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Abstract: In recent years, the goal of lowering emissions to minimize the harmful impacts of climate
change has emerged as a consensus objective among members of the international community
through the increase in renewable energy sources (RES), as a step toward net-zero emissions. The
drawbacks of these energy sources are unpredictability and dependence on nature, leading to
unstable load power supply risk. One way to overcome instability in the power supply is by using a
battery energy storage system (BESS). Therefore, this study provides a detailed and critical review
of sizing and siting optimization of BESS, their application challenges, and a new perspective on
the consequence of degradation from the ambient temperature. It also reviews advanced battery
optimization planning that considers battery degradation, technologies, degradation, objective
function, and design constraints. Furthermore, it examines the challenges encountered in developing
the BESS optimization model and evaluates the scope of the proposed future direction to improve the
optimized BESS, especially its battery.

Keywords: battery energy storage system; sizing; optimal planning; battery degradation; ambient
temperature; renewable energy sources

1. Introduction

Lately, there has been a growing consensus among people worldwide regarding the
importance of reducing emissions to mitigate the adverse effects of climate change. Several
nations and companies globally are beginning to commit to net-zero emissions. Despite
its vulnerability to climate change, it is also realized by Indonesia, which is Although
vulnerable to climate change, this is also realized by Indonesia, which is an archipelago
country country [1]. The utilization of alternative or renewable energy sources (RES) is
one of the most effective ways to reduce emissions generated from fossil fuels. Solar
photovoltaic (PV) is the most extensively utilized RES owing to its installation simplicity,
low cost, and scalability [2]. However, problems arise because the RES generation is
unpredictable and highly dependent on nature, resulting in an unstable power supply to
the load [3]. Due to its high penetration, the uncertainty of PV plants expose the power
grid to many challenges, such as voltage, frequency fluctuations, reverse power flow, and
harmonics [4]. The successful integration of RES into the planning and operating model of
an electric power system on a grid-scale increases the flexibility of the battery [5].

The battery energy storage system (BESS) helps ease the unpredictability of electrical
power output in RES facilities which is mainly dependent on climatic conditions. The
integration of BESS in RES power plants boost PV penetration rates [6], thereby improving
the efficiency and reliability of the generating system [7]. Furthermore, BESS plays an
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essential role in distribution networks, where it is used to assist auxiliary services, load
shifting and leveling, backup power, peak shaving, demand response, renewable energy in-
tegration, frequency control, voltage management, long-term, and seasonal storages [8–10].
Therefore, its optimization is essential.

BESS capacity and its ideal location are both determined by its optimization indicator.
The performance of the electric power system is also significantly improved by its optimiza-
tion in terms of establishing the appropriate capacity and rating. Meanwhile, inadequate
capacities and ratings tend to result in greater power losses and increased costs for both the
investment and operation of the power system [11]. BESS capacity needs to be optimized
to ensure continuous electric power alongside robust and economical operation [12]. Its
optimal placement is also extremely relevant on grid-scale networks. This is because it
affects BESS costs and services by delaying investment from peak loads, improving the
response to changes in electrical energy generation and demand, reducing transmission
and distribution losses, as well as restrictions on RES generation [13]. One of the most
significant decisions to make is planning to optimize the performance of the RES system
to achieve profitable investments. The optimization of BESS capacity and placement is a
significant problem due to the need for ideal energy exchange equilibrium [14] and the
total cost of installation [15].

BESS technology includes the use of lithium-ion (Li-Ion), lead-acid (LA), sodium-
sulfur (NaS), zinc-bromine (ZBB), nickel-cadmium (Ni-Cd), vanadium-redox (VRB), and
polysulfide bromine batteries (PSB) [16,17]. These are typically used for load leveling,
power quality, grid extension and support, demand management, and voltage regulation.
One of the major advantages of LA is that it has relatively low investment opportunities,
and expensive to operate with limited energy density. Although the Li-Ion batteries have
high energy and power densities with long-lasting life cycle and excellent efficiency, it is
an expensive investment [18]. This battery type is also manufactured as packs, organized
in series or parallel to realize the necessary current, voltage, and power. Throughout the
development of this battery, large-scale battery packs were built as power walls [19].

Li-Ion batteries’ performance deteriorated over time and is referred to as calendar and
cycle life [20]. This is due to two causes, first is the loss of Li-Ion triggered by the formation
of a solid electrolyte contact (SEI). Second is the loss of electrode sites [21], which increases
internal resistance, lowers capacitance and efficiency, and diminishes battery life [22,23].
Consequently, battery deterioration always impacts the optimal operation and longevity of
Li-Ion battery energy storage, particularly the percentage of power systems [24]. It also
predicts battery life, maximum charge or discharge cycles, or Ah-overall. The data is then
used for cost or benefit analysis [25].

