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Abstract: Recently, electric vehicle (EV) technology has received massive attention worldwide due
to its improved performance efficiency and significant contributions to addressing carbon emission
problems. In line with that, EVs could play a vital role in achieving sustainable development goals
(SDGs). However, EVs face some challenges such as battery health degradation, battery management
complexities, power electronics integration, and appropriate charging strategies. Therefore, further
investigation is essential to select appropriate battery storage and management system, technologies,
algorithms, controllers, and optimization schemes. Although numerous studies have been carried out
on EV technology, the state-of-the-art technology, progress, limitations, and their impacts on achieving
SDGs have not yet been examined. Hence, this review paper comprehensively and critically describes
the various technological advancements of EVs, focusing on key aspects such as storage technology,
battery management system, power electronics technology, charging strategies, methods, algorithms,
and optimizations. Moreover, numerous open issues, challenges, and concerns are discussed to
identify the existing research gaps. Furthermore, this paper develops the relationship between EVs
benefits and SDGs concerning social, economic, and environmental impacts. The analysis reveals that
EVs have a substantial influence on various goals of sustainable development, such as affordable and
clean energy, sustainable cities and communities, industry, economic growth, and climate actions.
Lastly, this review delivers fruitful and effective suggestions for future enhancement of EV technology
that would be beneficial to the EV engineers and industrialists to develop efficient battery storage,
charging approaches, converters, controllers, and optimizations toward targeting SDGs.
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1. Introduction

Global warming is one of the most concerning issues to scientists and researchers
at present, and the main reason behind this vital issue is the greater emission of carbon.
Approximately 3 billion metric tons of carbon dioxide emissions will be produced by only
passenger cars worldwide in 2021 [1]. According to the statistics, 41% of the carbon dioxide
is emitted from the transportation sector globally [2]. In the USA, a total of 29% of the
carbon emissions were produced by passenger cars in the year 2020, according to USA
Environment Protection Authorities [3]. However, some issues should be investigated fur-
ther, such as selecting appropriate battery energy storage, fast charging approaches, power
electronic devices, conversion capability, and hybridization of algorithms or methods [4,5].
Hence, further investigation is required to improve EV technology to achieve sustainable
development goals (SDGs) [6,7].

Unlike traditional vehicle technology, EVs fully depend on batteries in the case of
supplying power, and that is why batteries are considered as the heart of EV technology [8].
Many battery technologies have been introduced by researchers that can easily replace the
traditional methods of supplying cars, such as the lead–acid, nickel–cadmium, lithium-
ion, lithium-ion polymer, and sodium–nickel chloride batteries [9]. Lead–acid battery
technology was introduced at the beginning of the journey of battery technology. Although
it has a short life cycle, it can provide 20–40 Wh/kg at the stage of 100% charge [10,11].
To solve the life cycle problem, inventors introduced a new technology called the nickel–
cadmium battery that has a long-life cycle. However, the fast charging and deep discharging
can cause damage to battery health and performance [12]. Removing all the drawbacks of
the battery technology, a new technology known as the lithium-ion battery was introduced,
which has greater efficiency, longer life cycle, high energy density, and performance at
high temperatures. All of these characteristics make this technology most suitable for
EV applications [9]. Lithium-ion technology has risen to the peak because of its unique
feature such as high energy density, performance at a high temperature, fast charging,
and long lifespan. Nonetheless, the performance of lithium-ion batteries varies with the
combination of different materials such as cobalt, manganese, iron, nickel, aluminum, and
titanate [13–15]. Furthermore, the unavailability of the materials is the drawback that makes
lithium-ion technology a little bit dull [12]. Although the battery technology has advanced
to significant development, each of these batteries has some downsides. Recently, fuel cell
and supercapacitor-based EVs have made a significant stride toward the advancement of
energy storage in the EV market.

The management system of the battery storage system plays a crucial role in the
EV system [16]. For proper supervision of energy storage devices for safe and healthy
operation, various techniques and control operations such as cell monitoring, voltage,
and current monitoring, data acquisition, charge–discharge control, power management
control, temperature control, fault diagnosis, and network and communication network
should work spontaneously [17–19]. In order to perform all the operations efficiently, a
set of highly efficient power electronic devices are needed. DC/DC converters play a
vital role in EV technology. The most widely used DC/DC converters are isolated and
non-isolated. A non-isolated DC/DC converter such as Ćuk, switched capacitor, coupled
inductor, and quasi Z-source converters are used for converting voltage up or down in a
relatively low ratio [20,21]. Due to low cost, high efficiency, and lower ripples, DC/DC
converters are famous in EV technology. However, present switching control techniques
are not reliable enough for EVs. An isolated DC/DC converter is used when the ratio of
output and input voltage is high. The buck–boost converter, push–pull converter (PPC),
DC/DC resonant converter (RC), zero-voltage switching converter (ZVSC), and full-bridge
boost DC/DC converter (FBC) are widely used converters in EV technology, with each
having individual drawbacks.
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EV technology is not only a revolution in the transportation industry, but also a
roadmap to economic development [16]. The increasing EV industry has tremendously
influenced the economy by creating jobs that meet sustainable economic growth, which
is related to SDG8 [17]. Unlike other transportation technologies, EV technology totally
depends on battery storage; thus, there is no need to burn coal, oil, or gas, which means
that it is a technology that provides clean and green energy, which is the requirement of
SDG7 [18]. Furthermore, EV technology is an environmentally friendly solution that emits
zero carbon which meets the major requirement of SDG13 [19]. Moreover, EV technology
can also integrate renewable energy sources (RESs). As a result, industries which produce
the materials for generating energy from renewable energy sources will develop. This will
represent industrial innovation that can fulfill another goal (SDG9) [20]. Smart cities are
currently becoming popular, and EVs are the most precious requirement for smart cities
related to SDG11 [21].

To date, many technologies related to EV energy storage have been proposed by
many researchers throughout the world. Hannan et al. [14] presented a strong review
with criticism of lithium-ion batteries in which they illustrated a brief history and per-
formance and demand of lithium-ion batteries in the EV industry, as well as the effect of
environment-related facts and issues. Another study by Tie et al. [22] studied alternative
energy sources, energy storage systems, energy management and control, supervisory
control, and algorithms. The authors developed a relationship between the EV industry
and economic growth relating to SDGs, but they did not consider other SDGs with EV
technology. Sujitha et al. [23] presented a review of RES-based EV charging systems in
which various types of power converters were discussed. However, the authors delivered
specific topologies and their working principle. Katoch et al. [24] conducted a detailed
review on the thermal management system for EV batteries, such as air cooling, liquid
cooling, direct refrigerant cooling, phase change material cooling, thermoelectric cooling,
and heat pipe cooling. Manzetti et al. [11] illustrated a wide history of EV batteries from the
beginning to the present. They mentioned that bio batteries could be a promising solution
in green battery technology over metal–lithium batteries in upcoming days in the EV indus-
try. Lipu et al. [5] reviewed various converter schemes and controller technologies in EV
application; however, a comprehensive study based on other EV-based technologies was
not mentioned. Although green chemistry, which meets one of the major SDGs (climate),
was considered in this study, how this technology can complement the other SDGs is still
needed to investigate. In summary, the relationship among EV technology, SDGs, and
battery technology was not considered in any of the abovementioned studies. Therefore,
further study is required to integrate the SDGs with the EV industries.

To bridge the existing shortcomings, this study highlights a detailed survey on
prospects of EV and SDG integration. Furthermore, the study presents various tech-
nological advancements, issues, challenges, and future recommendations. This review
provides the following contributions:

• This review critically examines the various battery storage systems, materials, charac-
teristics, and performance. Additionally, the key components of the battery manage-
ment system are outlined.

• The various technological advancements of EVs concerning the power electronics
technology and charging strategies are discussed rigorously.

• The state-of-the-art methods, algorithms, controllers, and optimization schemes ap-
plied in EVs are explained thoroughly.

• The work establishes the relationship of EV energy management and technologies
with sustainable development targeting various goals such as clean energy, sustainable
cities, economic development, industry, infrastructure, and emission reduction.

• Lastly, this research illustrates the scope, opportunities, and future trends for the
advancement of EVs. The analysis, key findings, and suggestions can be helpful in
successfully integrating the EV technologies with SDG targets.
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The remainder of the paper is divided into seven sections. Section 2 covers several
battery energy storage systems and key components of battery management systems. The
EV technologies concerning power electronics converters and charging features and tech-
nologies are presented in Section 3. In Section 4, the algorithms, methods, approaches,
controllers, and optimizations employed in EVs are reported. The open issues and chal-
lenges are highlighted in Section 5. The impacts of EVs in achieving different goals of
sustainable development are examined in Section 6. Lastly, the conclusions, along with the
future trends, are provided in Section 7.

2. Battery Energy Storage and Management in EVs

This section broadly discusses and analyzes the various battery storage characteristics,
features, and key components of battery management in EV applications.

2.1. Battery Storage Technology
2.1.1. Lead–Acid (Pb–Acid)

The lead–acid battery is considered as one of the oldest battery technologies to be used
globally. Lead–acid batteries display a specific energy of 20–40 Wh/kg at 100% of the state
of charge (SOC) of a lead–acid battery. It contributes a small cycle life due to the shedding
of active material compared to other types of batteries such as nickel metal hydride. The
low energy-to-weight ratio and low energy-to-volume ratio are considerable limitations.
Furthermore, the lead–acid battery is not an environmentally sound technology due to
the presence of lead and acid. Despite several drawbacks, the low manufacturing cost of
around 100 USD/kWh makes it suitable for small-scale, light-performance vehicles [10,11].

2.1.2. Nickel–Cadmium (NiCd) Battery

Nickel–cadmium (NC) battery technology was employed in the 1990s, presenting high
energy density. The NC battery technology was employed in applications such as power
quality and energy reserves for telecommunication and portable services [25]. NC batteries
provide a long lifecycle span of 1500 cycles compared with NiMH battery. However, the
NC battery may cause damage due to deep discharge and a faster charging time. NiMH
batteries possess a memory loss effect, which occurs due to the battery’s frequent charging
process before complete discharge. One of the major drawbacks of NC is the adoption of
toxic metals such as cadmium during the manufacturing process. Cadmium causes adverse
effects on the environment and human health. Equation (1) shows the electrochemical
cell reaction of an NC battery, where Cd is used as an anode and NiO(OH) is used as a
cathode [12].

Cd + 2NiO (OH) + 2H2O � 2NiO (OH)2 + Cd (OH)2. (1)

2.1.3. Lithium-Ion Battery

The lithium-ion battery is considered as one of the leading battery technologies used
in EVs. The high energy density, greater efficiency, longer life cycle, and better performance
at high temperatures are the well-known features of Li-ion batteries. Lithium maintains the
lowest redox potential, which is around (−3.05 V), and the largest electrochemical equiva-
lence of (3.86 Ah·g−1) [25]. It is still recognized as suitable for battery-driven EVs. Moreover,
lithium alone has the smallest reduction potential capacity of any element, which enables
this battery to hold the topmost cell potential. The most important advantage of this battery
relates to the recycling ability of the various components used. However, the material’s
unavailability and high cost per kWh (135 USD /kWh) represent significant drawbacks [12].
Generally, the performance of the lithium-ion battery relies upon various internal material
properties. The selection of materials is crucial, specifically the positive electrode, which
controls the battery characteristics such as power, safety, cost, and lifespan [26–29]. The
positive electrode material can be classified into lithium cobalt oxide, lithium manganese
oxide, lithium iron phosphate, lithium nickel manganese cobalt oxide, lithium nickel cobalt
aluminum oxide, and lithium titanate, which are discussed below [13–15].
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Lithium Cobalt Oxide—LiCoO2

Goodenough announced the existence of layered transition metal oxides in 1980 [25].
They are considered among the most commonly implemented positive electrodes. Initially,
Sony marketed lithium cobalt oxide (LCO) in 1991 and used cobalt oxide as a cathode
which was the most commonly used material in lithium-ion battery technology. The
theoretical capacity of LCO is approximately 274 mAh·g−1 with a high volumetric capacity
of 1363 mAh·cm−3. It constitutes high energy density, offers a moderate lifespan, and has
considerable safety applicable for several electronic gadgets such as cameras, notebooks,
and tablets [9,12,13]. Nevertheless, the LCO shows unsatisfactory behavior during its
operating condition at the rate of high current of charge–discharge. Consequently, proper
protections are required due to excessive heating and stress. In addition, the cost of cobalt
is high due to its limited availability [30]. Hence, an alternative to cobalt cathode materials
is preferred to raise the appropriateness of LCO in EVs.

Lithium Manganese Oxide—LiMn2O4

Lithium manganese oxide (LMO) is one of the most reviewed cathode materials
for lithium-ion battery technology due to its easy accessibility to raw materials and low
cost [31,32]. The Bellcore lab developed the LMO battery technology in 1994. The 3D
spinel architecture of LMO helps to reduce the internal resistance and simultaneously
increases the charge/discharge current flow. It exhibits decent specific power and energy
density and can carry >50% more energy than nickel-based batteries. The theoretical
capacity of LMO is about 148 mAh·g−1. Pristine LMO ensures 95% delivery of its capacity,
which is not possible in the case of LCO [33]. However, it has negative effects on its
life cycle and performance. Moreover, LMO has extensive manganese breakdown in the
electrolyte at high temperatures, which results in a high capacity loss. The capacity of
LMO is approximately 33% lower than that of cobalt-based batteries [34–36]. Presently, the
application of LMO is carried out in Nissan Leaf EV technology [14].

Lithium Iron Phosphate—LiFePO4

The University of Texas investigated the application of phosphate as a cathode material
and concluded that phosphate demonstrates better performance than LCO or LMO batteries
at high temperatures and in overcharged states. Phosphates exhibit good thermal stability,
operating in the temperature range of −30 ◦C to 60 ◦C [37,38]. Lithium iron phosphate (LFP)
can contribute with a nominal voltage of approximately 3.2 V and moderate power and
energy density. In addition, the LFP battery has low cost, a long lifespan, an enhanced safety
system, and high load-handling capability. The major drawbacks of LFP relate to poor
lithium diffusion, poor electronic conductivity, and lower specific energy of 160 mAh/g
compared to LCO and LMO battery technology. Furthermore, it requires a small particle
size and carbon coating to enable performance at high current rates, resulting in a high
processing cost [39].

