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Abstract: Electric vehicles (EVs) and hybrid vehicles (HEVs) are being increasingly utilized for
various reasons. The main reasons for their implementation are that they consume less or do not
consume fossil fuel (no carbon dioxide pollution) and do not cause sound pollution. However,
this technology has some challenges, including complex and troublesome accurate state of health
estimation, which is affected by different factors. According to the increase in electric and hybrid
vehicles’ application, it is crucial to have a more accurate and reliable estimation of state of charge
(SOC) and state of health (SOH) in different environmental conditions. This allows improving
battery management system operation for optimal utilization of a battery pack in various operating
conditions. This article proposes an approach to estimate battery capacity based on two parameters.
First, a practical and straightforward method is introduced to assess the battery’s internal resistance,
which is directly related to the battery’s remaining useful life. Second, the different least square
algorithm is explored. Finally, a promising, practical, simple, accurate, and reliable technique is
proposed to estimate battery capacity appropriately. The root mean square percentage error and the
mean absolute percentage error of the proposed methods were calculated and were less than 0.02%.
It was concluded the geometry method has all the advantages of a recursive manner, including a
fading memory, a close form of a solution, and being applicable in embedded systems.

Keywords: lithium-ion battery; capacity estimation; least squares

1. Introduction

The availability of new energy sources to different countries is fundamental for their
economic development [1]. It is well known that petrol and diesel fuel vehicles lead to a
significant amount of greenhouse gasses such as CO2, which has severe and dangerous
effects on the environment cause global warming [2]. Currently, lithium-ion batteries
for electric vehicles (EVs) and hybrid electric vehicles (HEVs) are the most promising
propulsion alternative to internal combustion engines (ICEs) due to not producing carbon
dioxide and sound pollution. Thus, in the not-too-distant future, we will essentially see
the replacement of many ICE vehicles with EVs and HEs and this replacement process
has already started. The central part of these vehicles is a rechargeable battery that must
have reasonable and acceptable efficiency [3]. Lithium-ion batteries have many benefits in
comparison to other types of batteries, such as higher energy capacity, longer functional
life, and less self-discharge in comparison with different kinds of rechargeable batteries,
such as Ni-Cd batteries, which makes them attractive for many different applications, such
as portable electronic devices, electric vehicles, and stationary storage [4,5]. Therefore, this
battery is attracting the attention of the electric vehicle industry [5].

A lithium-ion battery pack consists of a considerable number of battery cells, which
are connected in series and parallel. Despite the above-mentioned advantages, there are
also some challenges, such as costs, cycling stability, and safe operation. Parameters such
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as charge and discharge rate, temperature, and voltage range will influence the safety
of the battery. If critical limits of these parameters are exceeded, this will accelerate the
degradation, and thus reduce the battery performance, and may even become dangerous
due to the increased risk of a thermal runaway.

Furthermore, it is crucial to have an exact measurement of lithium-ion battery total
capacity and to provide the ability to predict the remaining useful life (RUL) over the entire
service duration in order to ensure the trusted and safe operation of these batteries [6].
This RUL prediction ability represents an essential part of the battery management system
(BMS), which is needed to keep the battery operational in a safe, trusted, and reliable
state under all conditions. This unit includes complex electronic circuitry and dedicated
algorithms, which control the battery function [7].

Batteries age through regular use and during storage and transport with (simulta-
neous) exposure to temperature. For example, changes in the crystal chemistry of the
active materials occur due to frequent cycling combined with cracking of the particles and
formation of a new solid-state electrolyte interface SEI (consumption of electrolyte and
lithium). Two parameters show the ageing status of a battery. The first is the battery’s
total capacity, which is given by Q, and the second is equivalent internal resistance Re.
When Q has decreased to 80% of the initial (or nominal) capacity in an electric car, it is
recommended to replace the battery because it cannot satisfy the high requirements for
such applications. However, it could still be used in a second life application. Such an
application could be, e.g., a stationary battery for peak shaving, which needs a lower depth
of discharge (DOD) and less power. Similarly, if Re grows to 160% of its initial value, the
battery in an EV needs to be replaced as well [8,9].

The state of health (SOH) is defined as the ratio of the currently measured maxi-
mum battery charge to its nominal capacity. The following equation shows how the SOH
parameter is expressed as a percentage:

SOH =
Qact

Qnom
∗ 100 (1)

in which Qact and Qnom are the total capacity and the nominal capacity, respectively [9].
The most general and common method, which is used in the laboratory to estimate

SOH, is coulomb counting (CC). At first, the fully charged battery is discharged to the
0% state of charge defined by the manufacturer in particular conditions, and the whole
ampere-hour, which is discharged, is being measured. Then SOH is calculated by dividing
discharged ampere-hour value by the initial capacity [10]. As mentioned above, this method
is only used to collect data in the laboratory. Existing capacity estimation methods and
SOH estimation could be categorized into three groups.

