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Abstract: The explosion of electric vehicles (EVs) has triggered massive growth in power lithium-ion
batteries (LIBs). The primary issue that follows is how to dispose of such large-scale retired LIBs.
The echelon utilization of retired LIBs is gradually occupying a research hotspot. Solving the issue
of echelon utilization of large-scale retired power LIBs brings not only huge economic but also
produces rich environmental benefits. This study systematically examines the current challenges of
the cascade utilization of retired power LIBs and prospectively points out broad prospects. Firstly,
the treatments of retired power LIBs are introduced, and the performance evaluation methods
and sorting and regrouping methods of retired power LIBs are comprehensively reviewed for
echelon utilization. Then, the problems faced by the scenario planning and economic research of
the echelon utilization of retired power LIBs are analyzed, and value propositions are put forward.
Secondly, this study summarizes the technical challenges faced by echelon utilization in terms of
security, performance evaluation methods, supply and demand chain construction, regulations,
and certifications. Finally, the future research prospects of echelon utilization are discussed. In
the foreseeable future, technologies such as standardization, cloud technology, and blockchain are
urgently needed to maximize the industrialization of the echelon utilization of retired power LIBs.

Keywords: electric vehicles; retired power lithium-ion battery; echelon utilization; sorting and
regrouping

1. Introduction

Resources consumption is a prerequisite for supporting the industrialization process.
The shortage of resources has become a serious problem humans face in recent years [1].
The United Nations proposes the 2030 Sustainable Development Goals, which aim to call
on the world to act together to protect the planet and improve the lives and futures of all
people [2]. The United States has also formulated a green development strategy to realize
100% clean energy generation by 2035. The Chinese government has also pledged to the
world to achieve carbon peaking by 2030 and carbon neutrality by 2060 [3]. Cars are the
most used means of transportation in people’s daily travel, but traditional fuel vehicles
are no longer in line with the theme of green and sustainable development. Under such
a background, electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) have
been favored by governments and people all over the world because of their advantages
of low pollution, low noise, and high economy [4]. According to the data released by
the International Energy Agency, from 2010 to 2021, global sales of EVs and PHEVs are
increasing yearly, as shown in Figure 1a. In 2021, EV sales will account for more than 9% of
global vehicle sales. In Europe and China, the proportion of EV sales has exceeded 15%, as
shown in Figure 1b,c, respectively. As shown in Figure 1d, EV sales share exceeds 4% even
in the US, where EV sales are low [5].
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The increasing number of EVs and PHEVs has led to the rapid development of the 
battery industry. As shown in Figure 2a, the demand for electricity from BEVs and PHEVs 
is increasing yearly. The batteries currently used in EVs include nickel-hydrogen batteries, 
lithium iron phosphate batteries, and lithium-ion batteries (LIBs). LIBs have become the 
most used power source for EVs due to their green environmental protection, long service 
life, large capacity, and high charge and discharge safety [6,7]. A practical problem that 
cannot be ignored is that the capacity of LIBs will degrade with the increase in charging 
and discharging times. When the capacity of the LIB degrades to about 80% of the rated 
capacity, the LIB will face retirement. Disposal of LIBs decommissioned on such a large 
scale is quite troublesome. With the gradual increase of EVs and PHEVs, the echelon uti-
lization of retired LIBs is gradually occupying a research hotspot. Figure 2b shows the 
global LIBs recycling scale and growth rate. By 2025, the global retired power LIBs will be 
estimated to exceed 600,000 tons. 
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The increasing number of EVs and PHEVs has led to the rapid development of the
battery industry. As shown in Figure 2a, the demand for electricity from BEVs and PHEVs
is increasing yearly. The batteries currently used in EVs include nickel-hydrogen batteries,
lithium iron phosphate batteries, and lithium-ion batteries (LIBs). LIBs have become the
most used power source for EVs due to their green environmental protection, long service
life, large capacity, and high charge and discharge safety [6,7]. A practical problem that
cannot be ignored is that the capacity of LIBs will degrade with the increase in charging
and discharging times. When the capacity of the LIB degrades to about 80% of the rated
capacity, the LIB will face retirement. Disposal of LIBs decommissioned on such a large
scale is quite troublesome. With the gradual increase of EVs and PHEVs, the echelon
utilization of retired LIBs is gradually occupying a research hotspot. Figure 2b shows the
global LIBs recycling scale and growth rate. By 2025, the global retired power LIBs will be
estimated to exceed 600,000 tons.
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In the face of such many retired LIBs, if they are directly discarded, they pollute
the environment and cause a huge waste of resources, which is not in line with the 4R
principle (recycle, reuse, reduce, and recover) [9,10]. Many scholars choose to recycle many
valuable materials in retired LIBs, such as anode and cathode materials, by using physical
or chemical means [11,12]. However, echelon utilization is a better choice for most retired
power LIBs and is also the main direction of future research development [13]. Echelon
utilization can fully use the remaining energy in retired power LIBs, such as grid energy
storage and 5G base stations [14]. However, some problems exist in the large-scale echelon
utilization of retired power LIBs. Performance screening indicators, clustering methods,
economic evaluation, supply chain construction, safety management, etc., are all major
challenges for the echelon utilization of large-scale retired power LIBs [15,16].

In this study, we introduce several treatment methods for the current large number of
retired power LIBs in Section 2. Echelon utilization is regarded as one of the most promising
solutions to deal with retired power LIBs. In Section 3, we review the research status of the
echelon utilization of retired power LIBs, including the performance evaluation indicators
of retired power LIBs and the technical challenges of sorting and regrouping. Section 4
discusses the scenarios and economics of echelon utilization, which is also one of the most
concerning issues for investors. The problems and technical challenges faced in the echelon
utilization of retired power LIBs are reviewed in Section 5, including safety performance
evaluation, economics, industry chain, policies, and guidelines. Section 6 mainly looks
forward to future research, provides references, and points out the direction for future
research work. Section 7 summarizes the review and gives the conclusions.