Lithium Nickel Manganese Cobalt Oxide—Li(Ni, Mn, Co)O2

Lithium nickel manganese cobalt oxide (LNMC) battery technology was first com-
modified in the year 2004. At present, battery industries are focusing on improving the
cathode material by developing composite nickel–manganese–cobalt (NMC). These NMC
electrode sheets are available in four different compositions, namely, NANOMYTE® BE-
50E (NMC111), BE-52E (NMC532), BE-54E (NMC622), and BE-56E (NMC811). These
different compositions possess unique outcomes. In terms of minimum capacity, BE-
50E (NMC111), BE-52E (NMC532), BE-54E (NMC622), and BE-56E (NMC811) reveal
150 mAh/g, 155 mAh/g, 166 mAh/g, and 190 mAh/g, respectively, while the experi-
mental outcomes were ≥155 mAh/g (2.7–4.3 V @ 0.1 C), ≥165 mAh/g (2.7–4.3 V @ 0.1 C),
≥175 mAh/g (3–4.3 V @ 0.1 C), and ≥200 mAh/g (3–4.3 V @ 0.1 C), respectively [40].
The cathode material of LNMC is developed by utilizing 33% nickel, 33% manganese,
and 34% cobalt. The hybrid mixture of NMC draws out the low internal resistance
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effect of manganese and the high specific energy of nickel. Moreover, LNMC offers
high power and energy density with improved lifespan and performance. At present,
LNMC has high demand in EV applications for its low self-heating rate and long lifespan
(1000–2000 cycles) [41–43]. It is suggested that LMNC battery characteristics could be al-
tered by varying the combination of nickel, manganese, and cobalt for certain applications.
The increment in manganese percentage leads to an enhancement of specific power, while
the increment in nickel leads to an enhancement of specific energy. Presently, the BMW i3
is run by NMC-based lithium-ion batteries [13].

Lithium Nickel Cobalt Aluminum Oxide—Li(Ni, Co, Al)O2

The nickel cobalt aluminum oxide (NCA) battery was commercially presented in 1999.
The maximum utilization of nickel as a cathode material reduces the dependency of cobalt
in LCO. It provides increased specific power, excellent specific energy of 200–250 Wh/kg,
and a durable life cycle. In recent years, lithium nickel cobalt aluminum oxide (LNCA)
battery technology has gained increasing attention in EV applications. Due to its high
power and energy densities, automobile companies are concentrating on LNCA battery
application in EV technology. However, further advancement is needed to improve its
safety mechanism [37,44,45]. The automobile giant Tesla is currently utilizing LNCA battery
technology to develop EVs [13].

Lithium Titanate—Li4Ti5O12

Lithium titanate (LTO) has a spinel architecture and is configured using LMO, LNCA
as a cathode material, and titanate as an anode material. The spinel configuration delivers
a few advantages, such as structural firmness due to the zero strain effect and considerable
reversibility [46]. LTO delivers high performance and a long lifespan. Furthermore, LTO
operates safely at cold temperatures [47–49]. However, the power and energy density of
LTO are lower compared to NMC- and NCA-based lithium-ion battery technology. The
LTO recommends a constant active potential of around 1.55 V, but the electronic structure
depicts insulating behavior with a bandgap of 2–3 eV [50]. The main obstacles that appear
in LTO batteries are gas evolution, which leads to battery swelling, and low performance
during charge/discharge due to low electrical conductivity [51]. Thus, further explorations
are focused on improving these areas, including specific energy and cost reduction.

A detailed comparative study of lithium-ion battery materials, performance, and
characteristics is shown in Figure 1 [52]. The figure clearly presents that LMO, LNMC, and
LNCA batteries are the best depending upon the voltage, power, and energy categories.
On the other hand, LFP and LTO batteries can be used when high lifecycle and safety
are major concerns. Moreover, LTO is economically excellent and capable of delivering
high performance.

Lithium-Ion Polymer

At the beginning of the 21st century, lithium-ion battery technology started to shift the
paradigm from liquid electrolyte cells with metal housing to plastic casings. The battery
technology was generally named as a lithium-ion polymer (LPO) battery [53]. The LPO
battery technology is a secondary battery that consists of a polymer electrolyte in the liquid
electrolyte utilized in usual lithium-ion batteries [54]. All Li-ion cells expand at high levels
of state of charge (SOC) or overcharge due to slight vaporization of the electrolyte. This
may result in delamination and bad contact of the internal layers of the cell, which in
turn brings diminished reliability and overall cycle life of the cell. Lithium-ion polymer
batteries have delivered satisfactory outcomes and have taken over nickel–metal hydride
(NiMH) batteries for moveable electronic devices such as smartphones and laptops. They
provide excellent high energy density (400 Wh·L−1) compared to other types of batteries.
The high power and energy density make them qualified candidates for EV and HEV
applications [55]. They also contribute toward the extended cycle life of ordinary Li-ion
batteries. The temperature should be kept at less than 50 ◦C to ensure the available cell
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capacity and utilize the full life span. However, functional instability materializes during
limited battery discharge and overload conditions.
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Lithium-Ion Silicon

The initial work with lithium-ion silicon (LS) technology was initiated by Sharma and
Seefurth in 1976 [56]. The preliminary research in LS battery technology was conducted by
Dahn et al., as well as other teams from the year 1990 to 2000. At the same time, extensive
research work was conducted between 2011 and 2015 [57]. The LS battery shows great
potential due to its high capacity and long cycle life. However, some concerns related to
LS battery technology need to be overcome, such as low Coulombic efficiency, lower real
mass loading density, and high cost. Silicon anodes are among the most promising anode
materials for lithium-ion batteries due to their various advantageous features, including
the highest known capacity and relatively low working potential. However, the problem of
extremely large volumetric change must be addressed before silicon anodes can be utilized
in practical lithium batteries.
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2.1.4. Sodium–Nickel Chloride (Na/NiCl2)

The high-temperature sodium–nickel chloride (SNC) battery, also known as the ZEBRA
(zero-emission battery research activity) battery, is manufactured from diluted sodium and
nickel chloride. The solid ceramic simultaneously acts as an electrolyte and a separator at
an optimal operating temperature of 270–350 ◦C. The specific energy of SNC is reported
to be 125 Wh/kg with an energy efficiency of 92%, which is better than Pb–acid, NCd,
and nickel–metal hydride (NMH) battery technologies [58]. The major concern of SNC is
its operational safety due to the high operating temperature of 300 ◦C and its storage for
longer periods. Furthermore, the high internal resistance and faster self-discharge cause
low power capability for SNC batteries [59].

2.1.5. Fuel Cell

A fuel cell is an electrochemical device that uses two redox processes to transform the
chemical energy of a fuel (typically hydrogen) and an oxidizing agent into electrical energy.
Fuel cells require a constant supply of fuel and oxygen (often from the air) to sustain the
chemical reaction, and they can constantly create electricity as long as fuel and oxygen are
available. Sir William Grove created the first fuel cells in 1838. One century later, Francis
Thomas Bacon created the hydrogen–oxygen fuel cell in 1932 [60]. Song et al. [61] examined
the temperature effects on the performance of fuel cell-based hybrid EVs. Quan et al. [62]
evaluated the fuel cell EV energy management strategies using model predictive control
considering performance degradation in real time. Fuel cells offer a much more silent and
a smoother alternative to conventional energy production that can greatly reduce CO2 and
harmful pollutant emissions. However, the fuel cell is expensive to manufacture due to the
high cost of catalysts (platinum).

2.1.6. Supercapacitor

A supercapacitor (SC), sometimes known as an ultracapacitor, is a high-capacity
capacitor that bridges the gap between electrolytic capacitors and rechargeable batteries.
It has a capacitance value that is significantly higher than ordinary capacitors but with
lower voltage restrictions. In comparison to electrolytic capacitors, it typically stores 10 to
100 times more energy per unit volume or mass, accepts and delivers charge considerably
more quickly, and can withstand many more charge and discharge cycles than rechargeable
batteries. Nguyen et al. [63] used the SC for energy storage in EV applications. Although
the SC exhibits long life, it has some drawbacks, such as the generally lower amount of
energy stored per unit weight compared to an electrochemical battery.

2.2. Battery Management System in EVs

The battery management system (BMS) can be defined as a system that assists in
managing the battery operation via electronic, mechanical, and advanced technological sys-
tems [64]. An advanced BMS for EV applications is presented in Figure 2 [4]. The basic aims
of BMS are cell/battery protection from being damaged and ensuring optimum operating
conditions. The BMS ensures the proper supervision of the battery storage systems through
control and continuous monitoring via various control techniques such as charge–discharge
control, temperature control, cell potential, current, and voltage monitoring, thus enhanc-
ing the safety and lifetime of the energy management system (EMS) [65–67]. Nonetheless,
the deep charge and discharge of the battery during long-distance traveling in EV are
fundamental issues [68], potentially causing the failure of the battery or shock hazards due
to the high discharge and thermal effect [69]. The BMS becomes effective in minimizing
these difficulties by controlling the charge and discharge profile, as well as managing the
thermal behavior of the battery packs. The state of charge (SOC), state of health (SOH),
and remaining useful life (RUL) are the key parameters in the BMS for understanding
the status of the battery. The BMS also protects the battery pack from high-voltage stress
and short-circuit current by integrating controllers, actuators, and sensors [14]. The key
components and operation of BMS applications in EV technology are explained below.
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2.2.1. Battery Cell Monitoring

The information on battery charging/discharging, health, temperature, and fault
diagnosis is the foundation for completing the BMS duties [70,71]. Generally, a pack of
battery cells is used in EVs [72]. The battery cell may react differently during the battery
charging/discharging operation. As a result, continual battery cell monitoring is required
to investigate the different states and performance indices [52]. The findings of the battery
cell monitoring can help the system function better by managing, protecting, balancing,
and controlling operations [73].

2.2.2. Voltage and Current Measurement

The battery cells are connected in series and parallel to the battery bank to acquire a
sufficient amount of voltage and current. Hundreds of cells are linked in series in battery
packs of electric automobiles, resulting in a large number of voltage measurement channels.
When the cell voltage is measured, there is accumulated potential, and the combined
potential of one cell differs from another. Hence, a suitable charge equalization must be
provided in order to enhance EV autonomy [74]. An accurate battery cell measurement is
required for the estimation of SOC and other battery states. One of the common voltage
monitoring methods is the voltage divider technique which consists of a resistor and
precise temperature-corrected voltage reference used to monitor the cell voltage. The
other available methods are the optical coupling relay, optical coupling isolation amplifier,
discrete transistor, and distributed measurement [64]. High-voltage current sensors are
used to monitor the current of the battery module, which is later converted to a digital
signal via analog to digital conversion (ADC). Finally, the voltage and current data are
utilized to appropriately estimate the SOC, SOH, and RUL [75].

2.2.3. Data Acquisition

The data acquisition system (DAS) is used for measuring and estimating the param-
eters of the battery pack, such as current, voltage, temperature, and SOC [76,77]. This
facilitates diagnosing the battery’s health and identifying defective cells. It also investigates
battery changes that would assist in delivering the status of battery aging, climate, and
other factors. The DAS is an integral part of the BMS, which consists of a hardware device
(microcontroller unit) and software. The DAS uses the ADC module for data conversion. A
controlled area network (CAN) bus and serial communication interface (SCI) module are
used to exchange information and communicate with the BMS [78–80]. A cloud-based DAS
platform within the BMS to extract critical information such as battery current, voltage, and
temperature is presented in Figure 3 [81].
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2.2.4. Battery State Estimation

The battery state estimation is critical for estimating battery charge and health. The
SOC, SOH, RUL, state of function (SOF), state of power (SOP), state of energy (SOE), and
state of safety (SOS) are some of the common battery states [82]. A framework for estimating
SOC, SOH, RUL, SOF, SOP, SOE, and SOS for the BMS is depicted in Figure 4 [83].
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State of Charge

SOC can be defined as the proportion of currently available capacity to maximal battery
capacity [84]. It is not directly measurable from terminals; hence, a method must be created
to predict the state from measured data [85]. The appropriate assessment of SOC is not
only needed for battery protection from degradation but also for the highest level of energy



Batteries 2022, 8, 119 11 of 60

management [86]. Several methods are available to estimate the SOC, such as the discharge
test method, sliding mode observer method, neural network method, fuzzy logic method,
impedance method, and internal resistance method, as well as Kalman filter (KF), machine
learning, and deep learning approaches [52]. The Ampere-hour (Ah) and open-circuit
voltage methods are also common methods to calculate the SOC [87,88]. The Ah technique
becomes a simple choice for SOC calculation since charging or discharging current may
be easily monitored. However, the accuracy of SOC estimation is not error-free, and the
firmness of the initial state is complex. Furthermore, the estimation accuracy is improved in
the open-circuit voltage (OCV) method, but the long resting time limits the rapid application
of this method in EVs [89]. KF-based SOC estimation achieves accurate results but has
complex mathematical computation and functional relationships [90]. Recently, machine
learning and deep learning methods for SOC estimation have received wide attention due
to their high accuracy, improved learning capability, better generalization performance,
and convergence speed [91].

State of Health

The SOH of the battery can be defined as the available maximum capacity left by the
cycling effect of charge–discharge [92]. The following equation can be used to estimate
the SOH:

SOH (%) = (QactualQrated) × 100, (2)

where Qactual is the actual capacity of the battery, and Qrated is the rated capacity [93].
The SOH can be easily estimated from an understanding of capacity degradation

and the internal resistance of the battery. A variety of methods have been developed to
estimate battery SOH, which can be divided into three categories: model-free, model-based,
and data-driven methods [93]. Electrochemical impedance spectroscopy (EIS) analysis is
much more convenient compared with direct methods for capacity and internal resistance
estimation in a model-free method [94]. On the other hand, model-based methods follow
the equivalent circuit model and electrochemical model to estimate the capacity and internal
resistance during battery operation. Similarly, the data-driven method uses the support
vector machine (SVM) mechanism to estimate SOH by measuring the terminal voltage,
current, and temperature [95].

Remaining Useful Life

Accurate and robust EV performance is subjected to the battery’s remaining useful
life (RUL). The battery’s continuous charging and discharging process results in capacity
degradation, which can deliver unacceptable outcomes such as major breakdown, eco-
nomic loss, and safety issues [5,96]. Therefore, it is crucial to estimate the RUL of the
battery toward the achievement of safe, accurate, robust, and reliable operation of EV
technology [97]. When the battery is charged and discharged continuously, and its capacity
remains 70% or 80% of the initial capacity, the battery needs replacement. Therefore, several
model-based and data-driven-based techniques have been explored to predict the RUL
of the battery. The model-based techniques rely on a mathematical model and detailed
experiments; however, the technique requires a huge volume of data to estimate the battery
degradation pattern. On the other hand, data-driven methods depend on battery historical
data, which comprise various parameters such as voltage, current, impedance, capacity,
and temperature. Data-driven methods predict the RUL by considering battery data and
do not require complex mathematical models [96].

State of Function

The SOF is described as the capability of a battery that can finish a specific task. It
narrates the performance of the battery in terms of meeting the power demand [98]. It can
also be determined from the ratio of available useable energy to the maximum stored energy
of the battery [99]. The SOF is estimated with the help of SOC, SOH, and temperature [64].
The SOF can be calculated from a few approaches, such as (adaptive) characteristic maps
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and equivalent circuit models, including the fuzzy logic control method [100]. The SOC,
power pulse duration, power, voltage, and temperature are the characteristics needed in
(adaptive) characteristic maps [98]. Additionally, KF and artificial neural network (ANN)
algorithms are adopted in model-based methods for the accurate estimation of SOF. The
parameters related to SOC, SOH, and C-rate of the battery are also employed in the fuzzy
logic algorithm to estimate the battery SOF [64].