The first group includes the physics-based methods that use partial differential equa-
tions to model battery electrochemical properties and thermal behavior. Even though
these methods have high accuracy, they are not suitable for online use because of the high
calculation load [11].

The second group includes data-driven models that estimate battery capacity by
analyzing such characteristics as voltage and extracting some unique features. This method
is strongly correlated to battery ageing without any mathematical model. In the ICA
method, for instance, the IC curve is obtained by the following equation:

IC =
dQ
dV
≈ ∆Q

∆V
(2)

Plateaus observed in the voltage curve are transformed to characteristics as identi-
fiable peaks. Some particular features of these peaks, such as height, area, and position,
are directly related to battery capacity and make the battery state of health estimation
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simple [12]. Differential voltage analysis (DVA) is another method of this group. The
differential voltage (DV) curve is defined as voltage gradient divided by actual capacity:

dV
dQ

=
dV∫
Idt

=
dV
Idt

(3)

Then SOH is analytically calculated by making a relationship between DV and SO.
characteristics [13]. However, despite their advantages, these methods face fundamental
challenges that limit their application. For example, IC and DV curves are subjected to noise
and should be smoothed before using for estimation. The smoothing process needs some
computational effort. Temperature variation affects their accuracy and makes capacity
prediction infected with error. In addition, charging and discharging characteristics used
to extract IC and DV curves are different from the actual usage profile. Other data-driven
methods exist that use algorithms such as fuzzy logic and neural network. Experimental
data of complicated and nonlinear systems can be processed by a fuzzy rule set of the fuzzy
logic (FL) method. There are two sets of data: crisp and fuzzy. When data are divided by
definite values, they belong to a crisp group, and if they are categorized by uncertainty, they
belong to the fuzzy group. Membership functions determine members of fuzzy sets. The
more the appropriate membership function is defined, the better prediction of SOH will be
obtained [14,15]. In [15], a relationship between several cycles and the normalized value of
battery capacity is received by an exponential curve-fitting on NASA data as follows:

y f it = a0 + a1e−(
x

α1
)β1 + a2e−(

x
α2

)β2 (4)

It uses the local estimation form of y = ae−βx to reduce the number of parameters.
Then it applies the impact of parameters such as temperature, current, and DOD by three
membership functions of fuzzy logic that modify a and β factors. A disadvantage of this
model is that a significant number of data are needed to define membership functions, and
thus, many laboratory tests are necessary to obtain enough data in particular operating
conditions. A neural network (NN) is a powerful tool that can manage a significant amount
of data in a highly complex nonlinear system. One of the advantages of a NN is that it is
not necessary to have detailed knowledge about battery characteristics. A robust algorithm
that can accurately predict SOH in different working conditions is another benefit of
NN [16]. High computational load and cost are the main obstacles in implementing the
NN algorithm. Another limitation to obtaining accurate answers is data training that must
work with a considerable amount of different data [17]. Sample entropy (SE) is a method
that records oscillation, instability, and complication of the battery’s voltage response in
capacity fade duration. Therefore, it is a kind of diagnostic tool that can record battery
capacity. This method commonly uses other ways to have more accurate results [18].

The third group is empirical-based methods that describe battery behavior by employ-
ing phenomenological elements such as equivalent circuit models (ECM). The accuracy
of these strategies is not as high as physics-based methods, but the computational load is
much lower. In addition, empirically based approaches do not face the aforementioned chal-
lenges of the data-driven process. An example of these kinds of models is the impedance
spectroscopy method that estimates SOH using a broad frequency spectrum. Computing
equivalent circuit model parameters make estimation easier [19].

Algorithms and filters are used to achieve faster and more accurate results. Kalman
Filter (KF) is a powerful algorithm that can precisely estimate SOH parameters. For nonlin-
ear systems, the KF is more reasonable. In addition, nonlinear systems use some modified
types of this algorithm, such as dual extended Kalman filter (DEKF) and unscented Kalman
filter (UKF) [20]. Particle filter (PF) uses sampling and resampling (Sequential Monte Carlo)
algorithm, and a collection of weighted particles to solve filtering problems is used to
estimate the probability density function (PDF) [21].

