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Abstract: Advanced electrochemical impedance spectroscopy (EIS) was applied to characterize
industrial Ni-Cd batteries and to investigate the electrochemical redox processes. A two-term
calibration workflow was used for accurate complex impedance measurements across a broad
frequency range of 10 mHz to 2 kHz, resulting in calibrated resistance and reactance values. The EIS
calibration significantly improved the measurements, particularly at high frequencies above 200 Hz,
with differences of 6–8% to the uncalibrated impedance. With an electromagnetic finite element
method (FEM) model, we showed that the impedance is strongly influenced by the cable fixturing
and the self-inductance of the wire conductors due to alternating currents, which are efficiently
removed by the proposed calibration workflow. For single cells, we measured the resistance and the
reactance with respect to the state-of-charge (SoC) at different frequencies and a given rest period.
For Ni-Cd blocks that include two cells in series, we found good agreement of EIS curves with single
cells. As such, EIS can be used as a fast and reliable method to estimate the cell or block capacity
status. For electrochemical interpretation, we used an equivalent electric circuit (EEC) model to fit
the impedance spectra and to extract the main electrochemical parameters based on calibrated EIS,
including charge-transfer kinetics, mass transport, and ohmic resistances. From the charge-transfer
resistance, we computed the exchange current density, resulting in 0.23 A/cm2, reflecting high
intrinsic rates of the redox electron transfer processes in Ni-Cd cells.

Keywords: industrial Ni-Cd battery; electrochemical impedance spectroscopy; experimental analysis;
modeling; parameter estimation; impedance characteristics

1. Introduction

Nickel-cadmium (Ni-Cd) batteries have been gaining importance in industry as a reli-
able, long-life electrochemical energy storage system for various applications where critical
environmental conditions are relevant. A Ni-Cd cell is comprised of a nickel-oxyhydroxide
cathode, a cadmium anode, a separator, and a potassium-hydroxide electrolyte. In this
work, we investigate industrial Ni-Cd cells, specifically cell type SBM112 from SAFT, which
are dedicated to industrial standby applications that demand high currents in short time
periods. Such applications range from engine starting, emergency lighting, switchgear, to
uninterrupted power supply (UPS) applications [1–3]. A single Ni-Cd cell has a nominal
potential of 1.2 V, and, in heavy-duty industrial applications, a power supply system can
contain up to several hundreds of cells depending on the system voltage and power require-
ments. Ni-Cd cells are known for their high specific energy density of 40–70 Wh/kg, which
is similar to lithium titanate oxide LTO batteries. Moreover, Ni-Cd cells have long cycle and
calendar lives, with 3000+ cycles and 20+ years in operation without major maintenance.
They show reliable performance at low temperatures, and they can sustain high discharge
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rates, up to 9C-rate [4–6]. In comparison to other cell chemistries, for instance lithium-ion
batteries, Ni-Cd cells have relatively low internal resistance values and therefore can supply
high surge currents which are typically required in critical industrial applications [5].

In order to investigate the Ni-Cd electrochemical redox reactions and the correspond-
ing battery performance in more detail, we revisited Ni-Cd cells with advanced electro-
chemical impedance spectroscopy (EIS), including accurate calibration and equivalent
circuit modelling. Based on robust EIS of cells and Ni-Cd blocks that have two cells in
series, we determined the cell internal redox reaction parameters, in particular, the charge
transfer kinetics, as well as the mass transport and ohmic resistances. In the past, a number
of prognostic and diagnostic studies employing EIS to characterize battery performance at
different operational conditions have been reported, mostly related to Li-ion battery tech-
nologies. For example, EIS is used for cell quality assessment [7], state-of-charge (SoC) and
state-of-health (SoH) estimation [8,9], power fading [10], and performance evaluation [11].
Only a few studies are available in literature on the EIS characterization and SoC estimation
of nickel-based chemistries, such as Ni-Cd or nickel-metal hydride (NiMH) [12–15]. In
those studies, either the imaginary part of the impedance (reactance) or the real part of the
impedance (resistance) was investigated, without full calibration, and only limited infor-
mation could be obtained from EIS on the double-layer capacitance and the open-circuit
voltage (OCV) with respect to SoC [16,17]. Here, based on calibrated EIS, we investigate
both the real and imaginary parts over a broad frequency range of 10 mHz–1 kHz at
different SoCs.