The degradation costs for a charge or discharge cycles need to be considered when
analyzing real-time energy management challenges. In this case, the energy management
running expenditures tend to grow because of battery life and actual unrepresented elec-
tricity prices [26]. According to Cardoso et al. [27] the overall annual power cost reductions
from PV and storage systems can be reduced by 5–12% if the battery deterioration limits
are considered. Ren et al. [28] stated that it significantly reduces the system’s electrical per-
formance and increases unanticipated maintenance expenditures. Battery failure is usually
due to deterioration caused by increased rate of usage, and this can limit its lifespan and
potentially lead to significant accidents. Likewise, battery degradation significantly reduces
the system’s electrical performance and increases unanticipated maintenance expenditures.
Severson et al. [29] stated that the prediction of battery life facilitates new production, use,
and optimization opportunities. If one can accurately anticipate the lifespan of a battery,
then they can create new uses as well as optimize its performance. This leads to innovative
opportunities for the manufacturing process and optimization.

The present study examines the optimization plan for the BESS system problem by
considering battery degradation due to ambient temperature. It serves as a reference for
investigating areas of electrification using renewable energy sources. This engineering topic
covers BESS planning in relation to deterioration from a practical standpoint. However, this
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static problem involves battery capacity and location to attain the desired goals. These tend
to be influenced by technological and economic concerns, as well as other factors such as re-
liability. As a result, BESS planners encounter certain challenges in gathering and inputting
data, dealing with design constraints, and implementing effective energy management.

The following are the key contributions of this research:

• Explain the state-of-the-art expansion planning with BESS optimization.
• Explain how battery degradation due to ambient temperature can affect BESS.
• To study different technologies, objectives, and constraints of BESS.
• Review the challenges and future scopes encountered in developing BESS optimization.

The present research is arranged as follows. Section 2 outlines the methods used
to review the literature. Section 3 investigates BESS with respect to expansion planning.
Sections 4 and 5 reviewed its application and battery technology, respectively. Section 6
focuses on the study of battery degradation. Meanwhile, Section 7 reviews the objective
function, design constraint, and algorithm of BESS optimization. Section 8 discusses the
issues and challenges of BESS, while Section 9 concludes the research and provides areas
for future works.

2. Methodology

The systematic literature review (SLR) was summarized using the preferred reporting
items for systematic reviews and meta-analyses (PRISMA) approach. Data were selected
from the Scopus, Science Direct, IEEE Xplore and Web of Science databases in three stages,
namely identification, screening, and reporting. Figure 1, shows the identification stage,
which is carried out by searching for related articles in each database, as illustrated in Table 1.
The strategy adopted at the time of initial screening on the database is in accordance with
the provision of the title, abstract, and keyword. This led to the realization of 1584 articles,
of which 824, 352, 187, and 221 were from Scopus, Science Direct, IEEE Xplore, and Web of
Science concerning the optimization of BESS and battery degradation, respectively.

Table 1. Search term selection.

Search Term Descriptor

Database Scopus, Science Direct, IEEE Xplore, and Web of Science

Keyword Fields Battery Energy Storage System; Sizing; Battery Degradation;
Battery Aging

Year Publication 2018–2022
Document Type Article

After checking and removing duplicate reports and records marked as ineligible by
automation tools, 139 papers were obtained for screening. The papers were selected in
accordance with exclusion and inclusion criteria based on Table 2. Incidentally, 42 records
were excluded, 12 were not retrieved, and 15 reports were omitted due to inclusion and
exclusion criteria at the screening stage. Finally, the total number of comprehensive SLR
articles to be reviewed are 69.

Table 2. Criteria for the systematic literature review.

Criteria Description

Inclusion

A journal that has the highest relevance with BESS and battery
degradation due to ambient temperature

Has an impact factor Q1
Paper publication 2018 to 2022

Exclusion
Studies that have information relatable to support

state-of-the-art BESS or battery degradation
Paper publication 2018 to 2022
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Figure 1. Block diagram selection based on PRISMA flow diagram approach [30].

As a result, this SLR was carried out to respond to the following research objectives
and questions.

1. How does the development of BESS optimization affect expansion planning and the
impact of the BSS applications on the grid or microgrid?