2.2.5. Battery Protection Strategies

Battery protection is one of the major tasks of BMS. Due to alterations in physical and
chemical characteristics of the battery and frequent charge–discharge, voltage and charge
deviance may occur in battery cells [101]. The overall battery performance and lifetime may
be reduced because of the deviation of voltage and charge. Moreover, the deep discharge
below the minimum SOC limit and overcharge of the battery beyond the C-rating may
cause a critical situation for the battery [102]. Thus, a suitable protection system for the
battery in EV applications is important. The proper maintenance of operating temperature
is also a significant parameter for ensuring safety. The BMS provides temperature safety
limits which stand between 0 ◦C and 60 ◦C for charge and between −20 ◦C and 60 ◦C for
discharge [103]. It also provides deep discharge protection, overcharge protection, high-
temperature protection, uplifted voltage protection, and power cutoff safety. However,
BMS safety protocols should comply with the automobile International Organization for
Standardization (ISO) 26262 [104]. A fully integrated, cost-effective, and low-power single-
chip lithium-ion battery protection IC (BPIC) was proposed by Lee et al. [105], as shown
in Figure 5.
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2.2.6. Battery Equalizer Control

The BMS can protect the battery from abnormalities that are caused by the un-
der/overcharging of the battery through individual cell monitoring and charge equal-
ization control [106,107]. The undercharging of the battery can deteriorate the lifetime,
and overcharging of the battery can damage it completely. To enhance and maintain the
constant performance of the battery, the equalization of voltage and charge of battery cells
is critical [108]. Battery equalizer control can be broadly categorized into active and passive
charge equalization controllers, as shown in Figure 6 [109].
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The active charge equalization controller (CEC) works on the principle of transferring
energy from cell to cell, cell to battery pack, or battery pack to cell [110]. The excess energy
is collected from overcharged cell and delivered to the undercharged cell to equalize the
charge and voltage. The active CEC can also be categorized into three types, namely,
capacitor-based, inductor/transformer-based, and converter based. The energy transfer
from cell to heat via a shunting resistor is the basic hypothesis of passive CEC, which can be
distinguished into fixed shunting, switched shunting, and analog shunting. A fixed resistor
is used in the fixed shunting method to bypass the current flows and control the voltage.
Similarly, a controllable switch (relay) bypasses the release path from the overcharged
battery in the switched shunting method. The most effective method among the three is the
analog shunting method which uses a transistor instead of a resistor to complete the task of
the current bypass from high-energy cells [109]. A constant current string-to-cell battery
equalizer with open-loop current control was proposed by Wei et al. [111], as depicted
in Figure 7.
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2.2.7. Charge and Discharge Control

The battery charging/discharging determines the protection, performance, and dura-
bility. Incorrect charging drastically accelerates the battery’s deterioration. Nonetheless,
enhancing battery efficiency, reducing overheating, and prolonging the life cycle depends
on controlled and quality charge and discharge. There are a few conventional but widely
used charging techniques for resolving battery charging issues with a variety of aims
and termination circumstances. The charging techniques can be classified into four types:
constant-current (CC) charging, constant-voltage (CV) charging, constant-current/constant-
voltage (CC-CV) charging, and multistage constant-current (MCC) charging [112]. A
constant current rate is the main approach adopted by the CC technique to charge the bat-
tery. During the CC technique, a low current rate can lower the charging speed, which is not
suitable for EV applications. The CV charging method works on the basis of a predefined
constant voltage to charge the battery, eliminating the risk of overcharge and enhancing the
battery cycle life. The charging speed and temperature variation are new modifications
that have been added to this technique. The hybrid charging technique is CC-CV which
works on interconnecting the principle of predefined current, a voltage of CC, and CV. In
the beginning, the battery is charged with constant current (CC), and then the voltage is
increased to a safe limit. In the end, the battery starts working in the CV phase and remains
as such until the target capacity is obtained. Constant multistage series current is injected
into the battery during the whole process of charging in the MCC charging technique. This
highlights the basic difference between CC-CV and MCC. The speed of MCC charging is
quite slow compared to the CC-CV technique. However, fuzzy logic technology has been
incorporated with MCC to improve performance [95,113]. An orderly charge and discharge
control process for EVs based on charging reliability indicators was developed by Li et al.,
as presented in Figure 8 [114].
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2.2.8. Power/Energy Management Control

EV performance depends not only on energy storage but also on power and energy
intelligent control strategies. In order to regulate power/energy flow efficiently in electric
vehicles, the energy storage control system must be capable of dealing with high peak
power when accelerating or decelerating [114]. Two basic types of common strategies are
adopted for power and energy management (PEM) control [115]. A low-level component
control strategy enhances the PEM performance and flexibility via a power transfer train
mechanism that connects ESS, auxiliary ES, ICE, and generators altogether. A high-level
supervisory control system works on the time-based data extraction process and balances
the operations of different components. Various types of efficient PEMC systems have also
been reported in several articles for HEV; among them, two major types are rule-based and
optimization-based. The rule-based strategy can be classified into two types: deterministic
rule-based and fuzzy logic. The real-time optimization and global optimization PEMC
systems are types of optimization-based PEMC systems [22,116,117]. Based on the driving
schedule, the powertrain model, and two neural networks, the energy management strategy



Batteries 2022, 8, 119 16 of 60

based on the deep Q-learning method for a hybrid EV was proposed by Du et al., as shown
in Figure 9 [118].
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2.2.9. Operating Temperature Control 
The battery temperature significantly impacts several aspects of battery performance, 

including longevity, energy conversion efficiency, and safety [119]. The rapid charge–dis-
charge cycle of the battery was identified as the main cause of the rising operating tem-
perature of the battery, which reduces the battery performance [120]. A low operating 
temperature affects the electrolyte performance, and a high operating temperature causes 
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2.2.9. Operating Temperature Control

The battery temperature significantly impacts several aspects of battery performance,
including longevity, energy conversion efficiency, and safety [119]. The rapid charge–
discharge cycle of the battery was identified as the main cause of the rising operating
temperature of the battery, which reduces the battery performance [120]. A low operating
temperature affects the electrolyte performance, and a high operating temperature causes
thermal runway and safety issues. Temperatures of more than 40 ◦C and less than −10 ◦C
cause capacity losses and performance degradation of the battery. Hence, the thermal
management of a battery pack in an EV is a crucial aspect [121]. To ensure the operation at
optimal operating temperature, a BTMS should perform crucial tasks such as heat removal
from the battery by cooling, increasing heat when the temperature is too low, and providing
suitable ventilation for exhaust gases. According to the heat transfer medium, the BTMS
can be classified into air, liquid, and phase-change material (PCM) types [122]. The internal
temperature estimation of a battery is another important issue that can prevent the battery
from aging and explosion risk. The internal temperature estimation can be performed using
micro-temperature sensors, EIS measurement, and a lumped-parameter battery thermal
model [95,122]. In contrast to battery-based EV applications, fuel cell vehicles (FCVs) have
shown huge potential toward decarbonization. They are more efficient than conventional
internal combustion engine vehicles and produce no tailpipe emissions since they only emit
water vapor and warm air. However, thermal management in FCV should be considered
an important research area to be explored [60]. Accordingly, Hu et al. [123] developed an
operating temperature tracking control framework to decouple the operating temperature
from the complicated driving conditions of the FCV, as shown in Figure 10.
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2.2.10. Fault Diagnosis

The unbalance, undercharge, overcharge, overcurrent, and extremely low or high
temperatures are some critical issues suffered by battery storage systems [124]. Moreover,
other types of faults related to data acquisition, networking, programming, etc. are expe-
rienced by BMSs in EV technology. The International Electrotechnical Commission (IEC)
developed a BMS standard in 1995 that stipulates that BMSs for EVs must have battery
fault diagnosis functions that can provide early warnings of battery aging and risk [64].
Analytical model-based, signal processing, knowledge-based, and data-driven methods
are frequently used for fault diagnosis in EV applications [125]. The model-based method
detects the faulty parameters with the help of a residual signal that is compared with a
threshold to determine the fault. However, the diagnosis results can be affected by mea-
surement and process noise. Time-domain analysis is a key tool to collect the test data for
fault analysis in the signal processing-based method. Wavelet transform is a widely used
technique in signal processing methods to carry out multiscale fault analysis for battery
systems [126]. In addition, machine learning and expert systems are the methods used in
a knowledge-based method for fault diagnosis, which can also be utilized to identify the
battery lifetime. Moreover, the information entropy, local outlier factor, and correlation
coefficient are the key tools to detect faulty data in the data-driven method for fault diag-
nosis [125,127]. A flowchart describing fault diagnosis of a lithium-ion battery system as
proposed by Xiong et al. is shown in Figure 11 [125].
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2.2.11. Communication and Networking

BMS communication with the EV and its external system is essential to protect the
battery storage unit. The communication system can be established through wires or data
links [128]. A simple BMS consists of a microcontroller unit, debugger, CAN bus, and
host computer. For battery status monitoring, a monitoring IC such as AS8505 is used to
communicate with the microcontroller through I/O lines via a CAN bus, which controls
the cell data and monitors the balancing process [129]. The battery parameters such as
voltage, current, and cell temperature are utilized to estimate the SOC, SOH, DOD, etc. in
BMSs, which can also be used in IoT-based wireless communication systems with EVs to
monitor battery health. The wireless communication technologies that can be employed to
monitor battery comprise ZigBee communication, Wi-Fi communication, GSM communica-
tion, Bluetooth communication, GPRS communication, and GPS [130,131]. Furthermore,
parameter identifier (PID) codes can also be used to collect critical parameters such as
voltage, temperature, energy, power, SOC, SOH, DOD, and resistance. Additionally, PIDs
use the CAN bus for data processing. Therefore data-driven personalized battery manage-
ment schemes based on the platform of big data and cloud computing were introduced by
Wang et al., as presented in Figure 12 [129]. A summary of BMS components, functions,
algorithms, targets, and contributions is presented in Table 1.
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Table 1. The various BMS components, functions, algorithms, targets, and outcomes in EV applications.

BMS
Components Functions Algorithm/Methods Target Outcomes

Monitoring
and data

acquisition

� Cell monitoring
� Voltage and

current
monitoring

� Data processing

� Voltage and current
measurement

� Voltage divider
technique

� CAN bus
� SCI

� Current, voltage,
and temperature
monitoring

� Communication

� Better systems
function by
managing, protecting,
balancing, and
controlling
operations

� Enhanced EV
autonomy

� Information
exchange
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Table 1. Cont.

BMS
Components Functions Algorithm/Methods Target Outcomes

State
estimation

� SOC
� SOH
� SOF

� Ampere-hour (Ah)
� Open-circuit voltage

methods
� Model-free,

model-based, and
data mining
methods

� Fuzzy logic
algorithm

� To minimize
estimation error

� To reduce the
computational cost

� Enhanced vehicle
performance

� Accurate estimation
� Understanding of

maximum capacity
� Reduced capacity

degradation
� Identification of

internal resistance

Control
operation

� Charge and
discharge control

� Power/energy
management
control

� Operating
temperature
control

� CC
� CV
� CC-CV
� MCC
� PEM

� To enhance
performance

� To improve
durability

� To increase
efficiency

� To provide
protection

� To control energy
flow

� To ensure safety

� Controlled operation
in battery charging
and discharging

� Improved efficiency
and safety

� Increased life cycle

Fault diagnosis
and protection

� Battery protection
� Unbalance
� Undercharge
� Overcharge
� Overcurrent

� Deep discharge
protection and
overcharge
protection

� Analytical
model-based
methods, signal
processing-based
methods,
knowledge-based
methods, and
data-driven
methods

� Protection of
battery due to
physical and
chemical alteration

� Warnings of battery
aging

� Warnings of
explosion

� Improved overall
battery performance

� Increased battery
lifetime

� Protection from high
temperature obtained

� Protection from aging
confirmed

� Detection of faulty
system

Communication
and

networking

� Monitor and
protect the
battery

� Microcontroller unit,
Debugger, and CAN
bus

� Wireless
� PIDs

� To control the
battery data and
monitoring

� Monitoring of the
battery status using
wired or wireless
approach

3. Key Technological Progress of EVs

This section presents the various technological advancements of EVs concerning power
electronics and charging systems in EV applications.

3.1. Power Electronics Technology

Power converter structures need to be dependable and lightweight for automotive
applications with minimal electromagnetic interference and low current/voltage ripples
to meet the automotive industry standards for high reliability and efficiency [132,133]. A
proper interface between energy storage systems (ESSs) and power electronics converters is
required for effective EV operation. There are numerous varieties of ESSs that are coupled
to different types of power electronic converters in electric vehicles. AC/DC converters
are typically used to charge ESSs through charging stations or grids. To accelerate the
vehicle, ESSs transmit the necessary energy from a battery to the motor. However, the
energy provided by ESSs is unreliable and suffers from significant voltage dropouts. As
a result, DC/DC converters are crucial in transforming uncontrolled power flow into
controlled/regulated power flow to support various electrical loads and auxiliary power
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supply in EVs [5]. The layout of the power conversion technique using various power
electronics components is shown in Figure 13 [5]. The classification of power electronics
technology in EV applications is shown in Figure 14.
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3.1.1. DC/DC Converter: Non-Isolated

When voltage needs to be stepped up or down by a relatively small ratio, non-isolated
converters are typically utilized. These types of converters are applicable where the
presence of dielectric isolation is not a major issue [134,135]. The mid- and high-range
vehicular types are more appropriate for utilizing non-isolated DC/DC converters [136].
A conventional boost DC/DC converter is usually employed where low DC voltage gain
is required (<4%). There are five major types of commonly used DC/DC converters:
multi-device interleaved, Ćuk, switched capacitor, coupled inductor, and quasi Z-source
converters [5,137].

Because of their simple construction, low cost, high efficiency, lower ripples, and easy-
to-use control method, multidevice interleaved (MDI) bidirectional DC/DC converters
are frequently utilized in BEV and PHEV powertrains. They can maintain the constant
magnitude of input current and output voltage ripple without including additional devices
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such as an inductor or capacitor. Some advantageous features of interleaved converters
make them highly suitable for EV applications, such as enhanced heat dispersal, high
energy density, reduced current stress, high efficiency, small size filter, and inherent ability
to eliminate current ripples [138]. The interleaved topology suggested in [139] is structurally
simple and has high modularity, resulting in reduced current stress on the switches and
enhanced heat distribution. However, the current configuration of this converter can only
be used for a low-power EV that can carry a maximum of two passengers. For high-power
EVs, the structure needs to be extended using supercapacitors, making it structurally
complex, bulky, and expensive. A two-phase bidirectional interleaved converter was
proposed in [140] for EVs. This converter can be operated in both buck and boost mode
with fast and low overshoot switching performance. A major drawback of this converter is
that its operation is highly reliant on the switching control technique. In order to achieve
the optimized performance from this converter, a highly complex control technique named
optimal Bézier curve is required. The dynamic response of this converter with direct
switching control is poor and may not be suitable for EVs. A two-phase hybrid mode
interleaved converter was developed by [141] for EV fuel cells. This converter has the ability
to simultaneously operate in continuous conduction mode and discontinuous conduction
mode. With regard to load conditions and duty cycles, the boundaries between the two
conducting modes are distinguished. Although this converter showed high-performance
efficiency with low output voltage and current ripple, the dynamic performance of this
converter has not been verified. Since the modes are distinguished on the basis of load
conditions, transient conditions can greatly hamper the performance of this converter.