Moreover, a few studies showing the applicability of EIS for the performance evalua-
tion of 50 Ah Ni-Cd cells were presented in Refs. [18,19]; the charge-transfer and double-
layer capacitance parameters of low-capacity Ni-Cd cells were estimated using EIS. How-
ever, the ability of EIS to efficiently characterize a cell under test and to separate the
contributions of the different cell processes largely depends on the accurate measurement
of the cell impedance over a wide frequency range [20]. Therefore, we apply here a two-
term impedance calibration process with a short and known resistor standard, from which
we obtain error coefficients that are used to solve the error model and calibrate the system.
Based on calibrated EIS measurements at different SoC, we are able to robustly characterize
individual Ni-Cd cells as well as cell blocks, which then leads to accurate electrochemical
redox parameters extracted from equivalent circuit models fitted to the EIS curves. The
extracted parameters can serve as a robust indicator to assess the SoC or SoH of Ni-Cd
cells, for example the internal resistance, charge transfer, and double-layer capacitance are
typically used to estimate the SoH of the cell [17].

2. Materials and Methods
2.1. Ni-Cd Cells and Block Arrangements

Ni-Cd cells (SAFT SBM112) were used, with a cell capacity of 112 Ah per cell. The Ni-
Cd cell uses nickel-oxyhydroxide as the active material for the positive plate, and cadmium
for the negative plate. The electrolyte is an aqueous solution of potassium hydroxide and
lithium hydroxide. A Ni-Cd block configuration consists of two identical cells connected in
series with a bar connector (see Figure 1a). In total, two Ni-Cd blocks, each block having
two cells, were used in the experiments (Figure 1b). The cells were newly produced and
were stored for a few months.

2.2. Electrochemical Impedance Spectroscopy (EIS) and Calibration Method

The EIS setup consists of the measurement hardware and a fixture to connect to the
battery under test (BUT). Figure 1c shows the DC power analyzer (Keysight N6705C)
installed with two precision source and measure units (SMU; Keysight N6782A) and a PC
with the software. One SMU works as the measurement channel and the second as a voltage
offset channel to compensate for the cell voltage during the EIS. The 4-quadrant SMU
allows one to source and sink current and has a power output rating of 20 W (±20 V, ± 3 A).
Therefore, it is used to source the AC excitation signal, and to perform other processes
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such as charging and discharging (current sink) of the BUT. A four-wire configuration is
used to connect the equipment to the BUT, where the “Force” terminal is used to source
the EIS excitation current across a frequency range of 10 mHz to 2 kHz, and the “Sense”
terminal is used to measure the voltage response across the cell terminals. With the low
impedance levels observed for the Ni-Cd cells, current excitation mode was used (i.e.,
galvanostatic mode). The current amplitude was selected with relation to the cell C-rate,
which is the ratio of the current and the cell capacity. Here, we applied a 3 A excitation
current which corresponds to a C-rate of C/37 (cell capacity is 112 Ah), and the DC offset
current was set to zero. A pair of coaxial cables is used to connect the equipment to the
BUT, including safety fuse protection and ring connectors. The measured excitation current
i(t) and the measured voltage v(t) signals are digitized coherently by the SMU’s built-in
analog-to-digital converter (ADC). The circular excitation frequency ω = 2πfsig is swept
within a defined frequency range and the signals are then transformed into the frequency
domain by a discrete Fourier transform (DFT) process. The resulting complex signals I(ω)
and V(ω) are then used to compute the complex raw impedance Z(ω)raw = V(ω)/I(ω).
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Figure 1. (a) A sketch of the Ni-Cd block showing the two cells connected in series with a bar
connector, and the respective cell electrode terminals. (b) Two Ni-Cd blocks (Block 1, Block 2)
consisting of two cells per block connected in series with a bar connector. (c) EIS measurement setup
consisting of a power analyzer containing two source measure units (SMUs), a PC with EIS control
and visualization software, and the calibration standards and fixture. (d) EIS measurement modelled
by combining an ideal impedance meter with the series error impedance Zser and a gain error term
Ge. The true impedance ZT is computed from the measured and error-affected impedance ZM.