2. How does the battery technologies use affect BESS? And what can affect battery degradation?
3. How does battery degradation due to ambient temperature affect BESS optimization?
4. What are the main parameters and variables in BESS optimization planning?

The number of publications on this topic has increased over the past five years, as
shown in Figure 2. For example, from 2018 to 2021 there were 53 articles, with 16 new
publications in October 2022.
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Figure 2. Number of BESS-related publications eligible for review in the last five years.

Meanwhile, 69 comprehensive articles have been selected for review. The acquired
data has a Q1 journaling tool from the Scimago Journal Rank (SJR). Table 3 shows the list of
publications or journals selected for review.

Table 3. Distribution of articles in each journal.

Journal Name Scimago Journal Rank Impact Score Number of Articles

IEEE Transactions on Smart Grid 5.25 11.95 1
IEEE Transactions on Power Systems 4.64 8.42 2

IEEE Transactions on Industrial Informatics 4.33 12.03 2
IEEE Transactions on Sustainable Energy 4.16 9 3

Applied Energy 3.06 11.3 9
IEEE Transactions on Transportation Electrification 2.17 7.64 1

IEEE Transactions on Energy Conversion 2.09 5.79 1
Energy 2.04 8.51 4

IEEE Transactions on Industry Applications 1.98 5.21 2
Journal of Power Sources 1.98 9.07 2

Journal of Cleaner Production 1.92 10.96 3
Renewable Energy 1.88 8.65 3

IEEE Transactions on Green Communications and Networking 1.87 3.88 1
Energy and Buildings 1.68 7.13 1

International Journal of Electrical Power and Energy Systems 1.54 6.06 1
Journal of Energy Storage 1.35 8.78 5

Electric Power Systems Research 1.11 4.39 3
MRS Energy and Sustainability 1.03 2.2 1

IEEE Access 0.93 4.3 4
Batteries 0.87 5.77 4

PLoS ONE 0.85 3.58 1
International Journal of Energy Research 0.81 5.81 1

Sustainability (Switzerland) 0.66 4.17 1
Energies 0.65 3.54 11

Automotive Innovation 0.4 1.99 1
International Journal of Renewable Energy Research 0.3 1.61 1

Brief Review

Until now, the trends of BESS have been widely studied in several aspects. As ex-
plained in Table 4, a BESS is often applied to solve microgrid, grid-scale, and hybrid
renewable energy system (HRES) problems. However, to obtain economical results, its
sizing and siting was optimally analyzed with a significant dependence on the problem
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to be solved. BESS is usually used to solve problems related to system flexibility, such as
demand load shifting, loss of load, avoidance of RES curtailment, and RES peak shaving. As
its research progresses, it becomes increasingly important to consider the impact on battery
health, as well as the choice of battery technology used, which can affect the system and
its economic value. Battery health needs to be considered to ensure it does not experience
degradation, when the BESS needs to be replaced. In general, the battery degradation
factors considered during the optimization process are SOC, DOD, cycle number, and
battery lifetime. Furthermore, studies have also been developed on the use of recycled
batteries from electric vehicles with BESS integrated into the microgrid system. Research
on the effect of temperature on the optimization of BESS was also considered recently. The
temperature factor that affects BESS consists of operating temperature and ambient temper-
ature. However, little research has been carried out on the effect of BESS environmental
temperature optimization. Yuhan Wu et al. [31] conducted research on optimizing BESS
considering the ambient temperature. However, in this research the temperature variable
was not explained in sufficient detail.

Table 4. Review of a recently published article on BESS optimization.

Ref Research Topics Research Gaps

Cardoso et al. (2018) [27] BESS optimization was discussed while taking battery
degradation and micro sizing problems into account

Investigate the operating temperature of the BESS
because it has a significant impact on battery health

Alsaidan et al. (2018) [32]

Using BESS to find a solution to the specific problem of
microgrid expansion. Considering the characteristics of

various technologies, a distributed deployment,
considering the impact of in-depth discharge, and the

number of charging and discharging cycles

The challenges in BESS optimal sizing are brought on by
the need to use the it for multiple applications and the

use of linear power flow model to calculate the angle and
voltage magnitude at each bus as well as the active and

reactive power flow

Talal Alharbi, et al.
(2019) [33]

Framework for the planning and operation of the BESS is
based on recycled batteries from electric vehicles

The problem of optimizing BESS requires reducing the
computation complexity and incorporating more

dynamic decision variables, both of which can benefit
from the application of decomposition methods