The Ćuk converter (CC) delivers flexibility toward regulating the output power as
compared with input power. The Ćuk converter is developed by utilizing a single magnetic
core and delivers important features such as low ripples/harmonics and high efficiency.
The Ćuk converter also delivers high-performance efficiency compared with the DC/DC
boost converter by controlling the current ripple through the L−C filter. A modified Ćuk
converter for Toyota Prius was proposed in [142] with a basic proportional–integral (PI)
controller for tuning and filtering. Since the conventional PI controller has various perfor-
mance deficiencies such as sluggish transient response, high overshoot, manual tuning,
and poor filtration, the real-time execution of this converter is questionable. Furthermore, a
bridgeless modified Ćuk converter was developed in [143] to improve the power quality of
the EV charger. The proposed converter’s operation was verified under transient voltage
conditions, and it successfully followed the IEC 6100-3-2 standard for reduced current
harmonics. The only downside of this proposed topology is that it utilizes an additional
flyback converter for current harmonic reduction, which is connected through a transformer.
Thus, the implementation of this converter will be significantly expensive, and it will also
have increased weight.

Additionally, In EVs, the switched-capacitor bidirectional converter (SCBC) uses
synchronous rectification to conduct turn-on and turn-off actions. By utilizing switched
capacitors, the SCBC can deliver stable voltage and current without magnetic coupling.
Additionally, with the employment of power switches in SCBC, the application of additional
components is minimized to improve the power conversion efficiency [144]. Some of the
recently proposed SCBCs for EV applications can be found in [144–146]. Nonetheless, the
SCBC suffers from various factors such as high harmonics and low efficiency at widespread
input to output voltages. Zhang et al. [144] designed a switched capacitor-based converter
for EV applications without the magnetic coupling that can deliver continuous inductor
current and a stable switched-capacitor voltage through the switched capacitors. The
performance of the proposed configuration was investigated using a 300 W prototype
considering a wide voltage-gain range and variable low-voltage side (40 V to 100 V). The
results demonstrated a maximum efficiency of the converter of 94.39% in step-up mode and
94.45% in step-down mode. Zhang et al. [147] developed a hybrid bidirectional DC/DC
converter with switched capacitor-based converter for hybrid energy source-based EVs.
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According to the experimental outcome obtained from a 400 W prototype, the authors
validated the characteristics and theoretical analysis of the proposed converter.

On the other hand, the coupled inductor bidirectional converter (CIBC) demonstrates
improved performance efficiency due to high voltage gain and low voltage stress com-
pared to SCBC [148]. A reduced-component CIBC was proposed in [149] for EV charging
applications. This topology can provide a wide range of voltage conversion by operating
in both buck and boost mode. It also showed a high performance efficiency greater than
95%. Another CIBC for EVs was proposed in [150], and the operation was verified under
transient conditions using simulation and experimental results. However, both of these
CIBC topologies have inherent weaknesses due to the application of leakage inductance,
resulting in resonance and voltage spikes [151]. This drawback can cause serious conse-
quences in EV applications; therefore, the implementation of CIBC for EVs is still limited
in the industry. Wu et al. [152] developed a couple inductor-based converter for EVs to
enhance the voltage gain and decrease the switching voltage stress. An experimental model
of the converter rated as 1 kW, 40–60 V to 400 V, was designed to validate its performance.

Lastly, due to several significant properties such as simple design, common ground,
and wide range of voltage gain, the quasi Z-source bidirectional converter (QZBC) is
employed in EV technology. Commonly, the EV application employs a conventional
two-level QZBC topology. The QZBC replaces the conventional Z-source DC/DC boost
converter by enhancing the output voltage gain, which is suitable for high step-up voltage
conversion [153]. However, the employment of QZBC results in various drawbacks such as
uneven input current and capacitance of high-voltage stress [135].

3.1.2. DC/DC Converter: Isolated

Isolated converters are essential where the output is completely separated from the
input. In low- and medium-power vehicle applications, isolated DC/DC converters are
commonly utilized [5]. Some of the important isolated DC/DC converters employed in
BEV and PHEV applications are flyback, push–pull, multiport, resonant, zero-voltage
switching (ZVS), dual-active bridge full bridge, ZVS full-bridge, and forward converters.

When a buck–boost converter splits an inductor into transformers, the result is a
flyback converter (FBC). This is an isolated DC/DC converter that stores energy during
the on state and transfers it to the off state. The application of FBCs can be carried out
in low-power applications due to their various characteristics, such as low cost, high
output voltage, and electrical isolation [154]. The constructional features of FBCs can
obtain high gain and reduce the output current ripple and the leakage inductance [155].
A boosting multioutput FBC was proposed in [156] for EV application. This topology
consists of three separate FBCs to provide multioutput voltage. Although this topology has
high voltage gain and can be applied in high-power EV because of a parallel connection,
it requires a transformer winding technique to decrease leakage inductance, which can
drastically increase the cost and weight of this topology. A multiphase bidirectional FBC
was developed for hybrid EVs in [157]. Due to its modularity, it is suitable for high-power
applications while maintaining structural minimization and features such as high voltage
gain, accurate operation during load fluctuations, decreased current ripple, and parallel-
battery energy capacity. However, similar to the FBC in [156], it also utilizes a transformer,
making it highly expensive and overweight.

The working principle of the push–pull converter (PPC) is based on the transformer
operation, which transforms power from primary to secondary. A rectifier diode, bypass
capacitor, power switches, and transformer circuit are the basic circuit components of
the PPC configuration. The PPC demonstrates simple topology with high efficiency and
results in low conduction loss due to low peak current. However, careful attention is
required while operating the PPC due to the formation of a low impedance path and high
current [158]. Some notable PPC topologies developed particularly for EV applications can
be found in [159].
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The multiport isolated converter (MPIC) performs the operation while considering
several input sources and offers galvanic isolation. The performance efficiency and func-
tionality are improved by feeding back the recovered power obtained during regenerative
braking to the input sources [160,161]. A highly energy-efficient T-type MPIC was proposed
in [162] for EVs. In order to handle multiple energy generation/storage units, the sug-
gested converter unit has multiple input sources. Because the unit requires fewer switching
components, the cost of the power electronics interface for EV implementation is greatly
reduced. Although this MPIC has shown promising performance, it requires a complex
multipurpose algorithm for accurate energy management in different modes of operation.
Furthermore, another novel MPIC with the inherent ability to control multidirectional
power flow was suggested in [163]. Unlike [162], this topology offers galvanic isolation
by using a common magnetic link among the multiple input sources. It can be stated that
MPIC topologies comprise several advantageous features compared to other converter
topologies, especially for EV applications. Nonetheless, they are still in the early phase of
development for EVs, and further research is required to optimize their cost and weight
since they utilize transformers [136].

A DC–DC resonant converter (RC) is made of a resonant tank constructed with a
combination of inductors and capacitors. The RC exhibits several benefits, including low
switching loss, zero circulating currents, zero-voltage switching, and high efficiency. These
features can be essential for EV applications, as demonstrated in [164,165]. However, RC ex-
hibits various limitations in terms of transformer design complexity and high magnetizing
current [165], which requires further improvement.

The zero-voltage switching converter (ZVSC) was designed on the basis of the dual
half-bridge topology placed on both sides of the main transformer. Due to various strengths
such as less circuitry topology, easy control, soft switching, and higher efficiency, the ZVSC
is regarded as highly suitable for EV technology [166]. The topology of ZVSC can be
adopted for both BEV and PHEV powertrains even though it has a power limitation >10 kW
for automobiles [167,168]. The experimental verification of a 53.2 V, 2 kWh low-voltage
and high-current lithium-ion battery energy storage system based on a 6 kW single-phase
dual-active bridge (full-bridge) achieved efficiency as high as 96.9% [169]. A three-phase
dual-active bridge with phase-shift modulation and burst mode switching was evaluated
for battery energy storage systems to achieve high power density, high efficiency, and
galvanic isolation [170].

The full-bridge boost DC/DC converter (FBC) is the most convenient converter topol-
ogy that diminishes the voltage and current stresses on diodes and switches. The FBC
operates in three stages: initially an inverter (DC/AC), then a high-frequency transformer
(HFT), and finally a rectifier (AC/DC). This type of converter contributes higher step-up
voltage due to HFT and galvanic isolation between input and load. An improved FBC was
developed in [171] for efficient power conversion and distribution in EV charging. It has
other valuable characteristics such as the minimized size of the EV charger and switching
loss, faster operation, and economical performance. Moreover, another FBC was suggested
in [172] with the phase-shift switching control technique. Even though FBCs have some
effective characteristics for EV applications, they have a major performance deficiency;
their maximum achievable efficiency is only around 91.5% [173].

Lastly, the forward converter (FC) works on the forward balancing technique, which
has a fast balancing time and is easy to control. It consists of one magnetic core with one
primary winding and multiple secondaries based on the desired application. The energy is
transferred to the secondary when the switch is turned on. A few forward converter topolo-
gies have recently been developed for EV applications [174–176]. A detailed comparative
study of different power electronics converters is shown in Table 2.
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Table 2. Comparison of various power electronic converters in EV applications.

Converter
Type

Converter
Topologies Strength Weakness Objectives Outcomes Refs.

Non-
isolated

MDI

- Efficiency up to
97%

- Low current stress
- Reduced

component size

- Complicated
analysis during
transient and
steady state

Multiple input to
a single output

- Enhancement of
efficiency

- Reduction in
additional
components

[138]

CC

- Continuous input
and output
currents

- Power factor
improvement.

- Uncontrolled and
undamped
resonance

Reduction in
energy loss

- Ripple-free
constant output [143]

SCBC

- Improved power
conversion
efficiency

- Cost-effective
- Compact design

- High ripple
current

High voltage
gain and
efficiency

- Efficiency greater
than 90%

- Stable voltage
and current

[177]

CIBC
- Operational

flexibility
- Small in size

- No consideration
for voltage ripples

To reduce output
current and
inductor current
ripples

- Increased
efficiency by
increasing the
coupling
coefficient

[178]

QZBC

- Lower switch
stress

- Bidirectional
operation

- Enhanced output
voltage gain

- Discontinuous
input current

Maximum and
minimum
efficiency of
96.44% and
88.17%,
respectively

- To obtain high
voltage gain for
step-up
conversion

[153]

Isolated

FBC

- Applicable to
higher-load-
voltage
situations

- Ability to regulate
multiple output
voltages

- Ripple current
Attains lower
leakage
inductance to an
acceptable limit

- To enable support
of a wide input
voltage range

[156]

PPC

- Less filtering is
required

- Low conduction
losses

- Protection
required during
switching

To change the
voltage of the
DC power
supply

- Achieves low
current and
voltage on the
primary side

[158]

MPIC

- Low output
voltage ripple
current

- Galvanic isolation
bidirectional
power flow

- High sensitivity
corresponding to
duty cycle under
load changes

- Difficult to achieve
proper
synchronization

To minimize the
overall system
losses

- Independent
control of power
flow

[163]

RC
- High conversion

ratio
- High efficiency

- Complex
integrated
transformer

To minimize
magnetic
components and
passive filters

- Low switching
loss [164]

ZVSC

- Low EMI factor
- Soft switching
- Increased power

density

- Poor fault-tolerant
capability.

- High gate current
rating

To clamp the
output diode
bridge voltage

- Achieves
zero-voltage
switching under
all load
conditions

[167]

Sinusoidal
amplitude

high-voltage
bus converter

(SAHVC)

- Flat output
impedance up to
1MHz

- Ensures noise-free
operation

- Complex gate
switching pattern

- Not suitable for
high-power
conversion

Lowers voltage
stress on the
switching circuit

- High voltage bus
conversion [134]



Batteries 2022, 8, 119 25 of 60

Table 2. Cont.

Converter
Type

Converter
Topologies Strength Weakness Objectives Outcomes Refs.

Isolated

Single-phase
and

three-phase
DAB

- High power
density

- Bidirectional
power transfer

- Zero-voltage
switching

- Low voltage and
current stresses

- Circulating current
in the high
frequency-
transformer
(three-phase)

- Optimum
efficiency is
achieved only
when the ratio of
the DC-link
voltages is equal to
1 using the
phase-shift
modulation
switching method

-Galvanic
isolation
-Voltage
matching

- High efficiency
for low-voltage
and high-current
applications

- Low DC voltage
ripple

[169,170]

FC

- Fast balancing
time

- Easy to control
- High efficiency

- Nonuniform
voltage of the
secondaries

Voltage
equalizing

- Reduces use of an
inductor

- The number of
components is
decreased

[174–176]

3.2. EV Charging Technology

EV charging is a major barrier to sustainable adoption in the global market. Charging
entails injecting a suitable amount of electrical power from the grid into the battery. The
length of time it takes to charge a battery is determined by the battery’s capacity and the
charger’s power level. Three methods are frequently utilized for charging the battery of
an electric vehicle (EV), i.e., conductive charging, inductive charging, and battery swap-
ping [179,180]. Figure 15 shows the typical architecture of an electric vehicle charging
system, where both the on-board and the off-board one are represented [181].
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3.2.1. Conductive Charging

Conductive charging involves EV charging by connecting to the grid through a wire,
allowing for a direct connection between the charger and the vehicle. This charging
method comprises a rectifier (AC/DC) and converter (DC/DC) with power factor correction
(PFC), which is categorized as an onboard and off-board charger. The construction of the
rectifier and the DC/DC converter initially determines the topology of an on-board and
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off-board conductive charger [180,182]. The on-board charger is placed inside the EV,
which is frequently utilized for slow charging. However, a fixed location is mandatory
for an off-board charger, which is applicable for quick charging. The Nissan Leaf, Tesla
Roadster, and Chevy Volt all are suitable EVs having conductive charging [183]. Figure 16
shows the conductive on-board and off-board charging infrastructures, as proposed by
Khalid et al. [184].
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When it comes to charging electric vehicles, several standards are used. These require-
ments are mostly determined by the location in which the EV technology is embraced and
employed. For instance, the charging of EVs in North America and the Pacific is based on
SAE-J1772 specifications. Furthermore, the charging of EVs in China is based on GB/t 20234
standards, whereas the charging of EVs in Europe is based on IEC-62196 standards. The
standards for North America, the Pacific, and China depend on the application of charging
modes. On the other hand, the European standards are solely divided into categories on
the basis of charging power, i.e., AC or DC.

The North American standard was developed in 1996 for electric connections of
EVs, promoted by SAE International. The various charging mode standards and their
implementation in several regions (the USA, Japan, Europe, and China) are depicted in
Table 3 [185].