2. Treatment of Retired Power LIBs
2.1. Battery Materials Recycling

In the process of commercializing LIBs, the acquisition of raw materials is expensive.
Figure 3 shows a schematic diagram of a cylindrical LIB’s shape, composition, and charging
and discharging process. It can be seen from Figure 3 that when the LIB is charged, the
cathode electrode releases lithium ions, and the lithium ions pass through the separator
through the electrolyte and move to the anode electrode. When the LIB is discharging, the
movement of lithium ions is just the opposite. Lithium ions enter the electrolyte from the
anode electrode, pass through the separator, and finally reach the cathode electrode.Typical
cans for retired power LIBs are usually iron or aluminum; a mixture of graphite, conductor,
binder, and the electrolyte is coated on the copper foil as the anode material of the retired
LIBs [17]. The cathodes of retired power LIBs are generally aluminum foils coated with
cathode materials, conductors, polyvinylidene fluoride binders, and fluoride salts. The
separator material between the cathode and anode also prevents short circuits between the
positive and negative electrodes [18]. From a sustainability perspective, recycling retired
LIBs can reduce resource consumption; from an economic perspective, recycling retired
LIBs can reduce the cost of raw material supply; from a political perspective, recycling
retired batteries can reduce dependence on foreign resources, which has long-term strategic
significance [19].

Table 1 shows the mass proportion of typical metals in several common LIBs, and
we also list the metal transaction prices obtained from the London Metal Exchange (LME)
in Table 1. It can be seen from Table 1 that the metal materials in retired power LIBs
are expensive (such as cobalt is about three times as expensive as nickel) and have high
recycling value and prospects. In the existing research, recovering lithium, nickel, cobalt,
and copper metal materials is the main research direction for recycling retired power
LIB materials [20]. In fact, the recycling of other low-priced materials and the recycling
of electrolytes is also an unavoidable problem [21]. However, electrolyte recovery has
problems such as a complex recovery process, high cost, high energy consumption, and
serious volatilization of toxic and harmful gases. These problems are also the challenges
that need to be solved in the industrialization process of electrolyte recovery.
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Figure 3. A schematic diagram of a cylindrical LIB’s shape, composition, and charging and dis-
charging process (a) Shape and composition of cylindrical LIB. (b) Schematic diagram of the charging
and discharging process of LIB.

Table 1. Mass compositions of typical LIBs.

Metals

Cathode Material

Prices ($/kg)LiCoO2 (Mass%)
[22]

LiFePO4(LFP)
(Mass%) [23]

LiMn2O4
(Mass%) [23]

LiNi1/3Mn1/3Co1/3O2
(NMC) (Mass%)

[24]

LiNi0.8Co0.15Al0.05O2
(NCA) (Mass%)

[25]

Aluminum 5.2 6.5 21.7 22.72 21.9 2.36
Cobalt 17.3 0.0 0.0 8.45 2.3 49.81
Copper 7.3 8.2 13.5 16.60 13.3 9.456

Iron/steel 16.5 43.2 0.1 8.79 0.1 0.73
Lithium 2.0 1.2 1.4 1.28 1.9 11.75

Manganese 0.0 0.0 10.7 5.86 0.0 2.30
Nickel 1.2 0.0 0.0 14.84 12.1 16.16
Binder 2.4 0.9 3.7 1.39 3.8 N/A

Electrolyte 14.0 14.9 11.8 11.66 11.7 N/A
Plastic 4.8 4.4 4.5 3.29 4.2 N/A

The advantages and disadvantages of the main recycling methods for retired power
LIB materials are shown in Table 2. The recycling methods mainly include pyrometallurgi-
cal, hydrometallurgical, bioleaching, and direct recycling [26,27]. Pyrometallurgy reduces
metal oxides to cobalt, copper, iron, and nickel alloys at high temperatures. Hydrometal-
lurgy mainly leaches the desired metals from the cathode material using special solution
reagents [28]. The bioleaching method refers to the use of bacteria to recover valuable
metals. Still, the difficulty of this method is that the bacteria are cultured for a long time and
are easily contaminated. Nonetheless, the method has also been used in industries such as
mining. The process of removing the anode and cathode materials of retired power LIBs
and then repairing, processing, and manufacturing them for reuse is called direct recycling.

Table 3 lists the current worldwide retried power LIB materials recycling compa-
nies and their recycling technologies. It can be seen from Table 3 that the most widely
used recycling methods in industry are pyrometallurgy, hydrometallurgy, and pro-and
hydrometallurgy. Figure 4 is a process flow diagram of three recycling methods developed
by different companies. The pyrometallurgy method developed by the German company
Accurec is mainly used to recycle Co alloy and Li metal. The hydrometallurgy method
developed by the French company Recupyl is mainly used to recover Co(OH)2, Li2CO3,
and Li3PO4. The pro-and hydrometallurgy method developed by the Umicore company in
the US is mainly used to recover CoCl2 and Ni(OH)2.
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Table 2. Comparison of several methods for recycling retired power LIB materials.

Study Recycle Method Advantages Disadvantages

Refs [29,30] Pyrometallurgical Relatively mature technology,
simple process

Low recovery rate, high cost,
large environmental pollution

Refs [15,31] Hydrometallurgical
High recovery rate, high

efficiency, low
power consumption

Relatively complex process, high
resource consumption, low

efficiency, long production time

Refs [32,33] Bioleaching
Low cost, low environmental

pollution, low
energy consumption

Relatively complex process, long
time cultivation

Refs [34,35] Direct recycling Simple process, low cost, low
environmental pollution

Immature technology, difficult
to commercialize

Table 3. Comparison of industrial recycling of retired power battery materials [1,36–38].