A. Pena-Bello et al.
(2019) [34]

Develop an optimization framework to determine the
most suitable battery PV self-consumption. The

avoidance of PV curtailment, demand peak shaving,
demand load-shifting, and technology depending on

the size

The proposed challenge is to extend the optimization
framework to more regions, while considering transport
demand and trade-offs as well as incorporating heat and

electric vehicles

Timur Sayfutdinov et al.
(2020) [35]

The most optimal placement, sizing, and technology
choice for BESS was discussed, by considering the

degradation obtained from the state of charge and the
depth of discharge

Although the constraint of BESS degradation taking SOC
and DOD into consideration has been provided, the
temperature value was still fixed when the model

was developed

G. Mohy-Ud-Din et al.
(2020) [36]

The energy management strategy that has been described
is used to optimize the functioning industrial microgrids,
with the BESS scalability serving as a limiting factor due

to the presence of uncertainties

The challenges of integrating many decentralized energy
sources into a microgrid controller in a way that allows it

to be used in an economic dispatch

Yunfang Zhang et al.
(2021) [37]

An optimal sizing model was presented for grid-scale
BESS, taking into consideration its operation under

uncertainties induced by volatile wind generation. The
cycle life model of batteries was evaluated, and marginal

economic utility analysis performed

Studies on BESS allocation planning needs to consider
the decision regarding installation location

Mohammad Amini et al.
(2021) [38]

A description of the optimal BESS size, technology, depth
of discharge, and replacement year was provided,

reckoning the system’s technical characteristics, service
life, and capacity degradation. This was conducted to

reduce the total cost of MG scheduling while
simultaneously improving the BESS’s precision and

economic feasibility

The temperature factor has not been taken into
consideration in the BESS degradation model
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Table 4. Cont.

Ref Research Topics Research Gaps

Rehman et al. (2022) [39]

Presented optimal sizing for a BESS and PV system in an
extremely fast charging station (XFCS) to reduce the

annualized total cost. This was carried out with
consideration given to evaluating optimal energy

management for the station as well as energy arbitrage

This research proposed a model of battery degradation;
however, the lifetime project only used one year and did

not consider replacement batteries

Yuhan Wu et al.
(2022) [31]

Examined the algorithm for optimal capacity allocation
of BESS in contemporary distribution networks, while

considering the ambient temperature

A model of battery degradation, which concerns the
ambient temperature has been developed. However, the

variable of temperature has not been described in
sufficient detail

This review provides a discussion about the expansion planning with BESS opti-
mization by considering battery degradation due to ambient temperature to fill in the
research gaps. Figure 3 shows the mind map of BESS relating to the application, batteries
energy storage technologies, battery degradation, objective function, design constraints,
optimization algorithms, and challenges used in this review.
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3. Expansion Planning Overview

A combination of BESS technology and expansion planning is frequently adopted to
overcome the issues of VRE integration. For example, generation expansion planning (GEP)
tries to meet energy demands alongside several economic and technological restrictions. It
determines the generating capacity of an ideal investment plan during a specific study period.
Governments and decision-makers routinely utilize GEPs to select when and where to invest in
generating technologies. Based on the decision factors, energy expansion approaches are broadly
classified as GEP and transmission expansion planning (TEP). However, storage expansion
planning (SEP) is widely used when dealing with BESS investment choices. In reality, creating,
transmitting, and storing processes tend to be synchronized [5].

The main challenge of GEP is determining the appropriate capacity size, generating
unit, and timing of a new facility’s building to fulfill the electric power requirement, at least
during the planning period. GEP models are made more versatile by considering numerous
goal functions and constraints as shown in Table 5. Its goal function typically consists of
two major components, namely, investment and operation. To establish an optimal GEP
strategy, different restrictions that impact the execution of the plan must be considered.
There are two types of constraints, namely required and discretionary. One of the relevant
limitations is ensuring the balance of electricity demand. Therefore, there is a possibility
that minimizing total expenditures for a GEP project is not an effective target function,
especially if there are other fascinating aspects that compete for attention. Consequently,
issues related to GEP are frequently posed as a multi-objective optimization process. This
approach can handle the simultaneous compromising of multiple goal-planning functions
to determine which alternative capacity is the most effective. Several of these goals are
intertwined, such as incorporating DSM and RES in the generating mix, reducing pollution,
reliability, fuel consumption, costs associated with the intermittent nature of RES, and the
risk of fluctuations in energy expenditure. All these are carried out to improve the flexibility
of the GEP model [40–42].

Table 5. Generic objective function, constraint, and uncertatnties in GEP [40–42].