According to the survey, the North American SAE-J1772 standard is only compatible
with the 120 V recharge mode, in contrast to the IEC-62196 and GB/T-20234 standards,
which can operate at a greater voltage even in their lowest charging modes.

Moreover, the GB/T-20234 standard has a lower current intensity (10 A) than the
other two standards, which have a current intensity of 16 A. However, the SAE-J1772
only supports a maximum intensity of 200 A in its most powerful modes, compared to
400 A for the IEC-62196 and 250 A for the GB/T-20234. In addition, the North American
SAE-J1772 standard provides a reduced power of 1.9 kWh in comparison to the 2.5 kWh of
the GB/T-20234 and the 3.8 kWh based on the AC power source. On the other hand, the
IEC-62196 standard offers the power of 120 kW at 480 V AC which is much higher than the
other two standards.
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Table 3. Standard charging power ratings of various conductive Charging standards for EV applications.

Charge Method Volts Maximum Current
(Amps—Continuous) Maximum Power

SAE-J1772

AC level 1 120 V AC 16 A 1.9 kW

AC level 2 240 V AC 80 A 19.2 kW

DC level 1 200–500 V DC
maximum 80 A 40 kW

DC level 2 200–500 V DC
maximum 200 A 100 kW

IEC-62196

Single-phase 230–240 V AC
16 A

3.8 kW

Three-phase 480 V AC 7.6 kW

Single-phase 230–240 V AC
32 A

7.6 kW

Three-phase 480 V AC 15.3 kW

Single-phase 230–240 V AC
32–250 A

60 kW

Three-phase 480 V AC 120 kW

GB/T-20234.2 AC charging 250 V and 440 V 10–63 A 27.7 kW

GB/T-20234.3 DC charging 750–1000 V 80–250 A 250 kW

For charging EVs in China, the Guobiao (GB) GB/T-20234 standard was adopted
and promoted. This standard categorizes the charging modes between AC and DC. A
detailed comparative analysis of various conductive charging standards for EV operation
is presented in Tables 3 and 4.

Moreover, the International Electrotechnical Commission (IEC) established the IEC-
62196 standard in 2001 as a global standard for charging an electric vehicle in Europe and
China. The general guideline for the charging process and energy transferred pattern was
introduced by the IEC-62196 standard, which was deduced from the IEC-61851 standard.
The IEC-61851 administers a first classification of the type of charging based on its nominal
power and the recharging time [186,187]. The EV users are offered four modes of charging
the vehicle, as mentioned below. The different charging modes for EV operation are shown
in Figure 17 [186].
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Table 4. Comparative study of various conductive charging standards for EV operation.

Charging
Standard Country Mode of Operation/

Classification Features Advantages Disadvantages Ref.

AC level (single-phase)

SAE-J1772
USA and

Japan

Provides a physical
connection

Utilized at home,
workplace, and public

charging facilities

High output
voltage

regulation and
high slew rate

Charging
rate is limited

by battery
chemistry, in-
frastructure

[188]

DC level

IEC-62196 Europe and
China

Mode-1
Single-phase Only for domestic

(household) use
The range of

charging is high,
i.e., recharge

from 3 and 43
kW, and can

support single
phase up to 16 A
and three phases

up to 63 A

Can only be
used with

three-phase
supply due

to its specific
design

[22]

Three-phase

Mode-2 Single-phase Overcurrent protection
Over-temperature

protectionThree-phase

Mode-3 Single-phase Useable in public
places or at home

Utilizes EVSEThree-phase

Mode-4 DC

The charger is part of
the charging station,

not part of the vehicle
Utilizes an

off-board charger

GB/T-20234.2
China

AC charging
Conductive charging Fast charging - [189]

GB/T-20234.3 DC charging

• Mode-1 (slow charging). This mode is designed for domestic use purposes, frequently
used in client houses. It provides the maximum current intensity of 16 A with a single-
phase or three-phase power outlet facility, including neutral and earth conductors.

• Mode-2 (semi-fast charging). A similar charging approach is implemented in this
mode with a slight modification in current intensity and user facility. This mode can
handle the current intensity of a maximum of 32 A, and it also allows users to utilize
the charging in public places.

• Mode-3 (fast charging). This mode contributes to a fast charging process with the
help of current intensity from 32 A to 250 A. This model also adopts the specific
power supply known as EV supply equipment (EVSE), which is utilized for recharging
electric vehicles. This EVSE device accommodates a communication system that
provides a communication advantage with the vehicles. Additionally, a control system
to regulate energy flow, a monitoring system to observe the charging process, and a
protection system are incorporated for protection with the EVSE.

• Mode-4 (ultrafast charging). According to the latest IEC-62196-3 standard, this model
has a maximum charging power capacity of up to 400 kW. This standard also defines
a direct connection between the EV and the DC supply network, having a maximum
voltage of 1000 V and a current intensity of up to 400 A. An external charger is required
in this mode, which provides protection, control, and communication between the
vehicle and the recharging point [182].

3.2.2. Wireless Charging

Wireless power transfer (WPT) has been around for over two centuries. Nikola Tesla
conducted tests at Colorado Springs, USA, in 1899 to see if electrical energy could be trans-
mitted without wires. Wireless charging technology involves transferring electricity from
one medium to another without the use of a contact medium. Electromagnetic radiation,
electric coupling, and magnetic coupling are the three primary types of WPT systems.
Moheamed et al. [190] classified the available WPT technologies into three categories.
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Figure 18 shows a classification diagram for the different wireless power transmission
technologies [190].
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WPT works in three stages: initial conversion of power supply, then resonance between
coil to transfer power, and final charging of the battery. An input AC power supply is
converted to high-frequency AC at the first stage. This high-frequency AC is utilized
to generate an alternating magnetic field at the transmitter side (primary); as a result,
AC voltage is induced at the receiver (secondary side coil). Finally, the AC voltage at
the receiver is converted to DC to charge the battery. A magnetic resonant coupling and
DC/DC converter can be incorporated at the secondary to improve the performance of the
system. The converter system provides an efficiency of 90% under the frequency variation
of 20 to 100 kHz. Figure 19 illustrates an outline of WPT for EV technology [180].

Batteries 2022, 8, x FOR PEER REVIEW 30 of 62 
 

3.2.2. Wireless Charging 
Wireless power transfer (WPT) has been around for over two centuries. Nikola Tesla 

conducted tests at Colorado Springs, USA, in 1899 to see if electrical energy could be trans-
mitted without wires. Wireless charging technology involves transferring electricity from 
one medium to another without the use of a contact medium. Electromagnetic radiation, 
electric coupling, and magnetic coupling are the three primary types of WPT systems. 
Moheamed et al. [190] classified the available WPT technologies into three categories. Fig-
ure 18 shows a classification diagram for the different wireless power transmission tech-
nologies [190]. 

 
Figure 18. The categories of WPT technologies for EV applications. 

WPT works in three stages: initial conversion of power supply, then resonance be-
tween coil to transfer power, and final charging of the battery. An input AC power supply 
is converted to high-frequency AC at the first stage. This high-frequency AC is utilized to 
generate an alternating magnetic field at the transmitter side (primary); as a result, AC 
voltage is induced at the receiver (secondary side coil). Finally, the AC voltage at the re-
ceiver is converted to DC to charge the battery. A magnetic resonant coupling and DC/DC 
converter can be incorporated at the secondary to improve the performance of the system. 
The converter system provides an efficiency of 90% under the frequency variation of 20 to 
100 kHz. Figure 19 illustrates an outline of WPT for EV technology [180]. 

Motor 
Drive

Power supply Electric vehicle

Battery 
RectifierTransmitter

Receiver

 
Figure 19. The layout of the WPT system in EV applications. Figure 19. The layout of the WPT system in EV applications.



Batteries 2022, 8, 119 30 of 60

WPT is also a convenient source of charging because of its flexibility and comfort.
Currently, there exist two wireless recharge modes, namely, capacitive power transfer (CPT)
and inductive power transfer (IPT). However, IPT is the most often utilized since it can be
applied to a wide range of gap lengths and power levels. In contrast, CPT, despite showing
promising results with high power levels in terms of kilowatt-power-level applications, is
only suitable for small gap power transfers.

An IPT system is electrically separated, and there is minimal wear and tear on me-
chanical components because no physical touch is necessary. The design of the magnetic
structure is crucial in the IPT system for EV charging due to high-power applications. The
magnetic coupling between the primary and secondary pads determines the power transfer
capabilities of an IPT system, which is determined by the geometry, size, materials, and
relative location of the magnetic couplers [191]. Recently, a 30 kW bus online electric vehicle
(OLEV) IPT system was used at a bus stop, maintaining a charging height of 170 mm with
an efficiency of 80% [192].

Moreover, the CPT technology is based on the notion of a capacitor’s functioning. An
air gap (d) between the conducting plates of a capacitor is generally filled with a dielectric
substance for insulation. The direction of the electric field is reversed every half-cycle in
an AC excitation, and the charge and discharge are alternately repeated. According to this
method, the capacitor is thought to be carrying an AC. Power transmission via a metal
barrier, system simplicity, minimal eddy current loss, and less electromagnetic interference
(EMI) are all advantages of CPT technology [193,194].

Furthermore, depending on the situation, there are three different types of wireless
recharges: (a) stationary charging, where the vehicle remains stationary or static during
charging. For acceptable misalignment, the owner may just park the car in a location and
leave it for charging with a set range, (b) opportunity charging, which occurs when the
vehicle is stopped for a short period of time, and (c) dynamic charging, which occurs when
the vehicle is moving along a dedicated charging lane. Utilizing this method, the charging
of public transport (buses and taxis) is possible at the stops when passengers board and
alight [180,195,196].

3.3. Battery Swapping

The battery swapping approach is one of the most time-efficient and hassle-free
charging methods. In this method, the EV replaces the drained battery with a completely
charged battery at a battery swapping station (BSS). Then, the BSS transfers the empty
battery to the battery charging station (BCS) to recharge it. After the complete charge,
the BCS transfers it back to the BSS for exchange in EVs. To complete the BSS process, a
distribution transformer, AC/DC converters, battery chargers, vehicle batteries, robotic
arms, charging racks, a maintenance system, a control system, and other types of equipment
are required. One major advantage is that the battery swapping stations may execute bulk
bidirectional power transfer with the grid. During peak demand, the fully charged batteries
can inject electricity into the grid, while charging occurs during off-peak hours [179]. The
battery swapping method is depicted in Figure 20 [197].
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Figure 20. Battery swapping station layout for EV applications.

4. Intelligent Control Schemes, Optimization Algorithms, and Methods in EVs
4.1. EV Control Strategies

Improvements in fuel economy and carbon emission reduction can be achieved with an
appropriate power split between the energy sources. Therefore, various control strategies
have been applied, and their performance has been analyzed toward the achievement of
the abovementioned objectives. Furthermore, the EV performance and battery state of
charge are not compromised during the implementation of control strategies. Primarily,
the control strategies employed in EV technology can be divided into two categories, i.e.,
offline control and online control strategies [198,199].

4.1.1. Offline Control Strategies

The offline control strategies in EV applications present incompetence toward deliver-
ing outcomes in the real-time world; nonetheless, their application is utilized to validate
the performance of real-time controllers. In recent times, techniques such as linear pro-
gramming (LP), dynamic programming (DP), genetic algorithm (GA), stochastic control
(SC) strategy, and particle swarm optimization (PSO) have been employed as offline control
techniques in EV applications.

• Linear programming (LP): A nonlinear fuel consumption model of HEV for a globally
optimal solution can be estimated and resolved by linear programming. Convex
optimization and linear matrix inequality techniques are used in LP to analyze the
propulsion capabilities and minimize fuel consumption [200].

• Dynamic programming: The dynamic programming (DP) technique aims to figure out
the optimal control policies based on multistage decision making without depending
on the previous decision. The backward recursive method and the dynamic forward
method are the common DP algorithms, as introduced by Bellman [201].

• Stochastic control (SC) strategy: The SC control technique is implemented to solve the
optimization issues related to uncertainties. The formulation of the infinite-horizon
stochastic dynamic optimization issue is conducted using this technique. Furthermore,
the SC strategy delivers optimal control outcomes while considering diverse driving
patterns. Liu et al. developed a hybrid power optimal control strategy by utilizing
stochastic dynamic programming (SDP) to analyze the effects of harmonics on emis-
sions from the engine. Additionally, Tate et al. developed two variants of SC strategy
for parallel HEV application to analyze fuel consumption and tailpipe emissions. A
two-stage stochastic programming method was proposed by Zeynali et al. [202] for
a home energy management system including battery energy storage and EVs, as
shown in Figure 21.
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4.1.2. Online Control Strategies

Rule-based (RB) control strategies are implemented according to a set of predefined
rules which rely on some intuition, heuristics, or the human experience without a priori
knowledge of a predetermined driving cycle. The control strategies can be simply expressed
as an if–then type of control rule, which determines the shutdown of the engine or the
power discharge at a specific point in time. Alsharif et al. [203] developed a simple rule-
based control strategy that can control the power flow from grid to EV and EV to the grid.
The control objectives were formulated to minimize two objective functions, including loss
of power supply probability (LPSP) and cost of electricity (COE). Several data inputs were
considered to perform the operation, such as mean wind speed (m/s), mean solar irradiance
(W/m2), max solar irradiance (W/m2), mean ambient temperature (◦C), mean energy
demand (kW), peak energy demand (kW), and min energy demand (kW). Even though the
RB energy management system (EMS) is simple and can be implemented in real time on
vehicle engines, it has some drawbacks. The first is that it lacks optimality while needing
prior knowledge of the driving cycle. Furthermore, a substantial amount of calibration work
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is necessary to ensure that the performance is within a reasonable range for each driving
cycle. Deterministic and fuzzy logic EMSs represent rule-based approaches [204,205].
The rules may be drawn from experience in a deterministic RB-EMS, in which the major
energy sources are regulated to function primarily within ideal operating circumstances.
This approach works in a high-efficiency region to improve fuel economy and decrease
energy transmission loss. Frequency-decoupling control is another deterministic rule for
power splitting, in which low-frequency power is provided by energy sources with slow
dynamics. However, peak and/or high-frequency power is provided by energy sources
with rapid dynamics.

The fuzzy logic (FL) approach translates human thinking and experience into a set of
if–then rules. Input quantization, fuzziness, fuzzy reasoning, inverse fuzziness, and output
quantization are the five steps of this FL conversion process. This route provides the advan-
tage of wholesomeness and easy tuning, which facilitates the independent adaptation of
the control strategy. The FL also offers control of efficient engine operation and coordinates
the parallel HEV subsystems. Optimized fuzzy rules control, adaptive fuzzy logic control,
and predictive fuzzy logic control are the types of FL control strategies. An optimization
method is followed by optimized fuzzy rules control to meet the target of reduction in
fuel consumption, minimization of emission, improvement of driving performance, and
maintenance of the SoC. The adaptive FL strategy works on an adaptive algorithm to
enhance self-adaptation so that the HEV powertrain can accommodate the unknown tire
dynamics, changing road surface, and vehicle loading. Moreover, the predictive FL control
strategy is aimed at understanding the future states of vehicles and performing real-time
control tasks. A fuzzy logic-based EMS controller was proposed by Mohd Sabri et al., as
shown in Figure 22 [206]. The controller mechanism appropriately distributes the power
via the hybrid train while achieving the minimum fuel consumption as its objective. The
inputs to the controller are current vehicle speed, ICE speed demand, current ICE speed,
current SOC of ESS, and total trip distance.