The main factor determining whether electric vehicles (EVs) earn their place in daily
applications is batteries lifetime. Choosing a mathematical model that models the physical
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dynamics and constraints of a battery with high precision is crucial to increase estimation
accuracy. Therefore, the chosen model should be able to cover errors from uncontrollable
working conditions, sensor inaccuracies, and other noise sources to enable an accurate
estimation. This paper used an ECM of the battery, which gave the relationship between
SOC and the total capacity Q. In addition, the SOC data were obtained by providing
voltage and current data as input to this model. Then, this relationship was rearranged
to a form of y = Qx that made it possible to estimate Q by the regression (least squares)
method. Different forms of the least-squares method are proposed in this article, and the
results are compared.

The main contributions of the proposed methods are as follow:

• Current measurement error and SOC estimation error are considered in the pro-
posed method.

• The proposed methods are closed-form and recursive. This means they do not need
high computational effort and high memory space.

• In addition, a proposed method is fading memory. This gives weight to recent data and
fades the effect of early data. This makes proposed methods applicable in online appli-
cations and increases capacity estimation during several cycles for SOH estimation.

The following three sections of the article provide some reasons for the ageing of
lithium-ion batteries, describe the capacity estimation method, and show the validation of
the model using experimental data. In the end, some conclusions are given.

2. Reasons for Lithium-Ion Batteries Ageing

Capacity decrease and power fade of lithium-ion batteries are complicated phenomena
that originated for various reasons. Processes influence the calendar life of the battery
during storage, such as impedance rise and self-discharge. Whereas ageing processes occur
during use, such as lithium metal plating, mechanical degradation affects cycle life. It
should be considered that ageing processes with cycle life and calendar life originated from
changes of:

• Interface of electrolyte and electrodes;
• Active material;
• Composite electrode.

A straightforward model of electrodes is shown in Figure 1. Battery power results
from ion transition between electrodes. The power will decay if this transition is disrupted
or damaged. Side reactions include structural decay and are the main cause of disruption
of the ion current [22,23].

This phenomenon degrades lithium-ion batteries over time and changes their pa-
rameters. It is well established that SEI growth and lithium plating are essential ageing
mechanisms in modern lithium batteries. Therefore, it is necessary to estimate ageing pa-
rameters and adjust some of them to manage battery packs. These estimations algorithms
are part of the BMS unit.

One of the approaches to evaluate lithium-ion battery ageing is to model its behavior
by electrical elements, known as equivalent circuit model. This is a prevalent method
due to a tradeoff between accuracy in open-circuit voltage estimation and computational
load [24–27]. The equivalent circuit method is shown in Figure 2, and our approach to
estimating SOC is to calculate the value of equivalent-series resistance and total capacity.
Both side reaction and structural decay will reduce the lithium-ion storage capability in
one or both electrodes, reducing total capacity, known as capacity fade. The cell’s series
resistance will increase with ageing and result in power fade. Some ageing mechanisms,
such as structural decay and SEI growth, could happen even in the rest time of the battery.
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3. Capacity Estimation
3.1. Calculation of R0

The equivalent circuit model for the battery is shown in Figure 2; the relationship
between circuit parameters are given by the following equation:

vb,k = OCV(SOCk) + Mhk −∑
i

RiiRi,k − ib,kRe (5)

In the above equation, vb,k and ib,k are the battery voltage and current, OCV(SOCk) is
the open-circuit voltage that is a function of state of charge, Mhk is hysteresis voltage, RiiRi,k

is the multiple of ith resistance of capacitor-resistance nets in the corresponding current,
and ib,kRe is the multiple of series resistance in the battery current.

If we define SRe
vb as the sensitivity of voltage to rate of change in resistance Re, we have:

SRe
vb,k

=
Re

vb,k

dvb,k

dRe
=
−Re

vb,k
ib,k (6)

The equation shows that bigger ib,k leads to higher sensitivity to changes in Re. In this
part a method is described for estimating of Re by subtracting vb,k of two adjacent samples:
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vb,k = OCV(SOCk) + Mhk −∑
i

RiiRi,k − ib,kRe

vb,k−1 = OCV(SOCk−1) + Mhk−1 −∑
i

RiiRi,k−1 − ib,k−1Re

_______________________________
vb,k − vb,k−1 = Re(ib,k−1 − ib,k)

(7)

As can be seen, the rate of change in Re is impressively bigger than other variables in
the equation:

R̂e,k =
vb,k − vb,k−1

ib,k−1 − ib,k
(8)

where R̂e,k is the estimated and not exact value of Re,k. It should be considered that R̂e
could be estimated only when ∆ib,k 6= 0. In this regard, a minimum limit value has been
considered in the simulation as the threshold in order to not consider minimal values of
∆ib,k. Therefore, using a filter simply can reduce the error:

R̂ f ilt
e,k = αR̂ f ilt

e,k−1 + (1− α)R̂e,k (9)

where 0 � α < 1. The equivalent series resistance is SOC-dependent and temperature-
dependent. By defining a vector of Re in different SOC levels, the first problem will be
solved, and by adopting a matrix of resistance for various temperature and SOC levels,
both will be solved.