Figure 1d shows the systematic error model of the EIS measurement. To model the true
impedance, an ideal impedance meter is combined with the series error impedance Zser and
the gain error term Ge. The measured impedance ZM is given by the following equation:

ZM = ZT ×+Zser × Ge, (1)

where ZT is the true impedance, and Zser and Ge are the error coefficients. The two error
coefficients Zser and Ge are determined in a calibration process where at least two different
known calibration standards are measured. Here, we use one short and one 10 mΩ shunt
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standard. Once the error coefficients are known, the true impedance can be calculated by
transforming Equation (1) into the following form:

ZT =
ZM

Ge
− Zser. (2)

After applying calibration and correction of the EIS data (see Results section for more
details), the end results are visualized either in the complex plane as the real part of the
impedance versus the imaginary part, known as a Nyquist plot, or by plotting the real
and imaginary parts separately as a function of frequency. For the measurements, a BUT
was kept resting at a stable temperature and EIS was conducted at several state-of-charge
(SoC) with 30 min rest period intervals. The excitation current was set as 3 A (peak signal)
and a logarithmic ascending frequency sweep was applied from 10 mHz to 1 kHz while
measuring nine points per decade. The SoC of a cell was estimated based on the cell
capacity. For this, a cell was first fully discharged to the lower voltage limit; afterwards,
the cell was rested for 3 h to achieve a steady state and EIS was conducted. Incremental
steps of 10% SoC were performed using the Advanced Power System (Keysight N7950A),
a 2-quadrant module with a power output rating of 1 kW (9 V, 100 A). An upper voltage
limit of 1.41 V per cell was set, and the charging DC current was gradually increased up to
11 A (C/10), and the BUT was charged for one hour for each 10% SoC step. Afterwards, EIS
was performed at each SoC after a fixed 30 min rest period for reaching equilibrium. For
the EIS interpretation and parameter extraction, we use an equivalent electric circuit model
representing the main electrochemical mechanisms in the battery (see Results section).
In the model identification process, the numerical values of all the parameters of each
element in the model are determined. Thereby, the pure ohmic resistances are obtained
directly from the fitted circuit elements, such as the solution resistance Rsol and the charge
transfer resistance Rct. The double-layer capacitance Cdl is derived from the constant phase
reactance CPEdl as follows [21,22]:

Cdl =
1

ZCPE(j ×ω)p (3)

where j is the imaginary unit,ω is the angular frequency, and P is the fractional order. The dif-
fusion resistance Rdiff is obtained from the Warburg impedance Zdiff by the following relation:

Rdiff = Zdiff ×
(j × K ×ω)P

coth
[
(j × K ×ω)P

] (4)

where K = L2/D, L is the length of the diffusion, D is the diffusion coefficient, and the
fractional-order P is set as 0.5.

2.3. Electromagnetic Finite Element Method (FEM) Modeling

The battery block, the cable, and the fixture are modelled in order to investigate the
broadband frequency characteristics. A 3-D electromagnetic (EM) finite element method
(FEM) modelling software was used (EMPro; Keysight Technologies) [23,24]. Figure 2a
shows the 3-D computer-aided design (CAD) of the battery block and the cable fixture,
including the geometric dimensions. A tetrahedron mesh is generated with dimensions
corresponding to the frequency requirements, and an average aspect ratio ≥ 0.7 was con-
sidered. The two cells in the block are connected in series through a metallic cell connector.

According to the EIS measurements, a four-wire connection is designed from the
excitation source to the cell terminals. The force-terminal is used as source in the excitation
current while the sense-terminal is used to measure the voltage. The CAD is simulated
on a broad frequency range from 10 Hz to 10 kHz, with a 3 A excitation current, resulting
in the real and imaginary impedances. Planar sensors are applied around the wires to
measure the magnetic field strength, and a wire length of 100 cm is used. Figure 2b shows



Batteries 2022, 8, 50 5 of 14

the 3-D FEM simulation results of a Ni-Cd block connected to the fixture via four-wire
connections, and the magnetic field distribution across the connecting wires. The simulated
real impedance (resistance) and the imaginary impedance (reactance) are shown in Figure 2c
for the frequency range of 10 Hz to 1 kHz. Both resistance and reactance show an increasing
trend along with the frequency, especially at frequencies above 100 Hz. The magnetic field
created by the alternating current in the circuit induces a voltage in the same circuit, known
as self-inductance, affecting the imaginary impedance [25]. Consequently, the circulating
eddy currents, due to the magnetic field, reinforce the current to the wire skin, resulting in
an increase of the resistance with higher frequency.