Batteries 2022, 8, x FOR PEER REVIEW 34 of 62 
 

while needing prior knowledge of the driving cycle. Furthermore, a substantial amount 
of calibration work is necessary to ensure that the performance is within a reasonable 
range for each driving cycle. Deterministic and fuzzy logic EMSs represent rule-based ap-
proaches [204,205]. The rules may be drawn from experience in a deterministic RB-EMS, 
in which the major energy sources are regulated to function primarily within ideal oper-
ating circumstances. This approach works in a high-efficiency region to improve fuel 
economy and decrease energy transmission loss. Frequency-decoupling control is another 
deterministic rule for power splitting, in which low-frequency power is provided by en-
ergy sources with slow dynamics. However, peak and/or high-frequency power is pro-
vided by energy sources with rapid dynamics. 

The fuzzy logic (FL) approach translates human thinking and experience into a set of 
if–then rules. Input quantization, fuzziness, fuzzy reasoning, inverse fuzziness, and out-
put quantization are the five steps of this FL conversion process. This route provides the 
advantage of wholesomeness and easy tuning, which facilitates the independent adapta-
tion of the control strategy. The FL also offers control of efficient engine operation and 
coordinates the parallel HEV subsystems. Optimized fuzzy rules control, adaptive fuzzy 
logic control, and predictive fuzzy logic control are the types of FL control strategies. An 
optimization method is followed by optimized fuzzy rules control to meet the target of 
reduction in fuel consumption, minimization of emission, improvement of driving per-
formance, and maintenance of the SoC. The adaptive FL strategy works on an adaptive 
algorithm to enhance self-adaptation so that the HEV powertrain can accommodate the 
unknown tire dynamics, changing road surface, and vehicle loading. Moreover, the pre-
dictive FL control strategy is aimed at understanding the future states of vehicles and 
performing real-time control tasks. A fuzzy logic-based EMS controller was proposed by 
Mohd Sabri et al., as shown in Figure 22 [206]. The controller mechanism appropriately 
distributes the power via the hybrid train while achieving the minimum fuel consumption 
as its objective. The inputs to the controller are current vehicle speed, ICE speed demand, 
current ICE speed, current SOC of ESS, and total trip distance. 

ICE speed 
CTRL

Generator 
CTRL

EM CTRL

Fuzzy logic 
based EMS

1

2

3

ESS charge 
CTRL

ICE speed

Accelerator 
signal

SOC %
EM speed

Gen 
speed

EM speed demand

ICE speed demand

Throttle signal

Vehicle speed
GPS

Gen torque requirement

EM torque requirement

Mot enables

ICE enables

Gen enables

1

3

2

 
Figure 22. Fuzzy logic-based EMS controller block in EV applications. 

4.2. EV Optimization Strategies 
The neural network (NN) method works on the basis of periodicity and predictable 

operation with an optimal charging strategy that helps to estimate the energy demand 
and optimize the charging cost of EV. Compared to NN, the nonoptimal strategy is ex-
pensive and not suitable for the health of the battery. The NN can optimize the charging 
price, as well as estimate the daily energy demand, with the help of the energy predictor 

Figure 22. Fuzzy logic-based EMS controller block in EV applications.

4.2. EV Optimization Strategies

The neural network (NN) method works on the basis of periodicity and predictable
operation with an optimal charging strategy that helps to estimate the energy demand and
optimize the charging cost of EV. Compared to NN, the nonoptimal strategy is expensive
and not suitable for the health of the battery. The NN can optimize the charging price, as
well as estimate the daily energy demand, with the help of the energy predictor model
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named nonlinear autoregressive network with exogenous inputs (NARX) as a function of
the meteorological data and previous energy data used [207]. In this case, the inputs to the
NN model comprise SOC (0 . . . t), temperature, and charging time slots, while the output
of the model is SOC (t + 1). Two different constraints, SOC and temperature, are applied to
minimize the charging costs of EVs.

Pontryagin’s minimal principle (PMP) is the most well-known technique for solving
the optimal control problem, which is widely used in adaptive forms to develop real-time
optimization-based EMS. Delprat et al. [208] presented a PMP application for optimizing
the EMS of a parallel HEV. The constraints addressed in this work were the limitations of
the motor, the engine, and the battery while fulfilling the objective toward minimizing fuel
consumption during the driving interval. The global optimization issue represented by DP
has been converted into an instantaneous Hamiltonian optimization problem through PMP,
which was developed using a variational approach [209]. German et al. [63] proposed a
new approach of PMP to develop real-time EMS in EVs, in which no additional adaptation
of the co-state variable is required for real-time applications. The objective function was
formulated to reduce battery degradation by considering the objective constraint as the set
of system dynamical models.

The simulated annealing (SA) algorithm is utilized in derivative-free algorithms for
EMS control. Kirkpatrick [210] invented the SA in 1983 on the basis of the metal annealing
process. The SA method uses a stochastic technique to find a solution, where the solution
candidates are selected, and the improvements are assessed on the basis of the objective
function. The SA was utilized by Chen et al. [211] to discover the best engine-on power and
maximum current coefficient, while the PMP was used to determine the battery current
commands. The inputs to the model were battery power/current and SOC. The objective
of the proposed study was to minimize fuel consumption by satisfying the constraints of
driving power and battery SOC. Trovao et al. [212] also used the SA to find the best energy
distribution between the battery and the SC for short-term power management. An SA
algorithm-based control scheme was proposed by Song et al., as shown in Figure 23 [213].
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The genetic algorithm (GA) is another stochastic search approach, influenced by natu-
ral selection and genetic evolution. GA is a reliable and viable global optimization method
with a large search space that may be used to solve complicated engineering optimiza-
tion problems with nonlinear, multimodal, and nonconvex objective functions [199,204].
Chen et al. [211] utilized the GA to minimize the fuel consumption of a power-split PHEV
by achieving the optimal engine-on power threshold and the QP to obtain the best battery
current at high speed. The GA provides the advantage of multi-objective optimization
such as fuel consumption, energy cost, the health of the battery, and emission. For instance,
Piccolo et al. [214] presented a GA-based control strategy for optimizing fuel consumption
and carbon emission terms for EV applications. Altundogan et al. [215] applied GA to find
the optimal location of an EV charging station in urban areas. Li et al. [216] employed GA
to address the fleet allocation issues of EV considering demand uncertainty.

The particle swarm optimization (PSO) technique is a meta-heuristic optimization
technique utilized for searching a large area of a candidate solution. The PSO technique
is inspired by bird flocking, where the optimization is carried out with suitable iterations
for a given candidate solution. In recent times, the PSO technique has been employed
in EV applications. PSO algorithms have been widely utilized for the optimized design
of electromechanical systems, SC, and fuel cell size, in addition to energy control [217].
Zhang et al. [218] used the PSO-based multi-objective, multi-constraint optimization model
to address the load dispatch issue in the microgrid. The results illustrated that the orderly
charging–discharging method decreased cost and load variance by 13.4% and 78.8%, respec-
tively. Yin and Ming [219] introduced a PSO-based charging and discharging scheduling
strategy considering cost and environmental protection. The proposed approach reduces
the user charging costs and improves the safe operation of the power grid. Similarly,
Wang et al. [220] proposed a multi-objective PSO-based scheduling strategy for the orderly
charging and discharging of EVs. Sadeghi et al. [221] developed multi-objective PSO to
determine the optimal sizing of hybrid renewable energy systems in the presence of EVs. A
comparative analysis of various methods, controllers, and optimization techniques for EV
operation is shown in Table 5.

Table 5. The control strategies and optimization schemes are applied for EV applications.

Operation Methods Objectives Benefits Shortcomings Achievements Refs.

Control

Offline

LP Minimization of
fuel cost

Fuel consumption
minimization
Understanding
the propulsion
capabilities

Depends on prior
knowledge.

Successful in
automotive energy
management

[222]

DP Reduction in
emission

Computation
efficiency can be
improved
Prior knowledge
is not required

Computational
burden

Improved fuel
economy
Multistage
optimization

[201]

Online

RB
Optimization of
the energy flow
management

Easy control
strategies

Human skills are
required
Calibration work is
needed

Real-time
implementation of
the vehicle engine

[205]

FL Energy cost and
battery health.

Independent
adaptation of the
control strategy

Human thinking
and experience are
required
It cannot
guarantee optimal
performance

Reduction in fuel
consumption
Minimization of
emission
Maintenance of
the SOC

[204]
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Table 5. Cont.

Operation Methods Objectives Benefits Shortcomings Achievements Refs.

Optimization

NN Cost
minimization

Able to predict
the energy
requirement

Meteorological
data are required

Estimation of
energy demand
Optimization of the
charging cost

[207]

PMP
Minimizing
battery
degradation

Real-time
optimization

Feedback
controller is
required

Optimization of
EMS [63]

SA Minimizing the
fuel-consumption

Short- and
long-term power
management

Cannot guarantee
a globally optimal
solution

Optimal engine-on
power
Maximum current
coefficient

[212]

GA

Ensuring power
demand between
the electric motor
and internal
combustion
engine.

Improvement of
the overall vehicle
environmental
impact

Crossover
probability effect
on algorithm

Optimal fuel
consumption
Minimized
emissions

[214]

PSO

Multi-objective,
multi-constraint
optimization
model providing
load dispatch for
a microgrid

The impact of EV
charging on the
power system is
improved by
enhancing safety
and reducing cost

Slow convergence
rate and easy to
fall into local
optimum in
high-dimensional
space

The orderly
charging–
discharging method
decreases cost and
load variance by
13.4% and 78.8%,
respectively

[218]

5. Open Issues, Challenges, and Limitations

The future EVs have to be more sustainable in order to compete with conventional
gasoline-powered vehicles, and they need smart optimization, controller, and management
systems to maintain the charge level of the battery storage system. Simple structure, envi-
ronmentally friendliness, lack of noise, and high efficiency are some value-added features
of EVs. EV also offers noninterrupted acceleration and instantaneous high torques [223].
However, there are several areas where EVs fall short, which are covered in this section. As
EVs are still under development, this study covers some crucial aspects and difficulties in
attaining sustainable development.

5.1. Battery Storage Technology

There are several concerns regarding battery storage technology, including aging,
charging current, and health degradation. Fast charging causes high current flow, leading
to temperature rise, which affects the battery performance and shortens the battery life.
Series and parallel combinations of small batteries are necessary to create a battery system
with a safe structure, competitive cost, and high capacity in a compact form with air
ventilation. In the future, the controller should split the batteries in such a way that some of
them can charge from the source while others deliver power to the motor. Some cells have
been divided into more segments that can enable fast charging [224]. The latest battery
materials, including hydrogen and fuel cells, can be suggested with desirable characteristics
and a reasonable price.

5.2. Battery Balancing and Temperature Issues

A pack of batteries is needed, which is made up of multiple batteries connected in
series and parallel [225]. The performance of the battery pack as a whole is difficult to
monitor since batteries can charge and discharge at different rates and operate under
different conditions due to other operational states in terms of temperature, state of charge,
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and state of health. The battery management system must monitor the charge rate across
the whole pack down to the cell level to ensure efficient battery-pack performance and
prolonged battery life [4]. Charge balancing and thermal management are the two main
responsibilities of the battery management system. Passive balancing is not helpful when
batteries are discharged because of the limitation of weakening cells. Excess energy is
dissipated as heat through an external resistor, and a cooling system is needed for these
reasons [101]. Active balancing is necessary and more efficient in balancing a cell’s energy
because it redistributes the energy among cells rather than dissipating and wasting it.
Power electronic devices are used to move energy from strong to weak cells to maximize the
available energy and increase the module’s capacity. Additionally, the thermal management
of each battery has to operate in an acceptable and safe temperature range, and failing to
do so will cause performance degradation or irreversible damage.

5.3. Motor Drive Technology

The induction motor is the most popular choice for EVs, which uses three-phase AC
power input, providing a four-pole magnetic field. The induction motor speed is dependent
on the frequency of the AC power supply; thus, by varying the frequency, the speed drive
wheel will increase or decrease in place of the transmission gearbox, making the EV simple
and dependable. The motor can spin from 0 to 1800 RPM with a single gear as compared to
a regular combustion engine. The induction motor has a good starting torque when the car
goes down a hill. Furthermore, there is no energy loss in the rotor; however, it is not efficient
for a long and high-speed drive. This problem is caused by the back electromagnetic force
in the rotor, which is a reverse voltage to the stator’s supply voltage. Therefore, a higher
speed results in a higher back electromagnetic force, which can affect motor performance.
Moreover, this high-power magnet results in magnetic eddy current losses, thus increasing
the motor’s heat. In Tesla Model 3, a new motor called IPMsynRM uses a permanent
magnetic and reluctance design to solve these issues.

5.4. Power Electronics Technology

Power electronic devices are a key technology for control in almost all EV applications
because they can convert energy to run motors, batteries, and generators. The power elec-
tronics technology is used in two levels of EVs that require high-power electric energy to
rotate the electric motors and energy management for other applications such as charging
the battery. Power electronic components such as silicon-based power MOSFETs and IGBTs
are used as power electronic switches in the power train system of automotive electrical
and electronic systems to reduce the overall size [226]. The power electronics devices
require powerful thermal management because, when operating at high temperatures,
the power electronics devices can be defective and fail, in which case the EV would not
function, necessitating a major operation to inspect the faulty parts and replace them. This
could happen when the cooling system is not working efficiently due to fan or compressor
problems. In power electronics, the reliability issues of power, semiconductors, and capaci-
tors stand out because of the different stress factors and field return data. Antiferroelectric
ceramics are needed to keep the capacitance stable under a voltage bias and to maintain
performance at high operating temperatures [227]. The integration of capacitors, cooling,
and active devices ensures that power electronics are safe and reliable.

5.5. EV Charging Technology

The increasing number of EVs has raised several issues based on the level of charger
types, yet the main issue is the recharge time [228]. During fast charging, the charging
procedure is interrupted frequently, which wastes passenger time. Consequently, there are
challenges with the technology, cost, safety, sustainability, and environment [228]. Public
EV charging station systems have problems such as being expensive to build and needing
more charging stations in almost all parking spots along highways. Charging during times
of high demand costs more, and the electricity load is problematic for utility providers.
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Scalability is another leading challenge that EV chargers have to deal with. Wireless
inductive charging is still in a standby situation and is waiting for advanced technology to
make it possible for EVs to charge spontaneously without the need for cables [229].