3.2. Proposed Methods to Estimate Q

Here we define a parameter that shows voltage variation proportional to capacity,
similar to the last part:

SQ
vb,k =

Q
vb,k

dvb,k

dQ
=

Q
vb,k

d
dQ

(
ocv (sock) + Mhk −∑i RiiRi,k − ib,kRe

)
(10)

The derivative of components in parenthesis was computed as the following equation:

dOCV
dQ

=
∂OCV(SOCk)

∂SOCk

dSOCk
dQ

(11)

In most battery cells, ∂OCV(SOCk)
∂SOCk

is very small. The equation which was derived from
SOC relationships can be rewritten as the following equation:

SOC[k + 1] = SOC[k]− η[k]∆t
Q

ib[k] (12)

In which SOC[k] is state of charge, η[k] is columbic efficiency, which shows the con-
sumer will not receive the whole charge stored in the battery due to some unwanted side
reactions. In addition, a tiny part of it is being lost. Usually, this parameter is very near
to one. ∆t is sampling time for discretization, ib[k] is battery current, and Q is the total
capacity of the battery.

It can be derived from the following equation that the sensitivity of voltage to capacity
through hysteresis term is minor and zero through other terms. So total capacity is not
observable [28].

dSOC[k]
dQ = dSOC[k−1]

dQ − η[k− 1]ib[k− 1]∆t
d 1

Q
dQ

= dSOC[k−1]
dQ + η[k−1]ib [k−1]∆t

Q2

(13)

It can be seen from the above equation that dSOC[k]
dQ increases while the direction of

ib[k] does not change in a considerable period. This is because of ∆t (by order of 1/3600
or less).



Batteries 2022, 8, 31 7 of 18

In this part, a procedure is described to analyze some possible methods of estimating
Q and their disadvantages. Finally, an approach is proposed to have an accurate, robust
estimate of Q.

Considering Equation (13), we have:

SOC[kn] = SOC[k1]−
∆t
Q

kn−1

∑
k1

η[k]ib[k] (14)

The above equation could be rewritten as:

− ∆t
kn−1

∑
k1

η[k]ib[k] = Q(SOC[kn]− SOC[k1]) (15)

By defining Y = −∆t
kn−1

∑
k1

η[k]ib[k] and X = SOC[kn]− SOC[k1], it could be written in

a linear format: Y = QX.

3.2.1. The First Type of Least Squares Method

The standard (weighted least squares) linear regression is the first investigated method
to solve the above equation. By considering ∆y as the noise on measurement and uncer-
tainties of y, the form of the problem is:

(y− ∆y) = Qx (16)

In the above equation, ∆y includes zero-mean Gaussian random variables with vari-
ances of σ2

yi
. The estimated Q could be shown by Q̂, then y ≈ Q̂x, can be solved by using

vectors of measured data of x and y:

xi = SOC[k2,i]− SOC[k1,i] (17)

yi = −∆t
k2,i−1

∑
k1,i

η[k]ib[k] (18)

In this level, the Q̂ is estimated which minimizes the following first type of least-
squares (LS1) cost function:

χ2
LS1 =

n

∑
i=1

(yi −Yi)
2

σ2
yi

=
n

∑
i=1

(
yi − Q̂xi

)2

σ2
yi

(19)

In which Yi is the exact value of Y without noise (Yi = Q̂xi). By differentiating the
above cost function concerning Q̂ and setting it to zero, the following equations could
be determined:

∂χ2
LS1

∂Q̂
= −2

N

∑
i=1

xi
(
yi − Q̂xi

)
σ2

yi

= 0 (20)

Q̂
N

∑
i=1

xi
2

σ2
yi

=
N

∑
i=1

xiyi
σ2

yi

(21)

Q̂ =
N

∑
i=1

xiyi
σ2

yi

/
N

∑
i=1

xi
2

σ2
yi

(22)
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By defining C1 =
N
∑

i=1

xi
2

σ2
yi

and C2 =
N
∑

i=1

xiyi
σ2

yi
, the following statement can be derived:

Q̂ =
C2

C1
(23)

C1 and C2 could be updated recursively by the following equations. Those as men-
tioned above could be determined when each new (xi,yi) datum is received:

C1,n =
N

∑
i=1

xi
2

σ2
yi

= C1,n−1 +
x2

n
σ2

yn

(24)

C2,n =
N

∑
i=1

xiyi
σ2

yi

= C2,n−1 +
xnyn

σ2
yn

(25)

Q̂n =
C2,n

C1,n
(26)

Minimum storage requirement and computational load are advantages of the recursive
manner in equations, and it is essential for implementing in BMS and other embedded units.