Categories in
GEP Problem Objectives Constraint Uncertainties

Social-Economic Emission Cost Peak Demand Electrical price variability
Energy Cost Spin Reserve Public Health

Emission Cost Emission Level Social Acceptance
Fuel cost Generator Capacity Behavior Shift

Electric Vehicle Cost Renewable Penetration Level Demand Growth Rates
Storage Cost Interest Rates

Electricity Price Fuel Cost fluctuation
Renewable Cost Carbon Prices

Social acceptance

Policy Target Energy Governmental Policy National Energy Policies
Target Renewable Penetration Industrial Policy International climate agreements

Target Environmental Regulation Carbon Market Taxation regime
Target Access to Energy Resources Environmental Regulation Energy Security

Renewable Supporting Schemes International Climate Agreements

Technical Increasing Energy Penetration
With Other Energy Sectors Renewable Curtailment Ramping Capability

Ancillary Services Flexibility and Reliability Learning Rate Evolution For
Energy Supply Technologies

Target Ageing Infrastructure Grid curtailment Flexibility and Reliability Needs
Forced outages

Reliability Margin
Energy Balance

Network Constraint
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Table 5. Cont.

Categories in
GEP Problem Objectives Constraint Uncertainties

Climate/Envir-
onmental

Target Renewable
Energy Generation Renewables Availability Renewables Variability

Target Life-Cycle Infrastructure Climate Change Natural Disaster
Use of Fossil Fuels Life-Cycle Assessment Extreme Climatic Events

Resource Allocation
Retirement or Lifespan

Peak Energy Generation

SEP can be categorized by its storage capacity, geographical distribution, and mo-
bility, in addition to the kind and quantity of BESS. Furthermore, energy storage systems
are classified as either short or long-term, depending on their capacity. Short-term
appliances, such as capacitors, flywheels, compressed air energy techniques, and BESS,
stores energy from seconds to days. Certain long-term appliances, such as hydrogen
storage and water reservoirs, can supply energy from one week to an entire season. BESS
can also be classified as centralized or dispersed. When categorized by centralized, it
refers to a single place. Even though most BESS are either centralized or dispersed, BESS
can categorized by mobility such as on electric vehicles (EVs) [5].

The primary goal of decoupling is to ensure that cost-cutting initiatives are carried
out by central planners (vertically integrated electrical firms) or politicians, as opposed
to private investors. In the SEP model, reliability indices account for expected energy
not served (EENS) or loss of load probability or expectation (LOLP/LOLE). There is
also a possibility of adding any necessary technical constraints for unit commitment
(UC) that are essential for scheduling the operation of the producing sector. These
include minimal timeframes between turning on and off, beginning and shutting down,
ramping up and down, as well as the least power outputs. There is a possibility that
further operational reserve limits, such as the spinning types, alongside frequency and
voltage support replacements, are imposed on the way the system operates [5].

4. BESS Application Overview

BESS delivers various services to network operators, DG plants, energy retailers, and
consumers. Figure 4 categorizes its applications in in the grid based time scale. Additionally,
BESS consumption is classified in accordance with the time scale of its deployment, which
ranges from milliseconds to hours. Its applications in grids or microgrids tend to improve
power quality, voltage management, peak shaving, load smoothing, frequency control, and
energy arbitrage [43].
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4.1. Power Quality

The power quality index is used to measure voltage and current waveform distortions
in pure sinusoidal ideals [43]. Variations in solar irradiance and wind speed trigger the
negative effect of high-variance DG plants. Consequently, the BESS added to the DG plant
has the potential to smoothen temporary power fluctuations. In this situation, it is viewed
as an extra cost component with respect to the RES plant that serves as a revenue system.
The provision of economic incentives to plant owners to reduce power fluctuations is a
technique used to compensate for revenue losses [45,46].

4.2. Voltage Control

Capacitor banks, tap changers, voltage regulators, and static VAR compensators are
equipment used to manage voltage during grid distribution. This is because DG injection
makes the regulation of equipment at the substations useless, such as transformer tap
changers, with many units scattered around the network selectively creating reactive
power to allow for simpler voltage management. For example, a PV generator produces
overvoltage at the network’s end [43]. Therefore, implementing BESS in such cases has
been proven to be effective and potentially reduce overvoltage [47,48].

4.3. Peak Shaving and Load Smoothing

Both peak shaving and load smoothing aim to reduce the maximum amount of power
visible to the system by striking a balance between the generation profile and demand.
This approach produces real-time network congestion solutions by minimizing conductor
overloads caused by the generation of peak power loads. Furthermore, peak shaving and
load smoothing help to reduce network losses. BESS operations also reduce system losses
by increasing load-to-local-generation profile matching [43,49].