5.6. Intelligent Control and Optimization Schemes

Intelligent controllers such as artificial intelligence and machine learning are always
used in advanced technology, and they are the key to most improvements made in the last
few years in EV applications. Yet, they can have a serious problem if the training process
is not executed accurately or if too much or too little data are taken into account [230]. To
solve the abovementioned concerns, various optimization schemes can be employed before
setting up these smart controllers, especially during unexpected conditions. Regarding the
optimization issues associated with EVs, they require a different level of optimization in
many applications in EVs, ranging from the wheel size to the battery management system
and controller for both batteries and motor [231].

5.7. EV Aerodynamic Mechanical Design and Materials

The selection of appropriate aerodynamic and mechanical design and materials is a
key research area to be explored. Aerodynamic efficiency is a big factor during the manu-
facturing process, but these issues primarily affect the driver. The design and materials,
including wheel size and material, vehicle body shape and size, battery sets, and motor size,
are the main factors that could make the vehicle light and less resistant to the airflow [232].

5.8. Safety Design of EVs

A range of issues associated with power system security and safety in EVs need to
be addressed effectively. Since the EV does not have an engine in the front of the vehicle,
which always absorbs the shock of a crash, the driver and the passengers will be right up
against the next car in the event of an accident [232]. When the battery is damaged by a
severe accident, the high voltage may affect the driver and passengers.

5.9. Availability of Charging Stations

Charging station availability issues can be solved by the fast charging and popularity
of EVs. However, this issue is vital because the user needs to identify the nearest charging
station before traveling. The lack of charging stations may limit the proliferation of EVs
and have a negative impact on society. The EV must be charged conveniently and quickly
to ensure the EV owner’s comfort. The EV charging infrastructure needs to accommodate
exponential market growth and a wide range of charging use-cases.

5.10. V2G Concept Challenges

Vehicle-to-grid (V2G) interactions have never been so easy, but building an integrated
system that can host a large number of EVs for the benefit of both parties poses many
challenges and issues. Communication platforms, for example, network bandwidth and
the radius of EV information, are needed for aggregation and network latency. Legislation
and agreements are some of the challenges [233]. The governments’ regulatory issues and
electric grid upgrades also play an important role in this context. From this point of view,
the EV revolution faces important regulatory and technological challenges which require
close collaboration among different levels of the same government. EV gird interconnection
has some main issues such as the Doppler effect of changing frequency waveforms, adjacent
interference of power singles, multipath fading (which may cause signal attenuation and
distortion), interference from other EVs or other sources, access delay of mobility between
peers, and network stabilization time [234]. Detailed requirements for V2G communication
such as network latency, network bandwidth, and actual radius information need to be
investigated. Security threats need to be met in a smart EV charging service using an
authentication protocol to guarantee a safe integration of power grid data [233].
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5.11. Battery Environmental Issues

EVs are environmentally friendly vehicles because they can reduce emissions that
contribute to climate change. However, they can be harmful when their batteries die and
are not landfilled or recycled properly [235,236], or if the source of charge is nonrenewable
resources. Although energy storage is a complex system having several factors, including
state coupling, input coupling, environmental sensitivity, life degradation, and added
characteristics [237], the majority of materials can be recycled.

6. EVs on the Road to Achieving Sustainable Development Goals

The United Nations (UN) established 17 Sustainable Development Goals (SDGs) in
2015, with the goal of providing a common vision for good living and a tranquil atmosphere
for the globe and its inhabitants [16]. According to the SuM4All’s Global Roadmap of
Action (GRA) toward sustainable mobility, global GHG emissions from the transportation
industry must be reduced from 8 billion tons of CO2 to 2–4 billion tons by 2050, with
net-zero emissions in the following decades [238]. As a result, the transportation industry
is a key participant in the fight against climate change to achieve the SDGs. With the
advancements in technology in the transport sector, electric vehicles (EVs) have been
introduced. They are predicted to play a large role in lowering overall road transport-
related emissions caused by internal combustion engine vehicles (ICEVs), as outlined in
Figure 24 [239]. The environmental effect of ICEVs is mostly determined by the fossil
fuel utilized in the combustion vehicles, but the EV’s impact is determined by the energy
utilized to generate electricity. In 2019, the worldwide EV fleet emitted approximately
51 million tons of carbon dioxide, which is almost half of what an ICE-powered fleet of the
same size would have emitted, totaling 53 Mt CO2-eq of averted emissions [240].
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emissions caused by internal combustion engine vehicles (ICEVs), as outlined in Figure 
24 [239]. The environmental effect of ICEVs is mostly determined by the fossil fuel utilized 
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would have emitted, totaling 53 Mt CO2-eq of averted emissions [240]. 

 
Figure 24. CO2 emissions of a typical mid-size automobile in terms of the powertrain (2018) over a 
10 year lifetime. 

The transportation industry supports almost all SDGs, including those related to so-
cial and economic growth, improving access to services, enhancing agricultural produc-
tion, and linking commodities to markets. Sustainable development requires sustainable, 
secure, and clean transportation that is available to all, and EVs fulfill all these features. 

Figure 24. CO2 emissions of a typical mid-size automobile in terms of the powertrain (2018) over a
10 year lifetime.

The transportation industry supports almost all SDGs, including those related to social
and economic growth, improving access to services, enhancing agricultural production,
and linking commodities to markets. Sustainable development requires sustainable, secure,
and clean transportation that is available to all, and EVs fulfill all these features.

Electric vehicles have recently been linked to renewable energy, batteries, and other
uses, all of which have improved environmental implications and can help achieve the
relevant SDGs. As demonstrated in Table 6 and Figure 25, EVs have an impact on three
aspects of sustainability (social, economic, and environmental), as well as a significant
association with seven of the 17 SDGs.
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Table 6. The correlation between EVs and SDGs.

Sector SDGs Objective EVs on the Road to Achieving SDGs
Relevant Research
that Supports the

Correlation

Social

SDG 3: Good health
and wellbeing

Reduce pollution-related
illnesses

Unlike internal combustion engine
(ICE) vehicles, electric vehicles (EVs)
emit no pollution. As a result, EVs
have been promoted as part of a larger
global solution to bad air quality and
the healthful life of city residents.

[241–249]

SDG 11:
Sustainable cities
and communities

Improve inclusive and
long-term urban
planning and
management

EVs are being utilized in the
development of smart cities, which
implies that all of the municipality
services, such as local infrastructure
and transportation, have been
combined into a single, fully
functional system. As a result,
everyone benefits from a sustainable
transportation system.

[21,250–253]

SDG 7: Affordable
and clean energy

Ensure that everyone has
access to energy that is
affordable, dependable,
and contemporary

With the adoption of several
functional activities, for example,
optimum scheduling and energy
optimization associated with EVs,
affordable energy and reduced power
consumption can be accomplished.

[17,254–263]
Maximize the worldwide
percentage of renewable
energy in the energy mix
by a significant amount

EVs can be used with a variety of
renewable energy sources to produce a
cost-effective alternative to fossil fuels.

Global energy efficiency
improvement rate

EVs use distributed generation,
energy efficiency, and energy storage
to deliver contemporary, sustainable,
and efficient energy.

Economic

SDG 8: Decent
work and economic
growth

Encourage measures to
promote productive
activity and good
employment creation

The success of the EV market, along
with its numerous functions,
particularly in the fields of renewable
energy, electric buses, and trains,
plays a part in economic growth and
job creation in production, marketing,
and supply.

[18,239,264–270]

SDG 9: Industry,
innovation, and
infrastructure

Create high-quality,
sustainable, dependable,
and robust infrastructure
to strengthen the
economy

Electric vehicles are transforming the
transportation sector into one that is
adaptive, robust, and sustainable to
changing global climatic
circumstances while also promoting
economic growth.

[3,260,271–275]

SDG 12:
Responsible
consumption and
production

Create a program
framework for the
sustainable use of
resources

In the context of the virtual power
plant, smart grid, distributed power
production, and microgrid, energy
management in EVs ensures the
effective utilization of supply
and load.

[276–283]

Environmental SDG 13: Climate
action

Take quick action to
combat climate change’s
impacts

Carbon emissions can be reduced by
combining various renewable energy
sources with EV batteries to combat
climate change.

[17,50–60]
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6.1. Social Impact of EVs

Within the society category, the construction and implementation of EVs have a benefi-
cial influence on the achievement of multiple SDGs. According to the categorization of the
17 SDGs into three categories, EVs can be related to three of the SDGs, as discussed below.

6.1.1. SDG3

We looked into a number of studies to validate the link between EVs and their so-
cial impact on SDG targets. EVs, for example, can provide thermal comfort [241], air
quality comfort [242,243], temperature control [244], humidity control [245], and heat radi-
ation [246], all of which are connected to SDG 3.9 aimed at excellent health and wellbeing.
In the area of human health effects, however, the vehicle categories exhibit a distinct
proportion of impact location. Human physiological consequences of ICVs arise when
driving due to tailpipe pollution, which accounts for 94% of all ICV human health implica-
tions [247]. Public health effects from BEVs are related to the energy-generating subphase.
Electrification of automobiles, on the other hand, benefits the human health effect sector
since the consequences are reduced from ICV to BEV. According to research, one of the
primary issues that healthcare institutions confront, particularly in rural and distant places,
is the lack of reliable energy services [248]. Only 34% of hospitals have dependable energy
connections in the Sub-Saharan African nations investigated. However, a study of two
nations found that energy access has improved little over time. This crucial issue must be
addressed in realistic initiatives to improve healthcare delivery in Sub-Saharan Africa [249].
This impacts a developing country’s high maternal and infant mortality rates. However, a
high-reliability power source may be established using a standalone hybrid energy system
based-EV, improving the efficacy of healthcare services in rural/remote places.
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6.1.2. SDG11

EVs can also assist in socioeconomic development through effective energy man-
agement [250], which is linked to SDG 11.3. Substantial published data exist for SDG 11
regarding the favorable function of environmentally friendly electric buses, electric vehicles,
and solar cars [251]. They are also being utilized in the development of smart cities, which
implies that all of the municipality services, for example, infrastructure and transportation,
have been combined into a single, fully functional system. As a result, everyone benefits
from a sustainable transportation system [21]. As batteries play an important part in EV
technology, with today’s technology, the efficiency and density of battery energy storage
(BES) have aided in the development of inexpensive electric cars that emit little pollution.
People will use electric vehicles as their major means of mobility when high-performance
batteries are developed [21,252]. Batteries of various forms and sizes are considered to be
among the most efficient power storage strategies, and studies on different battery technolo-
gies and applications can be found in the literature; nevertheless, the damaging outcomes
of large usage on environmental and human health (Targets 11.5 and 11.6) continue to be
a major problem. The BESS has a short lifespan since it is made up of large amounts of
diverse raw materials, including metals and nonmetals. As a result, massive amounts of
pollutants (e.g., emissions of greenhouse gases, poisonous gases, and toxic materials) can
be created in the battery sector in many phases, including production, mining, shipping,
application, storing, repair, recycling, and dumping [253].

6.1.3. SDG7

As electric vehicles are powered by electricity, they are strongly related to SDG7 on
reasonable and sustainable energy. EVs can provide power generation [254], high energy
efficiency [255] through power management [256], optimal scheduling [257], and renewable
energy integration [258], all of which are related to Targets 7.1, 7.2, and 7.3. In order to meet
Target 7.2, which calls for a significant increase in the proportion of renewable energy in
the universal energy composition, considerable information is available showing that the
EV, which is considered among the BES technologies, has aided in growing the market for
renewable energy in the universal energy composition and can help achieve this goal [259].
In the case of SDG 7 (affordable and clean energy), there is evidence that the use and
development of EV-BES will enable the attainment of all goals (100%) under this target.
Many studies advocate the use of EV-BES in the pursuit of a contemporary energy service
that is dependable, clean, and inexpensive. The BES, which can be connected with RE
and electric vehicles (EVs), has grown in popularity as a way to replace the usage of
conventional energy resources since it is more flexible in terms of storing and delivering
electricity, making it a more economical option [17]. With the lowering cost of renewable
energy and the rising scarcity of fossil fuels, a long-term solution is required in which
renewable energy paired with EVs may assure universal access to power [259]. According
to a study in China [260], a hybrid renewable resource-based charging station for EVs
is economically and technically feasible and guarantees clean and dependable energy
supply. The high initial financing required for BESs in EVs is a major drawback; however,
studies have shown that the cost can be compensated during its operation [261]. For
instance, to meet Target 7.2, which calls for a significant increase in the proportion of clean
energy sources, there is significant proof that the EV, which is involved in storage systems
and power systems, has aided in creating a market for renewable energy in the world
energy pack and can help achieve this goal [262]. Despite the ongoing COVID-19 epidemic,
research forecasted a 5% growth in the standalone (with storage system) renewables market
in the power industry in 2020 relative to 2019. This is in line with a rise in BESSs needed
for stationary and transportation applications [240].
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6.2. Economic Influences of EVs

The three SDGs in the economic category (SDGs 8, 9, and 12) are concerned with em-
ployment, industries, growth of the economy, and technology and infrastructural facilities
to achieve the objective.

6.2.1. SDG8

During the production of the different components of EVs, such as batteries, sensing
devices, smart appliances, and electric motors, jobs can be created, aligning with Target
8.3 [18,263]. The extensive and diverse uses of EVs have been identified to provide economic
prospects through the use of categorical employment from domestic resources and firms.
In view of SDG8, development and suitable work, recent research shows that the success in
the EV market along with its numerous functions, particularly in the fields of renewable
energy, electric buses, and trains, has played a part in economic growth and job creation in
production, marketing, and supply. EVs can help reach Target 8.3 by helping to create new
employment. According to a 2019 forecast, battery-powered and plug-in hybrid cars might
account for the bulk of new vehicle sales by 2040 [264]. In 2020, the German government
announced a stimulus package involving 2.5 billion EUR to enhance electric car charging
infrastructure and to encourage more e-mobility research and development, such as battery
solutions. The UK government is committed to reducing 68% of CO2 emissions by 2030.
To meet the target, 43% of vehicles in the UK need to be electric [239]. In recent times,
the US government announced a 3 billion USD initiative to enhance electric car battery
production [265]. According to research published in [266], the electric automobile market
is increasing rapidly in Flanders, Belgium. Using data from a large-scale poll conducted in
2011 and a choice-based conjoint study, it was estimated that battery electric vehicles would
account for roughly 5% of new vehicle sales by 2020, while plug-in hybrid electric vehicles
would account for around 7%. These percentages might rise to 15% and 29% by 2030,
respectively. However, the rate of adoption of electric cars is influenced by their purchasing
cost. The EV market also fulfills Target 8.6 by creating work possibilities for youngsters,
lowering the youth unemployment rate, and helping to raise per capita income [267]. Job
possibilities offered will also assist local children in obtaining more schooling and a greater
employment rate since most projects would employ locals [268,269], favorably impacting
Targets 8.1 and 8.3.