By increasing the number of data pairs, data volumes are weighted, and new data
pairs cannot significantly affect the results. Therefore, there is a need to change the method
to fade older data pairs’ power on results as the number of data pairs increases. Therefore,
a coefficient such as 0� γ < 1 can solve this issue:

C̃1,n =
n

∑
i=1

γn−i xi
2

σ2
yi

= γC̃1,n−1 +
x2

n
σ2

yn

(27)

C̃2,n =
n

∑
i=1

γn−i xiyi
σ2

yi

= γC̃2,n−1 +
xnyn

σ2
yn

(28)

This method (LS1) could be an acceptable method if there were no measurement
noise or uncertainty of xi, but in reality, the error in SOC estimation will never be totally
eliminated. The solution could be the second type of least squares.

3.2.2. The Second Type of Least Squares Method

By considering noise of xi, the linear form of the problem changes as:

y− ∆y = Q (x− ∆x) (29)

where ∆y and ∆x are white noise with zero mean and known variances of σ2
yi

and σ2
xi

. The
cost function is rewritten as:

χ2
LS2 =

n

∑
i=1

(xi − Xi)
2

σ2
xi

+
(yi −Yi)

2

σ2
yi

− λi
(
Yi − Q̂Xi

)
(30)

In which the last term applies constraint of Yi = Q̂Xi with Lagrange multipliers of λi.
By differentiating cost functions with respect to Xi, Yi, and λi, setting them to zero, and

placing the results in the cost function, new equations can be derived. The function with
known and straightforward terms can be reached by employing the following equations:

∂χ2
LS2

∂λi
= −

(
Yi − Q̂Xi

)
= 0→ Yi = Q̂Xi (31)

∂χ2
LS2

∂Yi
=
−2(yi −Yi)

σ2
yi

− λi = 0→ λi =
−2 (yi − Yi)

σ2
yi

(32)
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∂χ2
LS2

∂Xi
=
−2(xi − Xi)

σ2
xi

+ λiQ̂ = 0 = −2(xi − Xi)

σ2
xi

− 2(yi −Yi)

σ2
yi

Q̂ (33)

σ2
yi
(xi − Xi) + σ2

xi
(yi −Yi)Q̂ = σ2

yi
xi − σ2

yi
Xi + σ2

xi
yiQ̂− σ2

xi
XiQ̂2 (34)

Xi =
σ2

yi
xi + σ2

xi
yiQ̂

σ2
yi
+ σ2

xi
Q̂2

(35)

By replacing these quantities in cost function:

χ2
LS2 =

N
∑

i=1

Q̂2σ4
xi (yi−Q̂xi)

2

σ2
xi (σ2

yi+Q̂2σ2
xi )

2 +
σ4

yi (yi−Q̂xi)
2

σ2
yi (σ2

yi+Q̂2σ2
xi )

2

=
N
∑

i=1

(yi−Q̂xi)
2

σ2
yi+Q̂2σ2

xi

(36)

The partial derivative of the cost function can be calculated with respect to Q̂, and it
can be considered zero in order to find optimized Q̂ by employing the following equations:

∂χ2
LS2

∂Q̂
=

N

∑
i=1

2
(
Q̂xi − yi

)(
Q̂yiσ

2
xi
+ xiσ

2
yi

)
(

Q̂2σ2
xi
+ σ2

yi

)2 = 0 (37)

Numerical methods are able to solve this equation, and the Newton–Raphson method
is one of them. A noise of xi can be considered, but the equation has not reached a close
form, which means deriving an equation with Q̂ on one side and other parameters on the
other side. Subsequently, Q̂ cannot be updated in a recursive manner, and it means a huge
computational load and a need for large storage memory. Thus, this method is not practical
and not applicable in embedded systems. Therefore, the third type of least squares method
is proposed in the following.