Batteries 2022, 8, x FOR PEER REVIEW 5 of 15 
 

 

Figure 2. (a) The 3-D electromagnetic computer-aided design (CAD) model of the Ni-Cd battery 

block containing two cells connected in series and the cable fixture. A four-wire connection scheme 

for force and sense is considered, and a metallic cell connector is used to connect both cells. (b) The 

3-D EMPro simulation of the cell fixture and contacts, including a planar view of the magnetic H-

filed distribution around the wires. (c) Simulated real impedance (upper panel) and imaginary im-

pedance (lower panel) across the frequency range of 10 Hz to 1 kHz. The geometry and model di-

mensions are based on the original Ni-Cd block (SAFT SBM112) and the EIS setup. 

According to the EIS measurements, a four-wire connection is designed from the ex-

citation source to the cell terminals. The force-terminal is used as source in the excitation 

current while the sense-terminal is used to measure the voltage. The CAD is simulated on 

a broad frequency range from 10 Hz to 10 kHz, with a 3 A excitation current, resulting in 

the real and imaginary impedances. Planar sensors are applied around the wires to meas-

ure the magnetic field strength, and a wire length of 100 cm is used. Figure 2b shows the 

3-D FEM simulation results of a Ni-Cd block connected to the fixture via four-wire con-

nections, and the magnetic field distribution across the connecting wires. The simulated 

real impedance (resistance) and the imaginary impedance (reactance) are shown in Figure 

2c for the frequency range of 10 Hz to 1 kHz. Both resistance and reactance show an in-

creasing trend along with the frequency, especially at frequencies above 100 Hz. The mag-

netic field created by the alternating current in the circuit induces a voltage in the same 

circuit, known as self-inductance, affecting the imaginary impedance [25]. Consequently, 

the circulating eddy currents, due to the magnetic field, reinforce the current to the wire 

skin, resulting in an increase of the resistance with higher frequency. 

3. Results and Discussion 

3.1. EIS Calibration Method 

The accuracy of EIS measurements is limited by systematic and random errors, the 

former of which can be corrected by calibration and correction methods [20,23,26]. Here, 

we apply a two-term calibration process, which includes a short and a resistor of known 

resistance and inductance values. The short is measured directly at the negative electrode 

terminal of the battery under test (BUT), and the printed circuit board (PCB) calibration 

standard is measured at the BUT measurement plane. The calibration measurements are 

used together with their standard definition data in the calibration process to obtain the 

error coefficients. Once the BUT is measured, the raw data are used together with the error 

coefficients in the correction process to obtain the calibrated EIS results. The mathematical 

description of the calibration is shown in the Methods section and the true impedance of 

the BUT (ZT) is obtained by Equation (2). 

Figure 3 shows the calibration (upper part) and correction (lower part) workflows. A 

short is measured at the negative electrode and the known impedance standard is meas-

ured (10 mΩ shunt) to solve the error model for the frequency-dependent error coeffi-

cients. The short and shunt calibration standard provide the error correction, and the error 

coefficients are used in the correction process to calibrate the raw BUT EIS data or a single 

0.7 29 57 85 114 H-Field [A/m]

10 100 1000

4.80

4.82

4.84

4.86

4.88

4.90

R
e

 (
Z

) 
[m

Ω
]

Frequency [Hz]

10 100 1000

0

2

4

6

8

Im
 (

Z
) 

[m
Ω

]

Frequency [Hz]

(b) (c)(a)

Figure 2. (a) The 3-D electromagnetic computer-aided design (CAD) model of the Ni-Cd battery
block containing two cells connected in series and the cable fixture. A four-wire connection scheme
for force and sense is considered, and a metallic cell connector is used to connect both cells. (b) The
3-D EMPro simulation of the cell fixture and contacts, including a planar view of the magnetic H-filed
distribution around the wires. (c) Simulated real impedance (upper panel) and imaginary impedance
(lower panel) across the frequency range of 10 Hz to 1 kHz. The geometry and model dimensions are
based on the original Ni-Cd block (SAFT SBM112) and the EIS setup.