6.2.2. SDG9

EVs can contribute to the achievement of Target 9.1, which aims at the creation of
dependable, high-quality, and long-lasting infrastructures to promote social wellbeing and
economic growth [260,270]. For instance, an investigation in Sub-Saharan Africa found
that using climate-resilient EV-BESs for photovoltaic house systems in remote regions has
improved local infrastructure and aided public community, environment, and financial
stability [271,272]. Creating a publicly recharging infrastructure system is a critical com-
ponent for increasing the use of electric vehicles. As a result, GHG emissions associated
with conventional fuel automobiles are reduced while also enhancing the metropolitan
environment. The availability of charging stations (CS) and their characteristics is a major
recognized obstacle to the adoption of electric vehicles among residents. The introduction
of publicly CS systems helps to improve the EV customer journey by enhancing the acces-
sibility of infrastructural facilities. The best way to encourage the formation and future
growth of a sustainable local CS system is an apparent problem for city areas and local
officials [273]. A case study in Canada [274] showed that British Columbia (BC) adopted
EV technology as it is a favorable site for EVs since massive hydropower accounts for 85%
of this region’s electricity. EVs are ideally suitable for metropolitan environments, where
the majority of housing structures in BC are situated, because of concerns with respect to
their driving range and ability to cut local emissions.
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6.2.3. SDG12

The deployment of EV integrated virtual power plants (VPPs) [275], distributed power
production [276,277], smart grids [278], and microgrids [279] can help achieve effective en-
ergy usage between supply and load, which is relevant to Target 12.1. Unifying a significant
quantity of EVs into VPPs will have ecological advantages, including energy efficiency and
pollution minimization, safety advantages connected to the electrical grid’s steady func-
tioning, and economic incentives to VPPs and automobile stakeholders. More EVs will be
included in VPPs in the long run because of these advantages. In addition to VPPs, electric
vehicles in distribution networks are becoming controlled commodities with vehicle-to-grid
(V2G) technology, enabling them to perform various auxiliary operations (e.g., maximum
energy harvesting, voltage stabilization, and frequency regulation). Moreover, evidence
exists to demonstrate the favorable impact of EV-BESs on SDG12, particularly Target 12.5,
which calls for considerably reducing waste creation through minimization, recycling,
and reuse. According to research, the BES of an EV is likely reused or discarded, or its
components will be retrieved depending on the application [280]. Recycling the materials
used in lithium-ion batteries (lithium, cobalt, nickel, and aluminum) can reduce the power
density by 10–53%, and the construction price of lithium-oxygen batteries can be reduced to
1510 MJ/kWh from 1870 MJ/kWh, resulting in minimal GHG emissions [281]. According
to Dewulf et al., recycling battery elements can reduce fossil source usage and, hence,
minimize waste production [282].

Although there is a bright employability perspective, there will be beneficiaries and
sufferers in the switch to the electric-powered transportation industry. There will be a loss
of jobs in the oil business, at petrol stations, and perhaps in the car repair and mechanic
sector because of the worldwide adaptation of EVs, since EVs require considerably lower
maintenance compared to traditional petrol and diesel automobiles. There will not be
practically as many employments needed to make batteries, electrical motors, and power
electronic components as compared to the manufacture of petrol engines, exhaust systems,
pollution control systems, fuel monitoring systems, gearboxes, and automotive components.
Thousands of jobs may be lost in Germany alone by 2030 as a result of the switch to EVs,
according to projections [268]. In order to transition to electrification, Volkswagen AG’s
parent company, which owns the premium brand Audi in Germany, stated last year
that it would eliminate 7500 positions internationally. However, production, R&D, and
battery manufacturing will all directly create employment in the EV sector. Installation
and servicing of the equipment used in EVs will create indirect employment. Moreover,
the workforce responsible for building petrol or combustion engine components might
be reassigned to manufacture EV motor parts and battery packs. However, it is likely
that there will be fewer such positions in the EV sector than currently employed in ICEV
production lines [267].

Additionally, electric cars are less expensive to maintain and drive, leading to an
impact on both direct and indirect employment. Each dollar saved on petrol, oil changes,
and engine components can be reinvested in the domestic economy. The US Energy
Information Administration estimates that more than 80% of the price of a gallon of
petrol leaves the domestic economy straightaway [283,284]. More money will remain in
the community and strengthen the local economy if fuel costs are reduced. According
to research conducted by the California Electric Transportation Coalition, every dollar
conserved on petrol that is put toward the cost of other domestic products and commodities
leads to the creation of 16 jobs statewide [196,285]. Residents of New York City drive far
less than those in typical US metro areas, keeping 19 billion USD annually within the city’s
economy [286].
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6.3. Environmental Effects of EVs

Batteries have recently been linked to renewable energy, electric cars, and other uses,
all of which have improved environmental implications and can help achieve the rele-
vant SDGs. The advantages and disadvantages of EVs related to the environment are
discussed below.

SDG13

The advantages of EVs for the climate (SDG13) can be summarized as their capacity
to minimize emissions from conventional sources of energy utilized as a major element
of RE to contain power [287]. Furthermore, with the advancing feature of EV solutions,
many nations are incorporating initiatives aimed at environmental issues into their policy
proposals [288]. The Intergovernmental Panel on Climate Change (IPCC) projected in
2018 that electric vehicles, electric motorcycles, and electric transport must displace fossil
fuel-powered passenger vehicles by 2035–2050 in order to keep global warming below
1.5 ◦C. Targets 13.1 and 13.2 address environment-related problems and incorporate clean
environment activities into social policies, schemes, and management. According to strate-
gies reported in Europe [289], New Zealand [290], China [263], and the United States [291],
by 2050, the use of EVs combined with RE will contribute to a 70% reduction in CO2
emissions in the electricity sector. Many studies advocate the use of EVs in the pursuit of a
contemporary energy service that is dependable and clean. EVs, which are connected with
BESs, have grown in popularity as a way to replace the usage of traditional power sources
since EVs are feasible in delivering and storing electricity, representing a more economical
option [17]. With the lowering cost of renewable energy and the rising shortage of natural
fuels, a sustainable strategy is required in which renewable energy and BESSs paired with
EVs may ensure universal access to power [292]. Different studies, however, concurred that
EVs have environmental drawbacks [293,294]. In certain cases, they employ dangerous and
combustible ingredients, and they need substantial energy to make them, which results
in extensive GHG emissions [295]. As a result, the BESS may function as a deterrent to
Target 13.1’s goal of reducing climate-related dangers. Because the BESS contains elements
with severe environmental implications, it may have a detrimental influence [296]. EVs
appear to be a viable climate answer because, if we can make our networks carbon-free,
automobile emissions will decline dramatically. The excellent news for EVs is that many
nations are now focusing on decarbonizing their power infrastructures. During the past
few years, utility companies in the United States have abandoned hundreds of coal facilities
in favor of a combination of solar, wind, and natural gas electricity with fewer emissions.
Therefore, researchers have discovered [297] that EVs have become greener in general, and
they will only grow greener.

7. Conclusions and Future Trends

Currently, global warming has triggered several studies in the field of energy toward
curbing carbon emissions. A major portion of carbon emissions comes from the auto-
mobiles industries, which is currently undergoing drastic improvements by developing
EVs. However, the development of EV technology requires several factors to consider.
Therefore, in this review paper, battery storage and management, along with several EV
technologies emphasizing power electronics converters, charging infrastructure, and meth-
ods, algorithms, controllers, and optimization, were reviewed toward achieving SDGs.
Firstly, various battery storage technologies along with components of battery manage-
ment were discussed. The analysis revealed that each battery technology features different
performance characteristics such as specific power, specific energy, and thermal stability.
Therefore, the battery features should be considered before their application in EV tech-
nology. Secondly, several EV-based technologies, such as power electronics technology
and charging strategies, were critically reviewed. The investigation showed that power
converters act as the key technology to control and optimize EV operations. With regard to
charging strategies, more efficient technologies to limit the charging time, thermal loss, and
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appropriate thermal management should be developed. Thirdly, state-of-the-art methods,
algorithms, and optimization approaches were investigated. It was reported that each
algorithm and optimization technique for EV application delivers satisfactory outcomes.
However, the computational complexity and high training time still need to be addressed.
Fourthly, the open issues, limitations, and research gaps were identified. It was found
that appropriate hybridization of various technologies such as battery storage systems,
power converters, charging strategies, optimization approaches, and algorithms should be
explored toward the efficient development of EV technology. Lastly, various SDG targets
associated with EV application were explored and analyzed. On the basis of the issues and
challenges, this article provides the following future trends and suggestions:

• For the power capacity of commercial and industrial energy storage systems, battery
storage technology appears promising. The majority of EVs are powered by lithium-
ion batteries. Fast charging shortens battery life and reduces performance because
of the high current and temperature produced. In the future, the controller should
split the batteries in such a way that some of them can charge from any source while
others deliver power to the motor. Therefore, further study is suggested for designing
controllers for improved performance and accuracy in EV technology.

• EVs cannot be powered by a single battery; instead, a battery pack comprises multiple
modules connected together in series and parallel. The battery pack’s performance
is difficult to monitor at the pack level since batteries might function under different
conditions. In order to balance a cell’s energy, active balancing is required, which is
more effective because it redistributes the energy among cells rather than letting it
go to waste. Power electronic devices are employed to transmit energy from strong
to weak cells and maximize the amount of energy available, which also increases
the module’s capacity. Henceforth, in-depth investigation is needed to deliver better
active balancing between the battery pack by utilizing the converter circuits.

• Powerful thermal management is needed for the power electronics equipment since it
may malfunction and fail while working at high temperatures. The power electronic
devices are not entirely developed, and the thermal management is questionable
because the EV industry is not totally mature and has various difficulties. Additionally,
condition monitoring adds complexity and potential threats to the vehicle. Therefore,
comprehensive exploration is needed to study the thermal management of power
electronics devices.

• The major difficulty with EVs is the long recharge times; however, there are other
problems related to the degree of charger types. High voltage, power, and energy
transmission are needed for EV charging. Consequently, there is a difficulty with
technology, cost, safety, sustainability, and the environment. Public rapid EV charging
systems are dealing with problems such as being generally expensive to establish
and all of the parking on the highways needing more chargers. Henceforth, consider-
able work needs to be accomplished to develop an appropriate charging system for
EV applications.

• Intelligent controllers such as AI and ML are constantly used in cutting-edge tech-
nology, and they have been at the heart of the majority of advancements in recent
years across a variety of applications. EV optimization problems require a varied
level of optimization in various applications, starting with wheel size and extending
to optimizing the battery management system and controller for both batteries and
motor. Therefore, extensive optimization and AI techniques need to be explored for
EV applications.

• EVs can lower emissions contributing to climate change, making them eco-friendly
automobiles. However, when their batteries run out and are not properly disposed
of or recycled, or when their power source is a nonrenewable resource, they can
be dangerous. The battery energy storage system is complex with respect to state
coupling, input coupling, environmental sensitivity, life-cycle deterioration, and ad-
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ditional characteristics. Henceforth, further investigation is needed to study the life
cycle of batteries and its associated factors.

• The power electronics converter technology is important toward controlling, stabiliz-
ing, and providing the conversion to operate motors, battery storage, and generators,
as well as optimizing the EV operations for effective outcomes. At present, the power
electronics converter technology is undergoing a drastic technological shift to develop
lightweight converters, which depict less electromagnetic interference and fewer rip-
ples to meet automotive industry standards. Therefore, further investigation is needed
toward developing power converters with appropriate characteristics.

• Battery state estimation (e.g., SOC, SOH, and RUL) holds significant importance in
EV technology. State estimation is important toward battery protection and energy
management in EV applications. Various state-of-the-art technologies and methods,
such as model-based, data-driven-based, and hybrid-based, have been applied to
estimate the various battery states. However, in cases where the battery state is not
appropriately estimated, system failure and economic loss could result. Additionally,
inappropriate estimation may lead to early replacement of batteries, delay in battery
replacement, and explicit failure events. Therefore, further exploration is necessary to
develop a suitable estimation technique.

• The development of clean technology and SDG for EV applications can be achieved
with the significant involvement of battery storage technology. Nonetheless, the
participation and profitability of battery technology in the existing global energy
market have not been explored comprehensively. Therefore, the development and
analysis of various battery technologies in EV applications should be further studied.

• The performance, accuracy, and robustness of the EVs can be conducted by implement-
ing the Internet of things (IoT) technology, which consists of sensors, data processors,
and cloud technology. With IoT-based EV technology, EV data in the form of voltage,
current, temperature, etc. can be stored and analyzed on the cloud platform. Hence-
forth, further examination to develop an effective IoT-based EV technology should
be conducted.

Overall, the constructive discussion, analysis, concerns, and recommendations can
provide decision makers with useful opportunities and directions for the adaptation of
SDGs in the EV industries. In conclusion, proper selection and consideration of battery stor-
age technology, battery management systems, power electronics technology, EV charging
technology, and environmental issues of EVs can help in SDG integration.
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Abbreviations

ADC Analog-to-digital conversion
ANN Artificial neural network
BCS Battery charging station
BMS Battery management system
BPIC Battery protection IC
BSS Battery swapping station
CAN Controlled area network
CC Constant current
CEC Charge equalization controller
CIBC Coupled inductor bidirectional converter
CPT Capacitive power transfer
CS Charging stations
CV Constant voltage
DAS Data acquisition system
DP Dynamic programming
EIS Electrochemical impedance spectroscopy
EMI Electromagnetic interference
EMS Energy management system
EV Electric vehicle
FBC Full-bridge boost DC/DC converter
FL Fuzzy logic
GA Genetic algorithm
GB Guobiao Standards
GHG Greenhouse gas
GRA Global roadmap of action
HFT High-frequency transformer
ICEV Internal combustion engine vehicle
IEC International Electrotechnical Commission
IPCC Intergovernmental Panel on Climate Change
IPT Inductive power transfer
ISO International Organization for Standardization
KF Kalman filter
LCO Lithium cobalt oxide
LFP Lithium iron phosphate
LMO Lithium manganese oxide
LNMC Lithium nickel manganese cobalt oxide
LNCA Lithium nickel cobalt aluminum oxide
LTO Lithium titanate oxide
LP Linear programming
MCC Multistage constant current
MPIC Multiport isolated converter
NaNiCl Sodium–nickel chloride
NCA Nickel cobalt aluminum oxide
NiMG Nickel–metal hydride
NMC Nickel–manganese–cobalt
OCV Open-circuit voltage
OLEV Online electric vehicle
PCM Phase-change material
PEM Power and energy management
PFC Power factor correction
PI Proportional–integral
PID Parameter identifiers
PMP Pontryagin’s minimal principle
PPC Push–pull converter
PSO Particle swarm optimization
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QZBC Quasi Z-source bidirectional converter
RC Resonant converter
RES Renewable energy sources
RUL Remaining useful life
SA Simulated annealing
SC Stochastic control
SCBC Switched-capacitor bidirectional converter
SCI Serial communication interface
SDG Sustainable Development Goals
SOC State of charge
SOF State of function
SOP State of power
SOE State of energy
SOS State of safety
SVM Support vector machine
UN United Nations
VPP Virtual power plants
V2G Vehicle to the grid
WPT Wireless power transfer
ZEBRA Zero-emission battery research activity
ZVSC Zero-voltage switching converter
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