3.2.3. The Third Type of Least Squares Method

Another method to simply achieve an exact estimation of Q̂, is a kind of least squares
in which σxi and σyi are proportional for every i. If σxi = Kσyi , the previous cost function
changes as:

χ2
LS3 =

N

∑
i=1

(xi − Xi)
2

k2σ2
yi

+
(yi −Yi)

2

σ2
yi

=
N

∑
i=1

(
yi − Q̂xi

)2(
Q̂2k2 + 1

)
σ2

yi

(38)

and then the derivative of the function is rewritten as follows:

∂χ2
LS3

∂Q̂
= 2

N

∑
i=1

(
Q̂xi − yi

)(
Q̂k2yi + xi

)(
Q̂2k2 + 1

)2
σ2

yi

= 0 (39)

Q̂2
N

∑
i=1

k2 xiyi
σ2

yi

+ Q̂
N

∑
i=1

xi
2 − k2yi

2

σ2
yi

+
N

∑
i=1

−xiyi
σ2

yi

= 0 (40)



a = k2C2,n = Q̂2
N
∑

i=1
k2 xiyi

σ2
yi

b = C1,n − k2C3,n = Q̂
N
∑

i=1

xi
2−k2yi

2

σ2
yi

c = −C2,n =
N
∑

i=1

−xiyi
σ2

yi

(41)
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In which C3,n is defined as: C3,n =
N
∑

i=1

yi
2

σ2
yi

. The above second-order equation can be

easily solved by employing the following equations:

Q̂ =
−b ±

√
b2 − 4ac

2a
=
−
(
C1,n − k2C3,n

)
±
√
(C1,n − k2C3,n)

2 + 4k2C2,n2

2k2C2,n
(42)

By utilization of the Routh array, it can be proven that there is one positive and one
negative root for the above equation in two sides of the imaginary (vertical) axis. If the
term under the radical sign is negative, there are two complex roots for the equation where
both of them are on the right side of the vertical axis, which cannot be accurate. Due to
the last fact, there are two real roots, and one of them is positive. So, the positive root in
recursive fading manner is calculated as:

Q̂n =
−
(

C̃1,n − k2C̃3,n

)
+

√(
C̃1,n − k2C̃3,n

)2
+ 4k2C̃2,n2

2k2C̃2,n
(43)

In which C̃1,n = γC̃1,n−1 + x2
n/σ2

yi
, C̃2,n = γC̃2,n−1 + xnyn/σ2

yi
, and C̃3,n = γC̃3,n−1 +

y2
n/σ2

yi
. For initial values, it is known from the equation Yi = Q̂Xi if the cell’s charge is

equal to 1 (100%), then Y = Qnom. So C1,0 = 1/σ2
yi

, C2,0 = Qnom/σ2
yi

and C3,0 = Qnom
2/σ2

yi
.

3.2.4. Confidence Intervals

In order to validate the certainty of the answer, a range of assurance could be defined
that guarantees the certainty of the estimated capacity if it lies in the range and is in a
reasonable span. In this regard, the least-squares problem is rearranged to the following
format in order to have a maximum likelihood optimization problem and to be able to
calculate δQ̂

2 with Cramer–Rao theorem.

Q̂ ∈
(

Q̂− 3δQ̂, Q̂ + 3δQ̂

)
(44)

Minimizing cost function is identical to maximizing the following maximum likeli-
hood problem:

MLLS1 = 1
(2π)N/2|∑y|1/2 exp

(
− 1

2
(
y− Q̂x

)T
∑−1

y
(
y− Q̂x

))
= 1

(2π)N/2|∑y|1/2 exp
(
− 1

2 χ2
LS1

) (45)

In which y and x are vectors including yi and xi elements and ∑y is a diagonal matrix
including diagonal elements of σ2

yi
. If we consider a d vector that joins y and x together, and

a d̂ vector which joins corresponding elements of Yi and Xi, and ∑d which is a diagonal
matrix including σ2

yi
and sequentially σ2

xi
, then:

MLLS2 = 1
(2π)N/2|∑d |1/2 exp(

(
− 1

2
(
d− d̂

)T
∑−1

d
(
d− d̂

))
= 1

(2π)N/2|∑d |1/2 exp
(
− 1

2 χ2
LS2

) (46)

Retrieved from Cramer-Rao theorem, the lower limit of Q̂ variance is obtained by
following inequality, in which the right-side term will maximize maximum likelihood
problem equations for the first and second type of least squares:

σ2
Q̂ ≥

(
∂2χ2

LS1
∂Q2

)−1
∣∣∣∣∣∣
Q=Q̂

(47)
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σ2
Q̂ ≥

(
∂2χ2

LS2
∂Q2

)−1
∣∣∣∣∣∣
Q=Q̂

(48)

3.2.5. Geometry Method

The next proposed method is feasible to perform, but in practice, the noise of σxi and
σyi are not necessarily proportional. An approach is suggested in which noise of σxi and σyi

can adopt any free independent value, reaching a recursive close form solution based on
geometry relationships. The geometry method is illustrated in Figure 3.
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Figure 3. Geometry method.