Related Company Battery Type Recycle Method Recovered Product Country

Accurec-recycling
Gmbh Except Pb and Hg Pyrometallurgy Co, Li Germany

AEA All Hydrometallurgy Co2O3, LiOH UK

AkkuSer Oy All Pro-and
hydrometallurgy Meal powder Finland

Batrec industrie AG Li-based, Hg-based Pyrometallurgy Co, MnO2, Ni Switzerland

Brunp recycling Li-based, Ni-based Hydrometallurgy Cathode China

GEM Li-based, Ni-based Hydrometallurgy Cathode China

Glencore Plc Li-based Pro-and
hydrometallurgy Co, Ni, Cu Switzerland

IME Li-based, Ni-based Pro-and
hydrometallurgy Li2CO3, Co Germany

International Metals
Reclamation Company Li-based, Ni-based Pyrometallurgy Ni alloys US

JX Nippon
Mining & Metals Li-based Hydrometallurgy Ni, Co, Mn, Li Japan

Mitsubishi Li-based, Pb-acid Pyrometallurgy LiCoO2 Japan

Xstrata Li-based, Ni-based Pro-and
hydrometallurgy Cu, Ni, Zn Switzerland

Onto technology LLC Li-based Direct recycling Cathode US

Recupyl Li-based, Zn-based Hydrometallurgy Co(OH)2, Li2CO3 France

Retriev Technologies All Hydrometallurgy Co, Li2CO3 US, Canada

Campine Pb-acid Pyrometallurgy Pb Belgium

Rockwood Lithium Li-based Hydrometallurgy Oxide (Co, Li) Germany

Sumitomo and Sony All Pro-and
hydrometallurgy Co, Ni, Fe alloy, CoO Japan

Umicore Li-based, NiMH Pro-and
hydrometallurgy CoCl2, Ni(OH)2 US

SNAM Li-based, Ni-based Pyrometallurgy Ni, Co, Cd France
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2.2. Echelon Utilization

When the capacity of the power LIBs degrades to about 80% of the rated initial capacity,
they can no longer meet the requirements of EVs. That is, they have reached the retirement
standard. However, the remaining capacity in the retired power LIBs is still large at this
time, and direct recycling may result in a waste of energy. In many scenarios, echelon
utilization is more attractive for both the government and investors than direct recycling of
materials in retired power LIBs [39]. After re-testing, analysis, screening, and regrouping
of retired power LIBs, they can be applied to the fields of microgrids, communication base
stations, and energy storage systems. The United States and some European countries have
taken the lead in carrying out research on the echelon utilization of retired power LIBs.
However, the echelon utilization of retired power LIBs has always been in a state of being
difficult to implement and control.

Currently, the echelon utilization of retired power LIBs follows the previous experience
and forms a recycling system with the battery manufacturer as the main responsible
party [40]. Battery retailers in the US are mandated to recycle retired batteries and to get
consumers to recycle retired batteries through a deposit voluntarily. The recycling of retired
batteries in Japan is the responsibility of the manufacturers, and the government will issue
certain subsidies to increase manufacturers’ enthusiasm for recycling. Figure 5 shows
the disposal route for the echelon utilization of retired power LIBs. It can be seen from
Figure 5 that for the disposal technology of retired power LIBs, the echelon utilization is
preferentially considered. In general, the echelon utilization is still in the demonstration
application stage. Most of the existing projects are led by automobile companies and carried
out in conjunction with battery manufacturing companies and battery recycling companies.
Only a few companies have taken the lead in achieving commercial breakthroughs, such
as commercial applications in the field of energy storage. Note that the cycle life of LFP
is more than 3500 times, and some LFPs can reach 5000 times. Meanwhile, the capacity
decays slowly with the increase in cycle times. However, the capacity of NMC or NCA
decays to 80%. Then the relative capacity shows a rapid decay trend with the increase
in the number of cycles, so the number of echelon cycles is small, and the reuse value is
extremely low. Therefore, LFP generally continues to be used as an energy storage battery.
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NMC or NCA is more suitable for resource recovery because they can extract metals such
as nickel, cobalt, and lithium.
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Figure 6 shows the development process of the echelon utilization of retired power
LIBs. 4R Energy has developed a series of household and commercial energy storage
products using the retired power LIBs for echelon utilization [41]. The National Renewable
Energy Laboratory of the United States has used retired power LIBs for echelon utilization
for energy storage and in commercial and residential buildings [42]. ABB has cooperated
with General Motors to utilize the power batteries retired from Chevrolet vehicles in
cascade and manufacture backup power supplies for household and small commercial use,
as well as peak shaving and valley filling equipment matched with clean energy power
generation. Toyota has used the retired batteries in its Camry to store and supply energy
for the facility. It has also designed a good management system to extend the service life
of retired batteries by nearly two times [43–45]. In China, the Beijing Daxing electric taxi
charging station echelon utilization demonstration project jointly established by China
Electric Power Research Institute, State Grid Beijing Company, Beijing Jiaotong University,
and other institutes uses retired batteries to adjust the output power of transformers and
maintain stable voltage level. In the communications industry, a Chinese company took
the lead in establishing a dismantling and recycling project for discarded EVs, using
decommissioned batteries as a reserve power source for equipment such as base stations
and street lamps to achieve stability and energy conservation. Enterprises and scientific
research institutes are actively exploring and commercializing the advanced technologies
of echelon utilization, and echelon utilization is booming worldwide [44–46].
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3. Status of Echelon Utilization of Retired Power LIBs
3.1. Performance Evaluation of Retired Power LIBs

The purpose of evaluating the performance of retired power LIBs is to judge whether
they have the value of echelon utilization and to apply them to different echelon utilization
scenarios according to their performance. For scenarios with high consistency requirements,
such as remanufacturing and grid-related energy storage systems, retired power LIBs need
to have better performance. For retired power LIBs with lower performance, they can be
applied to scenarios with low echelon utilization requirements, such as low-speed EVs,
communication base stations, etc. The main performance evaluation methods for retired
power LIBs include state of health (SOH) estimation [48], remaining useful life (RUL)
prediction [49], electrochemical impedance spectroscopy (EIS) [50], life cycle assessment
method [51], etc.