3. Results and Discussion
3.1. EIS Calibration Method

The accuracy of EIS measurements is limited by systematic and random errors, the
former of which can be corrected by calibration and correction methods [20,23,26]. Here,
we apply a two-term calibration process, which includes a short and a resistor of known
resistance and inductance values. The short is measured directly at the negative electrode
terminal of the battery under test (BUT), and the printed circuit board (PCB) calibration
standard is measured at the BUT measurement plane. The calibration measurements are
used together with their standard definition data in the calibration process to obtain the
error coefficients. Once the BUT is measured, the raw data are used together with the error
coefficients in the correction process to obtain the calibrated EIS results. The mathematical
description of the calibration is shown in the Methods section and the true impedance of
the BUT (ZT) is obtained by Equation (2).

Figure 3 shows the calibration (upper part) and correction (lower part) workflows. A
short is measured at the negative electrode and the known impedance standard is measured
(10 mΩ shunt) to solve the error model for the frequency-dependent error coefficients. The
short and shunt calibration standard provide the error correction, and the error coefficients
are used in the correction process to calibrate the raw BUT EIS data or a single Ni-Cd
cell measured from 10 mHz to 5 kHz at room temperature (23 ◦C). Significant differences
are observed between the raw and calibrated EIS data, particularly for frequencies above
200 Hz. For the real part (resistance), we obtain a difference of 8%, which is related mostly to
ohmic resistances from cable fixtures and cell connectors. For the imaginary part (reactance),
the difference between calibrated and uncalibrated results is 6%, which is mostly related to
induced voltage in the circuit and the related inductive effects.
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Figure 3. EIS calibration (upper row) and correction process (lower row) using printed circuit board
(PCB) shunt standard. The shunt standard is measured at the BUT measurement plane and the short
is measured at the BUT negative terminal (upper right). The calibration raw data (upper left) are
used together with the standard definition data to obtain the error coefficients which are forwarded
to the correction process. The raw BUT data (lower left) and the calibrated data (lower right) are
shown for a Ni-Cd single cell with 112 Ah measured at 23 ◦C.

3.2. Calibrated EIS versus SoC

In Figure 4, we show the calibrated EIS results of the Ni-Cd Cell 1 at different state-
of-charge (SoC), with the SoC ranging from 0% to 90%. In order to maintain similar
equilibrium states of the cell [27], EIS was conducted at each SoC step while maintaining a
fixed 30 min rest period. The real part of the impedance (resistance) and the imaginary part
of the impedance (reactance) are shown separately in Figure 4a, and in a Nyquist plot in
Figure 4b, for the frequency range of 10 mHz to 500 Hz. There are two trends visible in
the real part of the impedance. Firstly, the resistance decreases slightly with the frequency.
Secondly, and more relevantly, the resistance is correlated with the SoC [19]. For instance, at
low and high SoCs, the resistance is higher in comparison to intermediate SoCs, especially
at intermediate frequency values ranging from 0.1 Hz to 10 Hz.

Similar trends were observed in previous studies, with exact quantitative values
depending on the exact cell chemistry, the cell capacity, and the cell design. For instance,
Bundy et al. studied the influence of SoC on the resistance of a 2.4 Ah Ni-Mh cell, where a
decrease in the resistance was reported with increasing SoCs, except at 100% SoC, where
the resistance increased again [14]. Sathyanarayana et al. also observed U-shape behavior
of the resistance versus SoC on a 4 Ah Ni-Cd cell, with relatively higher resistance values
at low SoCs [13]. This trend has been interpreted as being due to an increase in the ohmic
resistance of the electrolyte and the reduction of hydrogen ions and water in the electrolyte
during discharge [28,29]. Additionally, the reactance shows more complex behavior with
respect to SoC and frequency. At low frequencies, the reactance decreases with higher SoC,
while at higher frequencies, the reactance increases with increased SoC. At the intermediate
frequency point around 0.4 Hz, the reactance curves overlap, resulting in the same reactance
value for all SoC curves. Olarte et al. reported recently, on a SAFT SBM112 cell, similar
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behavior of the imaginary part; however, only the equivalent circuit CPE parameters
extracted from the EIS data at intermediate frequencies were shown [17]. Olarte et al. argue
that the OCV behavior over SoC could be suitable to evaluate the SoC of NiCd cells, as it
shows a linear trend and is independent of the SoH. Moreover, it is worth mentioning that
the resting time of a cell between the charging steps and the measurements has a significant
influence on the results; therefore, we fixed the rest period lengths to a given value, here
30 min [30]. Overall, the relation of the impedance with the SoC can be used to estimate
the cell capacity status, with a relatively fast EIS measurement combined with the OCV
information of the cell.
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Figure 4. (a) Calibrated EIS results shown as the real impedance (resistance) and imaginary
impedance (reactance), across the measurement frequency of 10 mHz to 500 Hz. The results are
shown for Ni-Cd Cell 1 at six SoC charging levels, from 0% to 90%, and measured at 23 ◦C. The high,
intermediate, and low SoC curve transitions are indicated in the graphs. (b) The corresponding EIS
results shown in a Nyquist plot.