In Figure 3 there is a pair of data, (xi, yi), which are measured x and y, and (Xi, Yi)
is the optimized image of that pair on Y = Q̂X. The arrows of δxi and δyi indicate
uncertainties for each dimension and are proportional to σxi and σyi . The variances of
σ2

xi
and σ2

yi
are free as mentioned above. Therefore, the distance of (xi, Xi) is not necessarily

the same as (yi, Yi). More quality in the data measurement of xi (or yi) leads to less space
to its map Xi (Yi).

A particular state of this method is to consider equal errors, which means σxi =σyi . In
this form, the line connects (xi, yi) and (Xi, Yi) is perpendicular to Y = Q̂X line. As can be
seen in Figure 3, the gradient (or slope) of Y = Q̂X line is Q̂ = ∆yi/∆xi and the angle of θ is
equal to tan−1 Q̂. The length of the perpendicular line between the data point and the line
is Ri = ∆yi cos θ = ∆yi/

√
1 + Q̂2. Moreover, there are δxi = Ri sin θ and δyi = Ri cos θ. A

cost function is defined as:

χ2
geometryLS =

N

∑
i=1

δx2
i

σ2
xi

+
δy2

i
σ2

yi

(49)

By considering sin θ2 = 1− cos θ2 = Q̂2

1+Q̂2 :

δx2
i =

(
∆yi

2

1 + Q̂2

)(
Q̂2

1 + Q̂2

)
; δy2

i =

(
∆yi

2

1 + Q̂2

)(
1

1 + Q̂2

)
(50)

Moreover, by considering ∆yi = yi − Q̂xi, the cost function will be rewritten as:

χ2
geometryLS =

N

∑
i=1

(
yi − Q̂xi

)2(
1 + Q̂2

)2

(
Q̂2

σ2
xi

+
1

σ2
yi

)
(51)
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By applying the assumption of σxi = σyi the following equation is reached:

χ2
geometryLS =

N

∑
i=1

(
yi − Q̂xi

)2(
1 + Q̂2

)
σ2

i
(52)

The above equation is equal to the Equation number (38). By adding γ as a fading
memory element to the cost function, the following equation can be achieved:

χ2
geometry−FMLS =

N

∑
i=1

γN−i
(
yi − Q̂xi

)2(
1 + Q̂2

)
σ2

i
(53)

As in the previous sections, the derivative of the cost function with respect to Q̂ must
be calculated and be set to zero in order to find the optimal value for Q̂.

(∂x2
(geometry−FMLS))

∂
_
Q

= 2

(
_
Q

2
+1)

3

N
∑

i=1
γN−i

[
_
Q

4( xiyi
σ2

xi

)
+

_
Q

3( 2x2
i

σ2
xi
− x2

i
σ2

yi
− y2

i
σ2

xi

)
+

_
Q

2( 3xiyi
σ2

yi
− 3xiyi

σ2
xi

)
+

_
Q
(

xi
2−2yi

2

σ2
yi

+
y2

i
σ2

xi

)
+

(
−xiyi

σ2
yi

)]
(54)

This equation can be rewritten in the form of:

∂χ2
geometry−FMLS

∂Q̂
=

2(
Q̂2 + 1

)3

(
C̃5Q̂4 +

(
−C̃1 + 2C̃4 − C̃6

)
Q̂3 +

(
3C̃2 − 3C̃5

)
Q̂2 +

(
C̃1 − 2C̃3 + C̃6

)
Q̂− C̃2

)
(55)

In which C̃1,n = γC̃1,n−1 + x2
n/σ2

yn ; C̃2,n = γC̃2,n−1 + xnyn/σ2
yn ; C̃3,n = γC̃3,n−1 +

y2
n/σ2

yn ; C̃4,n = γC̃4,n−1 + x2
n/σ2

xn ; C̃5,n = γC̃5,n−1 + xnyn/σ2
xn ; C̃6,n = γC̃6,n−1 + y2

n/σ2
xn .