3.1.1. SOH Estimation

SOH can be used to explain the general condition of battery aging and degradation
and can also be regarded as an indicator of time. The current research methods for SOH
estimation can be mainly divided into three categories. (I) Model-based features: Features
should be able to reflect mathematical or physical models well, such as internal resistance,
capacity, and open circuit voltage can provide a very intuitive insight for SOH estima-
tion. However, these features also need to be obtained through complex mathematical or
physical models, such as circuit and electrochemical models. Figure 7a shows the SOH
estimation framework based on model features. (II) Data-driven: With the development of
artificial intelligence, features such as internal resistance, incremental capacity, differential
voltage, etc., can be mapped to SOH through machine learning or deep learning algorithms.
Figure 7b illustrates the SOH estimation process based on data-driven analytical features,
which are mainly divided into probabilistic and non-probabilistic models [52]. (III) Battery
management system-based raw features. The battery management system can monitor
and collect the changes of various characteristic parameters in the whole life cycle of the
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LIBs. However, the data collected by the battery management system is noisy, and noise
reduction and data cleaning are required before use. Figure 7c shows the SOH estimation
process based on the raw feature of the battery management system.

Batteries 2022, 8, x FOR PEER REVIEW 9 of 26 
 

noise reduction and data cleaning are required before use. Figure 7c shows the SOH esti-
mation process based on the raw feature of the battery management system. 

(a) 

(b) 

(c) 

Figure 7. SOH estimation [53]. (a) Model-based features for SOH estimation. (b) Data-based analyt-
ical features for SOH estimation. (c) Battery management system-based raw features for SOH esti-
mation. 

We provide a review of SOH estimation, as shown in Table 4. Perspectives such as 
battery type, SOH estimation method, mode of operation, and category are compared in 
Table 4. The mode of operation is distinguished as online and offline. The classification of 
relevant studies in Table 4 is largely based on the categories described above. 

Figure 7. SOH estimation [53]. (a) Model-based features for SOH estimation. (b) Data-based analytical
features for SOH estimation. (c) Battery management system-based raw features for SOH estimation.



Batteries 2022, 8, 96 10 of 26

We provide a review of SOH estimation, as shown in Table 4. Perspectives such as
battery type, SOH estimation method, mode of operation, and category are compared in
Table 4. The mode of operation is distinguished as online and offline. The classification of
relevant studies in Table 4 is largely based on the categories described above.

Table 4. Comparison of related studies on SOH estimation.

Study Battery Type Methods Mode of Operation Category

Wang et al. [54] LIBs
Artificial neural network

and equivalent
circuit model

Offline I

Hu et al. [55] LIBs
K-means algorithm and

particle swarm
optimization

Offline/Online II

Patil et al. [56] LIBs Support vector machines Offline/Online III

Ng et al. [57] LIBs Naïve Bayes model Online II

Galeotti et al. [58] Lithium polymer
batteries EIS Offline I

Song et al. [59] LIBs Artificial neural network Offline III

Jia et al. [60] LIBs Gaussian process
regression Online II

Kaur et al. [61] LIBs

Feed-forward neural
network and

convolutional neural
network, and long

short-term memory
neural network

Online/Offline III

Eddahech et al. [62] LIBs EIS and Neural Network Offline/Online I

3.1.2. RUL Prediction

Similar to SOH estimation, RUL prediction is also an important indicator to measure
the health status of retired power LIBs. The RUL of retired power LIBs can reflect the degree
of degradation or aging of LIBs. In the stage of echelon utilization of retired power LIBs,
only by mastering the information of RUL can it be safely guaranteed to work in specific
scenarios and be replaced regularly. Therefore, the RUL prediction for retired power LIBs
is quite critical. The commonly used RUL prediction methods can be roughly divided
into model-based, data-driven, and hybrid-driven prediction methods [63,64]. Model-
based RUL prediction methods are mainly modeled according to the battery degradation
mechanism. The commonly used models include electrochemical, ECM, and empirical
models. Figure 8 is the flowchart of the model-based RUL prediction method. With the
development of artificial intelligence and big data, data-driven RUL prediction methods
are widely used. Data-driven methods use mathematical statistical theory and machine
learning techniques to directly map a predictive model between features and RUL. Unlike
the model-based RUL prediction method, the data-driven method has many applications
and good universality. The flowchart of the data-driven RUL prediction method is shown in
Figure 9. Hybrid-driven approaches combine the strengths of model-based and data-driven
approaches. Hybrid-driven approaches can overcome the problem that the training time of
the data-driven approach is too long, and it can also make up for the problem of the low
accuracy of the model-based approach. The hybrid-driven approach is further divided into
model-data hybrid-driven and data-data hybrid-driven. Figure 10 is the flowchart of the
hybrid-driven prediction method.
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The data-driven method is the most generally used among the above three categories.
Data-driven methods mainly use historical data to predict the aging trend of batteries. In
many cases, the data-driven model is a black-box model. Although the data-driven method
does not need to establish a complex mechanism model, the collection process of historical
data is also a heavy task. We have reviewed related studies on RUL prediction, as shown in
Table 5. We mainly compare the current research in terms of battery types, RUL prediction
health indicators, RUL prediction methods, and advantages and disadvantages.

Table 5. Comparison of related studies on RUL prediction.