3.3. Equivalent Electric Circuit Model and Fit Parameters

The impedance spectrum of the Ni-Cd cell can be represented with an electrical equiv-
alent circuit (EEC) model; see Figure 5a. We used an extended Randles circuit consisting of
four elements, which are from left (high-frequency) to right (low-frequency), an inductive
element [L/RL], a solution resistance element Rsol, a ZARC element [Rct/CPEdl], and a
Warburg diffusion element (Wdiff). The constant phase element (CPE) is used because of
the porous nature of the electrodes and adsorption capacitances [31,32], while the inductive
element is included to model the physical arrangement of the cell plates and connectors.
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From this Randles circuit, the following equation is used to obtain the impedance of the
“battery under test” (BUT), ZBUT:

ZBUT = [RL/(1 + RL/jωL)] + Rsol + [Rct/(1 + (jω/ωc)
α)] + Zdiff (5)

where j is the imaginary unit,ω is the angular frequency,ωc is the characteristic angular
frequency of the CPE, α is the fractional order of the CPE, L is the inductance, and Zdiff is
the impedance of the Warburg diffusion.
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Figure 5. Equivalent electric circuit model of a Ni-Cd cell. (a) Randles model with four elements.
(b) Comparison of experimental impedance spectra and simulation for Cell 1, (c) Cell 2, and (d) Cell
3 at 10% SoC and 23 ◦C. (e) Interpretation of the electrochemical processes in the Nyquist plot at
different frequencies from 100 mHz to 500 Hz.

Several configurations of electric circuit models have been applied in literature for EIS
fitting to describe the electrochemical mechanisms in the battery. For Ni-cell chemistries, the
impedance of one electrode is typically several orders of magnitude higher than the other;
therefore, one RC loop can represent essentially the impedance of the dominant electrode,
e.g., for the charge transfer processes [18]. A single RC circuit was similarly considered for
the analysis of fresh NiMH cells, while a CPE capacitor was chosen in order to correct for
the inhomogeneity in the distribution of charge in the electrodes [28,29]. Figure 5b–d show
the Nyquist plots of the EIS experiments and the fitted Randles circuit for Cell 1, Cell 2, and
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Cell 3, respectively. For accurate EEC fit of electrochemical and double-layer kinetics, the
frequency range of 100 mHz–1 kHz was considered in order to maintain a separate fit of the
double-layer RC loop (i.e., semi-circle in the Nyquist plot) and the diffusion tail represented
by the Warburg element. For the EIS, three NiCd cells were discharged to 0% SoC and
charged up to 10% SoC, and afterwards, the cells were stored for 4 weeks at an open circuit
state. In comparison to the SoC-EIS results shown in Section 3.2, a lower impedance value
was observed at 10% SoC (e.g., for Cell 1, blue curve), which is most probably due to the
long storage period of the cells. Overall, the results show good agreement between the
measured and the fitted EIS data across the frequency range of 100 mHz to 500 Hz. The
EIS spectra exhibit only one depressed semi-circle at intermediate frequencies, related to
the double-layer capacitance and charge transfer kinetics. Such characteristics are typically
observed for fresh cells, whereas a larger depressed semi-circle is typically observed for
aged cells. The interpretation of the EIS is shown in Figure 5e, where the different regions
of the Nyquist plot, corresponding to different frequencies, are related to electrochemical
processes. Starting with high frequencies and going to lower frequencies, the inductive
part is represented by the linear tail on the left side of the Nyquist plot, followed by the
solution resistance Rsol as identified by the intersection point of the impedance curve with
the x-axis. At intermediate frequencies, the charge transfer resistance and the double-layer
capacitance are shown as a depressed semi-circle. At low frequencies, the diffusion tail is
obtained on the right part of the Nyquist plot.