4.4. Frequency Regulation

In an auxiliary service market, frequency regulation is typically provided by gener-
ators connected to a transmission network. Interestingly, it is described as a commercial
offering. However, in recent years, generators and energy storage devices connected to the
distribution network also provided this service. This is possible because the distribution
network has become more decentralized. Additionally, the increasing demand for renew-
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able energy brought about the modification of this policy. Both the generator and BESS use
drop control to monitor the frequency and adjust the power output appropriately. In this
scenario, BESS allows restrictions to be specified by the state charges (SOC) [50,51].

4.5. Energy Arbitrage

Energy arbitrage is the process of simultaneously purchasing and offering energy
supplies in the marketplace. It was only initiated by commercial users because the power
sectors of most countries do not have any form of regulation. The application of BESS
pairs with DG or load, in which storage units are utilized to redirect energy production
or generation, is aimed at maximizing profit irrespective of the fluctuations in market
prices [43,52]

5. Battery Energy Storage Technologies

LA, Li-Ion, NaS, and RF are grid applications’ most common battery technologies.
These are classified according to their energy density, efficiency, lifespan, and cost when
coupled to a storage network, as shown in Tables 6–8. The LA battery has high efficiency
between 80 and 90% and low costs within the range of 50 to 600 $/kWh [52,53] However,
when compared to other technologies, it has a significant disadvantage in terms of lifespan
(approximately 2500 cycles) [54] and low energy density (within the range of 20 and
30 Wh/kg). A high discharge depth shortens an LA battery‘s life [52,55].

The characteristics of Li-Ion batteries are based on the chemical composition of both
the cathode and anode, which typically consists of graphite and lithium metal oxide. In-
terestingly, the cathode and anode give the battery its name and power, respectively. This
technique is highly efficient, with a maximum efficiency of approximately 90%. On the
other hand, some commercial devices boast reported round trip efficiencies of more than
95% with energy density within the range of 90 to 190 Wh/kg [56] and extended service life
of relatively 10,000 cycles [54]. Cell temperature, an essential element in the deterioration
process, significantly affects the battery life [30]. Li-Ion batteries are commonly found in
electronic devices and recently emerged as the industry standard for EV. This technology
is suitable for grid-connected network applications, even though it is still somewhat ex-
pensive. Presently, there are several Li-Ion technologies, for example, lithium manganese
oxide (LiMn2O4), lithium cobalt oxide (LiCoO2), lithium nickel cobalt aluminum oxide
(LiNiCoAlO2), lithium iron phosphate (LiFePO4), and cobalt-based Lithium nickel man-
ganese oxide (LiNiMnCoO2) [57]. Tables 7 and 8 show details of the Li-Ion and nickel-based
battery specifications, respectively.

NaS batteries have a high working temperature (approximately 300 ◦C), efficiency
(>80%), energy density within the range of 150 to 240 Wh/kg, and a long lifespan of
relatively 4500 cycles [58,59] As a result, this technique has been utilized to lessen the
effect of renewable energy-based generators as an in-grid [58,60]. Vanadium redox flow
batteries (VRB) batteries comprise two containers, one containing two chemical reagents
and the other two electrodes partitioned by a membrane. Incidentally, when the two
components combine, it results in an oxidation reaction. One of the containers holds
the chemical reagents, while the other contains the electrodes. The amount of stored
chemicals contributes to the flow cell’s total energy capacity. Meanwhile, the electrodes and
membrane filtering system are responsible for individual energy capacity flow cell. The
power and energy ratings are separated, resulting in the increased design and operational
flexibility. The energy density of VRB is relatively low, ranging from 15 to 30 Wh/kg, and
its efficiency is approximately 75% in some cases [61]. On the other hand, they are not
constrained by reactant life cycles or discharge depth [62]. Due to the low costs involved in
their maintenance and operation, VRB have been suggested as viable options for large-scale
grid-based energy storage [63]. The reactants have been investigated, and several chemical
compositions have been proposed. The most utilized ones are vanadium and Zn-Br [64].
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Table 6. Review of technology BESS [65–69].