Study Battery Type Health Index Methods Advantages Disadvantages

Ng et al. [57] LIBs Capacity Naive Bayes Concise
Based on attribute

independence
assumption

Pattipati et al. [66] Rechargeable
battery

Capacity, internal
resistance

Support vector
machine

Unaffected by
nonlinearities and

small samples

Need to
satisfy Mercer

criterion

Wang et al. [67] LIBs Energy efficiency,
temperature

Support vector
regression Fewer dimensions Lack of sparseness

Zhou et al. [68] LIBs Mean voltage drop Relevance vector
machine

Avoids overfitting
and underfitting

Not suitable for
long-term
prediction

Richardson et al. [69] LIBs Capacity Gaussian process
regression

Unaffected by
high-dimension

and small samples

Parameter and
kernel function

selection is sensitive

Zhang et al. [70] LIBs Capacity
Long short-term

memory recurrent
neural network

Avoids overfitting
and underfitting

Requires sufficient
historical

data

Liu et al. [71] LIBs
Capacity,

discharging
voltage difference

Monotonic echo
state networks

Strong nonlinear
processing ability

High computational
complexity

Pang et al. [72] LIBs Capacity

Wavelet
decomposition
technology and
neural network

Not affected by
prediction starting

points

Relatively complex
model

Wang et al. [73] LIBs Capacity and 13
features

Bayesian model
averaging

High prediction
accuracy

An encoding
network is required

Mao et al. [74] LIBs Capacity Machine learning
algorithms

Not affected by
prediction starting

points

Complex model
fusion

3.1.3. EIS

EIS is a powerful non-invasive detection technique widely used in the study of elec-
trochemical system aging [51]. EIS can get the corresponding response by adding current
or voltage to the system to be measured. EIS has been widely used to characterize battery
features, such as LIB materials [75], state of charge [76], SOH, charge transfer impedance,
capacity loss mechanisms [77,78], and charge and discharge temperature. In order to re-
duce the inconsistency within the battery pack or prepare for the cascade utilization of
retired power LIBs, the capacity measurement of LIBs is very necessary. Schuster et al. [79]
analyzed and evaluated the relationship between the capacity and impedance of LIBs. Guo
et al. [80] proposed a novel method to estimate the differential capacity. They demonstrated
that the differential capacity could be used to estimate the SOH of LIBs, which is very
promising. Mingant et al. [81] proposed establishing quasi-EIS from voltage and current
signals, then developed a SOH prediction algorithm based on the established EIS. Olden-
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burger et al. [82] used EIS to measure the Warburg impedance at low and even ultra-low
frequencies for three different types of LIBs. They conducted a detailed study of the factors
that affect the Warburg impedance. The above studies indicate that the correlation between
impedance parameters can be used to quickly estimate battery capacity, state of charge,
SOH, and lifetime.

The application of EIS on batteries also provides new ideas and methods for classi-
fying and reorganizing retired power LIBs [83]. However, EIS is thoroughly affected by
fluctuations in the state of charge, state of health, charge-discharge rate, and temperature.
The current dilemma is how to assess the health of retired power LIBs while avoiding the
influence of these factors quickly and accurately. EIS requires specialized equipment to
obtain, which is very expensive. It is quite time-consuming to conduct large-scale screening
of retired power LIBs, which also increases the cost. Therefore, the economic problem is also
a critical issue faced by EIS applications [84]. Some scholars attempt to make breakthroughs
in sorting equipment, testing procedures, and artificial intelligence algorithms. Intelligent
algorithms such as machine learning are widely used to classify and reorganize large-scale
retired power LIBs. The emergence of new technologies such as digital twins has also
enabled massive battery data to be uploaded to the cloud. Therefore, much historical data
on retired power LIBs could be collected in the future. These historical data in the cloud
can also be used to investigate the performance of retired LIBs, which may inherit EIS as
a more direct and economical way to estimate the status of retired power LIBs. Overall,
using EIS for sorting and regrouping retired power LIBs is likely to be an adjunct in the
future [85].

3.2. Sorting and Regrouping Methods of Retired Power LIBs

After extracting the performance evaluation indicators of retired power LIBs, selecting
an appropriate classification or clustering algorithm is necessary to classify and reorganize
retired power LIBs. With the development of artificial intelligence, machine learning
has shown significant advantages in solving classification or clustering problems [86].
Common clustering algorithms show superiority in solving low-dimensional problems
but will increase the algorithm’s complexity in high-dimensional problems. Therefore,
considering the application scenario, the classification dimension should be reduced to
reduce the algorithm’s computational complexity and improve the classification’s efficiency
and accuracy. Figure 11 manifests a typical sorting and regrouping process of retired power
LIBs. LIBs retired from EVs need to undergo a series of operations such as detection,
clustering, and reorganization to complete the echelon utilization. First, it is necessary to
evaluate the performance of retired power LIBs, and eliminate retired power LIBs that do
not meet the echelon utilization. Then the required feature factors for regrouping need to
be extracted and clustered based on machine learning algorithms. Finally, according to the
performance of different groups after clustering, different echelon utilization scenarios are
matched for retired power LIBs. The discrepancies in the manufacturing state of power LIBs,
such as differences in capacity, internal resistance, and Coulomb efficiency, will deteriorate
in the echelon utilization after their retirement [87]. Through a series of operations such
as sorting and regrouping, the consistency of the battery pack has been improved, which
can ensure the safety performance and improve the service life of retired power LIBs when
used in a cascade [63,88].

We have reviewed related studies on sorting and regrouping methods, as shown in
Table 6. We mainly compare the current research in terms of battery types, parameters,
sorting and regrouping methods, validation methods, and advantages of the study. It can
be seen from Table 6 that the characteristic parameters selected for sorting and regrouping
of the current research mainly include capacity, voltage, internal resistance, temperature,
RUL, EIS, etc. In terms of the sorting and regrouping methods used in the current research,
classification and clustering algorithms such as K-means, support vector machine, neural
network, etc., are more common.
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Table 6. Comparison of related studies on sorting and regrouping methods.

Study Battery Type Parameters Sorting/Regrouping
Methods

Validation
Methods Advantages

Liao et al. [90] Li-ion phosphate
batteries

Capacity, voltage,
resistance, EIS

Capacity, pulse
discharge voltage,

charge transfer
resistance, and

lithium-ion
diffusion

coefficient

Experiment
No special

equipment, high
economy

Li et al. [91] Li-ion phosphate
batteries

Capacity,
equivalent
resistance
spectrum

Difference of 2% of
the maximum

capacity
Experiment Convenient and

efficient

Lai et al. [92] LIBs Capacity, voltage,
internal resistance

Neural network
model and the

piecewise linear
fitting model

Experiment High efficiency

Jiang et al. [93] LIBs Capacity,
resistance K-means algorithm Simulation

Preferable
consistency, high

capacity utilization
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Table 6. Cont.