Figure 6 shows a superimposition of the measured EIS data of the three cells, as well
as the extracted parameters from the curve fits. The solution resistance Rsol shows very
similar values for the three cells, with an average of Rsol = 1.433 mΩ. Due to the depressed
semi-circle and the corresponding fit errors, the charge transfer resistance Rct values differ
significantly. An average value of Rct = 0.042 mΩ is obtained, with a significantly higher
value for Cell 3, which is sourced from Block 2, while Cell 1 and Cell 2 are from Block 1.
Similarly, the diffusion resistances Rdiff of Cell 1 and Cell 2 are very similar, while Rdiff of
Cell 3 is higher, which can be, for instance, due to small differences in the SoC leading to
faster electrode kinetics [33]. Lastly, the inductance values L are very similar for all three
cells because the inductance is related to the geometry of the cell and electrode plates,
which is very similar for Block 1 and Block 2. Thereby, it is noted that the imaginary part of
the impedance is dominated by the diffusion resistance, whereas the internal resistance
is dominated by the resistance of the solution resistance, which agrees with literature
observations [13].
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Figure 6. Calibrated EIS spectra of three cells and the extracted electrochemical parameters.
(a) Nyquist plot of the impedance spectra of the three cells. (b) Extracted electrochemical parameters
from the fitted EIS results for Cell 1, Cell 2, and Cell 3, simulated using Z-view software. The spectra
were obtained in the frequency range of 100 mHz to 500 Hz.
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3.4. EIS Comparison of Cells and Blocks

In an extended EIS measurement round, the two Ni-Cd blocks, Block 1 and Block 2
(SAFT SBM112-2, 112 Ah), are measured and compared to the individual single-cell EIS
spectra from 10 mHz to 2 kHz. Figure 7 shows the EIS spectra of the single cells compared
to the block configurations, both for Block 1 (Figure 7a) and Block 2 (Figure 7b). The
sum of the impedance values from the individual cells, Cell 1 and Cell 2, shows good
agreement with the block spectra measured at block configuration (blue curves). The offset
differences are in the range of 10–400 µΩ and are mostly due to the additional bar connector
in the block. The results show that the block impedance can be well-determined from the
individual cell impedance values. The increase of the real part in the inductive regime
towards the maximum frequency (left side of the Nyquist plot) agrees also with the 3-D
FEM simulations obtained in Figure 2c.
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Figure 7. Nyquist plot of the impedance spectra of the single cells, Cell 1, Cell 2, Cell 3, and Cell 4,
compared to the block impedance for Block 1 (a) and Block 2 (b). The cells are at 20% SoC and the EIS
measurements are performed using 3 A excitation current across the frequency range of 10 mHz to
2 kHz at 23 ◦C.

3.5. Electrochemical Interpretation

Figure 8 shows the electrochemical model parameters Rsol, Rct, and Cdl in relation to
the principal components of a Ni-Cd cell. The electrochemical redox reactions (reduction
and oxidation) include the discharge where Ni3+ is reduced to Ni2+ and the hydroxide
ions (OH−) are transferred to the cadmium anode, where the oxidation occurs from Cd0