Q̂ is being calculated by finding the following equation roots:

C̃5Q̂4 +
(

2C̃4 − C̃1 − C̃6

)
Q̂3 +

(
3C̃2 − 3C̃5

)
Q̂2 +

(
C̃1 − 2C̃3 + C̃6

)
Q̂− C̃2 = 0 (56)

3.2.6. Total Geometry Method

As the last method the total geometry method is proposed, which can be considered
as a general form of the geometry method by assuming equality in σxi and σyi values.
Nevertheless, there should be a solution while these two values are not equal. When
σxi = kσyi (with variable k in different pairs of data) yi axis could be scaled as ỹi = kyi to
use the mentioned trigonometric relations of this method. Therefore, we have σ̃yi = σxi and
the estimated value of capacity by the scaled data is Q̂c = Q̂/k, and clearly k is estimated
as k = σxi /σyi .

4. Validation by Experimental Data

In order to evaluate the proposed Re and capacity estimation methods, experimental
data of laboratory tests at 25 ◦C from [29] were utilized; afterwards, a third type of least-
squares method, including geometry method and total geometry method, were simulated
in MATLAB. It should be noted that other types of least squares were not simulated due to
not being applicable in the BMS unit. The state of charge has been estimated by the method
introduced in [30]. The parameters are quantified in Table 1. The diagram for Re estimation
is shown in Figure 4.
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Table 1. Parameter quantification.

Description of Parameter Name of Parameter Selected Value

Variance of x data σx 0.01 ≤ randomvalue ≤ 0.02
Variance of y data σy 0.01 ≤ randomvalue ≤ 0.02

Coefficient of filtering R̂e α 0.99
Threshold of minimum current ∆ib threshold 2

Coefficient for fading memory γ 0.99
Coefficient of columbic efficiency η 0.9929 (from lab data)
Nominal value of battery capacity Qnom 5.1314 (from lab data)
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Experimental data of laboratory tests from [29] were utilized. Figures 5 and 6 demon-
strate the current and voltage characteristic of the battery, correspondingly. As can be seen,
a specific load pattern was applied to the batteries. Unfiltered and filtered Re results are
shown in Figure 7. The diagram of the simulation process for capacity estimation is given
in Figure 8. The simulation results and the comparison of the different techniques are
illustrated in Figures 9 and 10, respectively. The blue and red lines represent the confidence
interval of the estimated value. As observable in these diagrams, the simulation results
of all methods are very close together. The total geometry method shows an initial rise,
but it converges to the nominal value as with other methods in the continuation. The
geometry method has all the advantages of a recursive manner, a fading memory, a close
form of solution, and is considering both errors of σxi and σyi . Therefore, it is applicable in
embedded systems and is the most practical method.
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The RMSPE (root mean square percentage error) and the MAPE (mean absolute
percentage error) of the proposed methods were calculated by discharge cycle data of a
roughly 9 h-long experiment, and are shown in Table 2. The value of the results is based
on random noise produced in MATLAB. These varied in each simulation time but were
always less than 0.02%, which is a favorable method accuracy.

Table 2. Error Calculation.

Method RMSPE MAPE

LS3 ≤0.02 ≤0.015

Geometry ≤0.02 ≤0.015

Total geometry ≤0.02 ≤0.015

5. Conclusions

Lithium-ion batteries are widely used in electric vehicles due to their advantages, such
as higher capacity and long cycle life, in comparison with other batteries. In this article, the
lithium-ion battery capacity estimation was investigated. Analysis of state of health and
remaining useful life is essential for the battery management system unit to better manage
the cells in the battery pack and for better power estimation. For this purpose, a practical
and confident method was proposed to estimate two essential parameters, Re and Q, which
together represent battery state of health.

The battery’s current and voltage are the only data needed to estimate both Re and Q
parameters. Different approaches to the least-squares method were analyzed, and finally,
the least-squares-based-geometry method was chosen. It was concluded that the least-
squares techniques have many advantages. Some of the benefits of least squares methods
in comparison with other methods are as follows:

• This method can estimate state of health of the battery in an online condition while
the battery is being used in the vehicle (it is not only a method for the laboratory);

• It does not need extensive experiments in the laboratory to obtain charge and dis-
charge curves;

• It does not need a significant number of datasets and learning processes;
• Even if it is better to have a more accurate model of the battery, this method can

provide satisfying results without precise knowledge of the model;
• It does not have a high computational load and does not need a large data memory.

In addition, the advantage of the geometry method in comparison with other ap-
proaches of least squares is that noise of both xi and yi are considered, and it has fading
memory recursive close form solution. Therefore, it is applicable in embedded systems.
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The validation of the proposed methods was accomplished by using experimental
data from a laboratory test of a battery. The proposed methods were applied to these data
using MATLAB Simulink, the results were compared, and the errors evaluated.
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