Study Battery Type Parameters Sorting/Regrouping
Methods

Validation
Methods Advantages

Li et al. [89] LIBs Capacity, internal
resistance, RUL

Novel
equal-number
support vector

clustering
algorithm

Simulation
Equal-number,

preferable
consistency

Lai et al. [94] LIBs Capacity K-means algorithm Simulation,
Experiment

High precision and
consistency

Zhou et al. [95] LiFePO4 battery Capacity,
resistance

Support vector
machine Experiment High classification

accuracy

Garg et al. [96] All Capacity, internal
resistance

Self-organizing
maps Experiment

Reduced
inconsistencies

within the battery
pack

He et al. [97] LiFePO4 battery Temperature,
capacity

Self-organizing
maps Simulation High consistency

Yang et al. [98] Power battery
Resistance, open
circuit voltage,

capacity

Combination of
k-means and

genetic algorithm
Experiment Better applicability

4. Echelon Utilization Scenarios and Economy of Retired Power LIBs
4.1. Echelon Utilization Scenarios of Retired Power LIBs

The echelon utilization scenarios of retired power LIBs are also diverse and can
be divided into static and dynamic application scenarios. Many typical static scenarios
exist for the echelon utilization of retired power LIBs, such as energy storage systems,
communication base stations, and microgrids [45,99–101]. The typical dynamic scenarios of
echelon utilization of retired power LIBs are mainly the power source of low-speed vehicles,
such as low-speed vehicles, electric bicycles, and urban sanitation vehicles [102]. A typical
echelon utilization scenario of retired power LIBs is shown in Figure 12. Retired power
LIBs have good market prospects and echelon utilization scenarios, such as communication
base stations, low-speed EVs, energy storage stations, and renewable energy systems. In
terms of scale, there are currently two main technical routes for the echelon utilization of
retired power LIBs: (i) cell-level echelon utilization and (ii) module-level echelon utilization.
The cell-level echelon utilization mainly disassembles the retired power LIB module into a
single cell. Then its performance indicators such as capacity, internal resistance, and SOH
are measured by special equipment or means. Finally, they are sorted and used in different
scenarios based on sorting and regrouping methods [92]. Module-level echelon utilization
is to directly evaluate the performance of retired power LIB modules, then directly classify
and reorganize them according to their performance, and finally apply them to different
echelon utilization scenarios [103].

Due to the production process, manufacturing errors, and other reasons, it is inevitable
that there will be differences in the performance of a single cell in the battery module.
Currently, technical route (i) is an ideal choice. Technical route (i) disassembles the retired
power LIB module and then applies it to different echelon utilization scenarios, which
reduces the inconsistency within the group and is widely used. However, the technical
route (i) requires a lot of manpower and time, which will cause problems of efficiency
and economy of echelon utilization. With the continuous improvement of the production
process of LIBs, the manufacturing accuracy and performance consistency of the LIBs have
also been significantly refined. That is, the performance difference of a single battery in the
module has been continuously reduced. The optimization and improvement of the process
provide the possibility for applying the technical route (ii). Technical route (ii) does not
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require dismantling retired power battery modules, so labor and time costs can be saved,
thereby improving efficiency and economic benefits. Therefore, the technology route (ii) is
becoming the mainstream development direction of the echelon utilization of retired power
LIBs. However, it is undeniable that there are still many challenges in echelon utilization,
which we will review in Section 5.
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4.2. Echelon Utilization Economy of Retired Power LIBs

With the reduction of raw material costs, the improvement of process technology, and
mass production, the cost price of LIBs is also falling, but LIBs still account for a large
proportion of the total EV price [104]. For the echelon utilization of retired power LIBs,
cost and economic analysis must be done first to ensure that investors truly recognize
profitability. Economic analysis should be evaluated from the perspective of cost and
benefit. Although some milestone projects or models have been developed, the high cost
of echelon utilization limits their application, making the economics of these projects or
models questionable. Figure 13 reviews the composition of the costs and benefits of the
echelon utilization of retired power LIBs [42,105]. It is not difficult to find from Figure 13
that the economic analysis cannot just compare the cost of new and retired batteries.
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The National Renewable Energy Laboratory of the United States has developed a
model for evaluating the cost of echelon utilization of retired power LIBs. The model of
this study shows that the total cost of the echelon utilization of retired power LIBs is 44
$/kWh, which includes two parts: the battery cost of 20 $/kWh and the cascade utilization
cost of 24 $/kWh [107]. Zhan et al. [108] proposed a decommissioned power LIBs wind
energy storage system, in which economic performance was emphasized. Taking a 21 MW
wind farm as the object, the scenario-based stochastic planning method is adopted. The
results show the economic feasibility of the retired power LIBs in the wind farm scenario.
Casals et al. [109] consider demand response services to use retired power LIBs for building
scenarios in terms of economics and aging performance. The findings suggest that using
retired power LIBs for residential use may not be the most economical option, and may
be used in the secondary electricity market in the future. It recommends manufacturers
consider ecological issues in their design stage.

At present, the research on the economics of echelon utilization of retired power LIBs
is mainly based on the modeling of costs and benefits based on application scenarios.
Gur et al. [110] studied the economics of retired power LIBs for stationary energy storage
systems and simulated the net present value of four different systems. The results show
that compared with other countries, Germany’s echelon utilization of retired power LIBs is
more meaningful. The government is suggested to introduce more policies to encourage
investment in the echelon utilization system of retired batteries. Lih et al. [111] proposed
that the echelon utilization of retired power LIBs based on the environmental 3R principles
(recycle, reuse, reduce) can bring long-term stable economic benefits. Tang et al. [112]
applied the reward and punishment mechanism to the field of retired power LIB recycling
and echelon utilization. They established a game theory model and studied the economic
impact of the retired power LIB echelon utilization under the reward and punishment
mechanism. The results show that compared with no policy intervention and subsidy
mechanism, the reward and punishment mechanism has more significant advantages in
reducing the environmental burden. However, the economic analysis of the echelon utiliza-
tion of large-scale retired power LIBs needs to be carried out from multiple dimensions
and multiple aspects, and the current research is rarely involved.

