical model of the battery through parameter
identification and provide comprehensive guidance for phased control strategies of electric
vehicles such as small current activation and energy recovery processes, future research
should include segmented fit analysis and multi-angle evaluation for three periods of
voltage fluctuations of charging process simultaneously. Additionally, more research
should be done in the future to examine how well Li-ion batteries perform in environments
with extreme temperature ranges.
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