Technology Efficiency
(%)

Life Cycle
(DOD 80%)

Battery Energy
Density (Wh/L)

Battery
Power Density

(W/L)

Application
Battery Benefits Disadvantage

Lead Acid
(LA) 75–85 300–3000 50–90 10–400

Diesel electric-
powered

submarines,
electric motors

Cheap
Low energy

density, limited
cycling ability

Lithium Ion
(Li-Ion) 90–99 3000–10,000 200–500 1500–10,000 Laptops, mobile

phones, EV

Fast response
time, high

efficiency, and
energy density

Some security
issues depend on

the type

Sodium Sulfur
(NaS) 75–90 4500 150–300 140–180

Load
residential,

support ups

High efficiency
and life cycle

High maintenance
and operating
temperatures

Nickel
Batteries 15–400 500–3000 10–150 50–1200

Mobile phones,
emergency

lighting

High reliability
and energy

density, long
cycle life,

Environmental
hazards,

influenced by the
memory effect

Zinc Bromine
(ZnBr) 2000 30–65 <25 65–80 Diesel electric-

powered

Long lifetime,
high energy
density, and

deep discharge
capacity,

Dendrite
formation,

corrosivity, require
working

temperature, and
low cycle
efficiency

Polysulfide
Bromine (PSB) - 20–30 <2 60–75

Electrical
vehicle, support

ups

Fast reaction
speed

No large-scale
application

experience, and
environmental

issues,

Vanadium
Redox Flow

(VRB)
65–85 2000–20,000 40 -

Electrical
vehicle,

support ups

Stability for
large scale

Difficult
maintenance,

complex battery

Table 7. Specification of technology lithium-ion batteries [70,71].

Technology Efficiency (%) Life Cycle
(DOD 80%)

Battery Energy
Density (Wh/L)

Battery Power
Density (W/L)

Lithium Iron Phosphate (LiFePO4) 92 >2000 90–120 1932

Lithium Cobalt Oxide (LiCoO2) 95.7–98.4 500–1000 150–200 2710

Lithium Nickel Manganese Cobalt
Oxide (Li(NixMnyCo1−x−y)O2) 90 1000–2000 150–220 -

Lithium Nickel Cobalt Aluminum
Oxide (Li(NixCoyAl1−x−y)O2) - 500 200–260 -

Lithium Manganese Oxide
(LiMn2O4) - 300–700 100–150 -

Lithium Titanate (Li4Ti5O12) 98 3000–7000 50–80 -

Table 8. Specification of technology nickel batteries [69].

Technology Efficiency (%) Life Cycle
(DOD 80%)

Battery Energy
Density (Wh/L)

Battery Power
Density (W/L)

Ni-Cd 70–90 2000–2500 15–150 75–700
Ni-MH 90 700–1000 38.9–350 7.8–588
Ni-Zn <87 >5000 80–400 121.38
Ni-Fe <65 - 25–80 12.68–35.18
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6. Battery Degradation

Battery degradation leads to a reduction in its capacity and efficiency and even safety
problems. The term cycle life refers to the total number of times a battery can be discharged
or charged before it is replaced [72]. Nonlinearity in battery degradation can be traced to a
variety of causes, such as SOC, high temperature, depth of discharge (DOD), and charge
or discharge current rate [73], as shown in Figure 5. One of the issues contributing to the
short lifespan of Li-Ion batteries, for example, is the highly utilized DOD, which tends to
significantly reduce the total number of cycles [74,75].
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The remaining useful life (RUL) and state of health (SOH) are the most critical factors
in predicting Li-Ion battery degeneration. Generally, usage capacity, energy, and accessible
power, which diminish with battery age, influence SOH and RUL [76]. Although SOH tests
detect a decrease in performance, they also prevent potential accidents [77]. The accuracy
with which one may anticipate the RUL of a given battery capacity relies on several factors,
and the most important is the ability to calculate the SOH. Managing discharge problems,
improved performance, and optimized operation requires precise and reliable prediction
algorithms to determine a battery SOH and RUL.

SOH refers to the percentage of a battery cell’s capacity that is still usable and used to
quantify the entire aging degree. This value is expressed as a percentage [78] and ideally,
the SOH of the new battery should be 100%. The decreasing trend of SOH is due to the
accelerated aging of the battery, which is one of the reasons of the increased cycle times.
When the state of health reaches the failure threshold, the battery becomes ineffective [79].
The formula for SOH is written in Equation (1).