5. Technical Challenges of Echelon Utilization

Although the echelon utilization of retired power LIBs has great development prospects
and development potential, there are still many technical challenges [113,114]. The pro-
cess of echelon utilization of retired power LIBs is very complicated, and the recycling
and reorganization processes are also different for different echelon utilization scenarios.
Currently, the main challenges of echelon utilization mainly include safety issues, perfor-
mance evaluation methods, economic feasibility, supply chain construction, and regulation
and certification.

5.1. Safety Issues

The retired power LIBs themselves have been cycled to the retirement standard under
various working conditions, so the safety of their echelon utilization is undoubtedly one
of the key technical challenges they face. The safety management of the full life cycle of
retired power LIBs is the main concern of the current research [115]. If the safety of the
echelon utilization cannot be guaranteed, it may cause thermal runaway or even more
serious disasters [116,117]. We know that many side reactions will occur in the aging
process of batteries, and these side reactions are not easily exposed but can cause great
harm. The occurrence of these side reactions probably causes the internal short circuit of the
battery to cause thermal runaway and more serious safety problems [118,119]. The echelon
utilization will aggravate the aging of the retired power LIBs and cause the superposition
of the internal side reactions of the battery, so the safety problem of the echelon utilization
is more prominent.
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Currently, research on the echelon utilization of retired power LIBs mainly focuses
on classification and recombination methods to reduce the intra-group inconsistency of
LIBs, and few studies focus on the chemical reactions inside the batteries. However, to
ensure the safety of retired power LIBs in different scenarios, it is necessary to evaluate
the side reactions inside the batteries during screening. The decisive technical challenge
is how to efficiently and accurately establish a model that can quickly evaluate these side
reactions and combine it with digital twin technology to monitor the internal conditions of
retired power LIBs effectively. This will prevent the deterioration of battery safety during
use. Therefore, an efficient and robust life cycle battery management system is necessary.
Retired power LIBs will also generate a lot of heat during use, and it is also necessary to
design a battery thermal management system with efficient heat dissipation [116,120,121].

5.2. Performance Evaluation Methods

The performance evaluation method is mainly to obtain the performance parameters
of the retired power LIBs, which can evaluate whether the retired power LIBs have the
value of echelon utilization and prepare for screening and regrouping. Retired power
LIBs with better performance can be used in scenarios with strict conditions, such as
remanufacturing, low-speed EVs, or microgrids. On the contrary, retired power LIBs with
poor performance may be used in other scenarios with low requirements. Currently, the
performance evaluation methods of retired power LIBs mainly include SOH estimation,
RUL prediction, and EIS [27]. There are differences in power LIBs due to inconsistencies
during production. During use, the differences will be further expanded due to the number
of cycles and the user’s driving habits, which leads to the vastly different performance
of retired power LIBs. The difference in performance will lead to various performance
evaluation indicators, which also greatly complicates the echelon utilization.

Using simple and high-precision means to accurately evaluate large-scale retired
power LIBs has become an elemental issue for echelon utilization. In the process of
industrialization of large-scale echelon utilization of retired power LIBs, the robustness
and generalization ability of the model should be improved, and efforts should be made on
the aging mechanism and application scenarios of batteries. Thanks to the development
of information technology, the battery management system can obtain battery health
parameters such as voltage, current, and temperature, which provides convenience for
evaluating the performance of retired power LIBs. In terms of SOH estimation and RUL
prediction, it is necessary to integrate multiple artificial intelligence algorithms to improve
the prediction accuracy and the model’s generalization performance. In the future, we can
easily build a cloud-based online battery monitoring and management system based on
big data, artificial intelligence, and data mining. Using battery data stored in the cloud,
data-driven performance evaluation methods for retired power LIBs will no longer be a
problem. Therefore, the data-driven or hybrid data-driven performance evaluation method
of retired power LIBs will become the development direction of evaluating LIBs for echelon
utilization through cloud data [122].

5.3. Supply Chain Construction

In addition to breaking through technical challenges, the large-scale echelon utilization
of retired power LIBs also needs to build a complete supply and demand chain. The
construction of the supply and demand chain of retired power LIBs can be divided into two
modes. (a) The automobile or battery manufacturers are the main body to integrate various
resources, give full play to the advantages of science and technology, and implement
the supply chain construction of echelon utilization, such as General Motors and BYD.
(b) Another model is to rely on industry, government, or third-party organizations to build
a supply and demand chain for the echelon utilization of retired power LIBs. Since the
supply chain needs to be completed by multiple units, the supply and demand chain
that benefits all participants has not yet been constructed. The government should also
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introduce policies to encourage enterprises to promote the echelon utilization of retired
power LIBs.

To build a retired power LIBs supply chain that can be successfully applied to industry,
we also need to solve many problems in the recycling, dismantling, screening, reorganiza-
tion, installation, and maintenance of retired power LIBs. The recycling process is difficult
for large-scale echelon utilization due to the different types and materials of batteries.
Dismantling and screening require specialized equipment and a work environment to
ensure safety. After reorganization, large inconsistencies in the battery pack will also cause
large differences in battery modules, which is not conducive to high-performance echelon
utilization scenarios. In addition, there is a lack of sharing of battery information among
various processes, which also hinders the process of echelon utilization of retired power
LIBs. In the future, we will use technologies based on big data and artificial intelligence
to help standardize batteries or battery modules. At the same time, the battery produc-
tion process was improved to reduce performance differences, and relevant policies were
introduced to facilitate the echelon utilization of retired power LIBs [123].