to Cd2+. The main electrochemical model parameter describing the redox reaction is the
charge transfer resistance Rct, reflecting the exchange between the ions and the electrons
at the electrode interfaces. Rct is related to the reaction kinetics described by the Butler–
Vomer equation for a charge-transfer controlled electrochemical reaction with an inverse
relation to the exchange current density, Rct = R ×T/(n × F × i0), where i0 is the exchange
current density, R is the gas constant, T is the temperature, n is the number of electrons in
the redox reaction, and F is the Faraday constant [34]. Considering Cell 3 with an Rct of
0.079 mΩ obtained at 296 K, and a two-electron charge transfer process, then the exchange
current density is equal to i0 = 0.23 A·cm−2, which corresponds to 162 A per cell with an
electrode surface area of 700 cm2. The exchange current density reflects intrinsic rates of
electron transfer between electrodes, and provides insights into the nature of the electrodes,
their structure, as well as their physical parameters such as surface roughness [35]. The
larger the exchange current density, the faster the redox reactions. Compared to Li-ion
batteries which show typical i0 values of around 5 mA·cm−2 [36], the Ni-Cd current density
is significantly larger. For instance, this is apparent by the fact that higher C-rates can
be obtained from Ni-Cd batteries, which are typically required in uninterruptible power
supply (UPS) applications. Such applications require mixed high and low discharge rates
for electrical loads between 30 min and 3 h [37]. The highly conductive ionic solution in
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the Ni-Cd cell is represented in the model by a purely resistive element Rsol. The solution
resistance depends on the ionic concentrations, temperature, and geometry of the area in
which the current is flowing. The conductivity k of the ionic solution, in units of [S/m],
is obtained from the solution resistance Rsol by the following relation, k = Ln/(Rsol × A),
where A is the surface area, and Ln is the length of the charge path. Considering Cell 3 with
an Rsol = 1.43 mΩ and based on the geometrical dimensions of the Ni-Cd cell, we obtain
conductivity values around 1 S·cm−1, which compare very well with the conductivity of
bulk KOH solution found in literature [38]. The deposition of ion charges at the electrode
interface is countered by electronic charges at the electrode interface, creating a double-layer
capacitance CPEdl. Whereas the ion diffusion process inside the electrode particles of the
positive Ni active material is represented by a Warburg impedance, which is a solid-state
physical diffusion process [39].
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Figure 8. Electrochemical model parameters and principal components of a Ni-Cd cell. During discharge,
the cathode (Ni3+O2−-OH−) reacts with water to produce Ni2+(OH)2 and hydroxide ions (OH−) are
transferred to the cadmium anode. The main electrochemical processes during discharge are described,
including equivalent circuit model elements, such as Rct, Rsol, and Cdl (left and right panels).

4. Conclusions

We investigated the use of calibrated EIS to study the electrochemical processes of
industrial Ni-Cd batteries. An EIS calibration process that uses short and shunt standard
with known resistance and reactance values was employed. At high frequencies above
200 Hz, significant differences were obtained from the EIS calibration, with an average
change of about 8% on the real part and 6% on the imaginary part of the impedance. The
real impedance (resistance) and imaginary impedance (reactance) were simulated using
an electromagnetic FEM model to analyze the effect of the cable fixturing, including the
self-inductance of the wire conductors due to alternating currents. Thereby, the impedance
is strongly influenced by the geometry and cables of the system, which is eliminated by the
proposed calibration workflow. Experimental EIS data were obtained systematically from
Ni-Cd cells and blocks at several SoCs. A correlation of the resistance and the reactance
with the SoC was observed, and overall, EIS can be used as a fast method to estimate the cell
of the block capacity status. Additionally, we observed that small changes in the impedance
can arise due to varying resting periods and shelf storage times. Good agreement was found
between single-cell EIS curves and the corresponding block measurements where two cells
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are in series. Thereby, the overall block response can be determined from individual cell EIS
measurements. The electrochemical model parameters Rsol, Rct, and Cdl were described in
relation to the principal components of a Ni-Cd cell and the electrochemical redox reactions.
Based on the modelled parameters, intrinsic properties were estimated such as the solution
conductivity and the exchange current density, reflecting high intrinsic rates of the redox
electron transfer processes in Ni-Cd cells compared to LiBs.

An equivalent circuit model was used to fit the calibrated EIS data and to extract
the electrochemical cell parameters, including the ohmic resistance, the charge transfer
resistance, the double-layer capacitance, and the diffusion resistance. Here, we showed that
the EEC parameters can be accurately extracted based on the calibrated complex impedance
on a broad frequency range. The presented model and the knowledge gained can be used
for state estimation, such as SoC or SoH, and for battery performance evaluations, for
example, during charge and discharge operations, and varying temperatures. Future
work will involve performing systematic studies based on EIS and OCV measurements
at different SoC and investigating the effect of rest period and storage performance on
NiCd cells.
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