5.4. Regulation and Certification

In fact, some effective echelon utilization technologies have been proposed in recent
years, and some research projects on echelon utilization of retired power LIBs have also
been carried out. However, some technologies have not been widely promoted and adopted
due to the lack of professional regulations and certification. Without relevant regulations
and certifications, even if an effective echelon utilization technology is developed, it is
difficult to be promoted and recognized by consumers. There is a lack of industry guidelines
for echelon utilization related technologies such as SOH estimation and RUL prediction
for small and medium-sized enterprises. In dismantling and screening retired power LIBs,
there is currently no unified standard, and relevant regulation and certification still need to
be improved. In addition, due to differences in battery models, there is no uniform standard
and certification for battery coding, loading, and data interaction of battery health status
data, which also hinders the development of cascade utilization. In the future, introducing
regulations and certification for the full life cycle of batteries will effectively promote the
development of the global retired power LIBs echelon utilization industry [124].

6. Future Research Outlooks

In the foreseeable future, LIBs will remain the first choice for EVs. In recent years, with
the increasing number of EVs, the scale of retired power LIBs is huge, and the problem of
echelon utilization has become a research hotspot. Many governments and institutions are
also introducing relevant policies to improve the industrial supply chain. Green economy
and environmental protection are the themes of current world development, and echelon
utilization schemes and scenarios also emphasize economic and environmental protection
issues. Whether in terms of industrial scale or economic benefits, the echelon utilization of
retired power LIBs undoubtedly has development potential and prospects. In the future,
the screening and reorganization of retired power LIBs should be carried out quickly,
efficiently, and reasonably from the perspective of technical means to ensure the safety
and efficiency of echelon utilization. As shown in Figure 14, the prospect of LIBs life cycle
utilization. Specifically, the echelon utilization of retired power LIBs will have the following
development directions:

(1) Full life cycle battery management system for LIBs based on the digital twin and big
data. The collection of historical data through communication technology during
the service life of LIBs can provide resources for evaluating retired power LIBs. For
retired power LIBs, key data that can be used to evaluate or predict LIBs can be mined
from massive historical data using big data and machine learning. A key technical
problem is how to quickly mine variable state quantities from massive and diverse
data and use prediction functions to build accurate sorting models.
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(2) Scenario planning method for echelon utilization of retired power LIBs. Combining
the characteristics of the echelon utilization requirements of different scenarios and the
evolution law of the performance state of retired power LIBs, a definition mechanism
of retired power LIBs and application scenarios is constructed through fuzzy theory,
and then the scenarios are pre-allocated.

(3) Economic research on echelon utilization of retired power LIBs. Considering the cost
and benefit differences of retired power LIBs in different application scenarios, a high-
fidelity model of the cost and benefits of retired power LIBs in different application
scenarios is established. Based on the artificial intelligence algorithm, the economic
optimization model of the echelon utilization of retired power LIBs is optimized.

(4) The battery life cycle information management and control system based on blockchain
technology creates a true, transparent, comprehensive battery traceability system.
Solve the problems in constructing battery recycling channels, constructing the whole
life cycle recycling evaluation system, and establishing the service system. Combining
the characteristics of decentralization and information traceability of blockchain tech-
nology. A recycling system for retired power LIBs based on blockchain technology
constructed from the aspects of the recycling system framework, recycling operation
process, and implementation methods.

(5) To promote the recovery and reuse of retired power LIBs, the production and manu-
facture of LIBs should be facilitated. LIB models, interfaces, communication protocols,
data transmission, etc., should be standardized to facilitate the echelon utilization
of large-scale retired power LIBs. An important trend in the future is that the de-
sign, production, and manufacturing of LIBs will also become part of battery life
cycle management.
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7. Conclusions

The rapid development of EVs and the large-scale use of LIBs mean that the echelon
utilization of retired power LIBs is an urgent problem that needs to be solved and has
huge market prospects. How to deal with large-scale retired power LIBs safely and en-
vironmentally has become an urgent problem to be solved. This study comprehensively
reviews the challenges and prospects of the echelon utilization of retired power LIBs. The
echelon utilization process and cardinal technologies of retired power LIBs are analyzed
and summarized. The main conclusions of this work are summarized as follows:

(1) In many scenarios, echelon utilization is more attractive for both the government
and investors than direct recycling of materials in retired power LIBs. The echelon
utilization of retired power LIBs still faces many difficulties and has been in a state
of difficulty in implementation and control. The government should introduce more
policies to encourage echelon utilization, and more importantly, it is necessary to
break through the cardinal technology of echelon utilization of retired power LIBs.
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(2) The purpose of evaluating the performance of retired power LIBs is to judge whether
they have the value of echelon utilization and to apply them to different echelon
utilization scenarios according to their performance. Commonly used methods are
mainly model-based, data-driven, and data-model hybrid. With the development of
big data and artificial intelligence, data-based methods are being widely used.

(3) The echelon utilization scenarios of retired power LIBs are also diverse, and this
study summarizes them into static and dynamic application scenarios. The cost and
economy of echelon utilization are related to whether it can be applied in large-scale
industrialization. The economic analysis of the echelon utilization of large-scale
retired power LIBs needs to be carried out from multiple dimensions and aspects, and
the current research is rarely involved.

(4) The main technical challenges of echelon utilization include safety issues, performance
evaluation methods, economic feasibility, supply chain construction, and regulation
and certification. Breaking through these key technical challenges can promote the
commercialization of echelon utilization.

(5) In the foreseeable future, the development direction of echelon utilization includes: (i)
A complete life cycle battery management system for LIBs based on digital twin and
big data. (ii) Scenario planning method for echelon utilization. (iii) Economic research
on echelon utilization. (iv) A battery life cycle information management and control
system based on blockchain technology. (v) Standardization of the models, interfaces,
communication protocols, data transmission, etc., of LIBs.
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