SOH(t) =
Ct

C0
(1)

where Ct and C0 denote the t-th cycle and initial battery capacity. The maximum capacity
of the battery tends to drop in accordance with the number of times it is cycled, with
continuous increase in the battery’s internal resistance. Generally, a battery fails when
its internal impedance increases to a level that is twice as high as its initial impedance.
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Several performance parameters, such as power and the number of charge and discharge
cycles, can also be used to define SOH. Further studies must utilize a wide variety of
methods or models to estimate SOH, such as the use of direct measurement and indirect
analysis. By measuring the standard aging characteristic parameters of the battery, the direct
measurement technique determines the value of its current capacity, internal resistance,
cycle times, etc. This is the technique through which the values of the current state’s
identifying parameters are determined. Examples of direct measurements are counting
ampere hours, cycle numbers, measuring internal resistance and impedance. The indirect
analysis consists of obtaining the SOH value by estimation based on online observable
data from health indicators that have a high link with the performance and characteristic
parameter degradation that occurs with the SOH condition. Model-based analysis, data-
driven analysis, and hybrid analysis are examples of indirect analysis [80].

Wei J et al. [81] monitored the estimated diagnosis of battery SOH with three stages.
In the initial stage, a particle filter (PF) technique was initiated, followed by the execution
of a procedure to update the particle’s time. The support vector regression (SVR) model
was also used to estimate the capacity in each battery cycle number in the second stage.
This SVR model is trained with characteristics collected from sensor data during constant-
voltage (CV) charging mode at cycle number, to determine the charged capacity. The third
stage updated the particle constitutes, which can be resampled based on their normalized
importance weights. In accordance with the PF-based estimator, the anticipated capacity
at the cycle number is considered as a Gaussian distribution, whose variance and mean
are obtained. SOH is further defined as the ratio between the capacity of a new battery
and the expected capacity. In general, the SOH estimation flowchart can be seen in the
flowchart in Figure 6.
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RUL refers to the information on the remaining life of a battery. It is imperative
to change old and damaged batteries whose SOH has reached 0%, to guarantee the
safety of the system and hence prevent problems [80,82]. The formula for RUL is written
in Equation (2):

RUL(t) = t− teol (2)

where t and teol denote the t-th and number of cycles remaining at the completion of a
battery’s life. It is difficult to compute the RUL of a battery due to several variables, such as
its present health condition, historical data, and failure. Therefore, further study needs to
be conducted on the prediction of batteries’ RUL. Presently, there is no standard framework
that is considered the optimal model for estimating RUL due to a lack of available data,
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model complexity, and system limitations. In general, RUL prediction methods can be
categorized as physics-based, mathematical, data-driven, or hybrids [80].

Wei J et al. [81] also predicted the RUL of a battery using the SVR-based model using
a flowchart as shown in Figure 7. Monitoring the prediction of RUL starts with developing
a model that has been trained using extracted sensor data features and predicted capacity
for SVR-based input models. Wei J. et al. applied the average degradation parameter to
characterize the expected capacity distribution in this section. The result showed that RUL
is considered the n + 1 after the predicted capacity has reached the EOL threshold.
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The diagram in Figure 8 illustrates the connection between SOH, RUL, and the model-
ing of battery degradation. Some preliminary research developed a battery deterioration
mechanism model using a framework that incorporated SOH and RUL [76]. The ele-
ments that influence general battery deterioration and failure were further explained in
the SOH estimation model. Furthermore, its diagnostics and estimation help boost RUL
battery modeling by determining how much time or cycles are left to attain 80% SOH.
As a result, the reliable prediction of SOH and RUL is required for modeling battery
deterioration behavior.
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The SOH of a battery is measured in terms of its present ability to supply a certain
quantity of energy in comparison to the initial capacity. At the same time, the RUL is
helpful for monitoring the state of the battery and is also essential for executing operations
that evaluate its degeneration. Due to the nonlinear nature of battery deterioration, it is
necessary to have appropriate RUL estimations that are based on aging processes and
suitable life models at various fading stages [76]. This entails calculating the time until
a battery reaches its EOL. It tends to occur when the battery has reached the failure
threshold. Moreover, the time left and the total number of charge-discharge cycles are
considered [83]. The RUL estimation and degradation process are intimately linked to
the working circumstances and dependability of Li-Ion batteries. Previous studies have
reported that the successful prediction of the RUL prevents failure and timely functional
maintenance without irreversibly harming the battery [84].

Scholars estimated the RUL using several different methodologies, as shown in
Figure 9. These tend to be broken down into one of the four categories, namely based
on physics, mathematics, data, or hybrid models. The amount of time a battery is going
to be valuable is evaluated using a model-based technique. Therefore, a model that is
representative of a battery application found in the real world, as well as an estimated
algorithm used to predict voltage or other characteristics, needs to be developed. Empirical,
analogous circuit and electrochemical models, including Kalman filters, are a few examples
of the various methods that fall under this category. Data-driven RUL estimation is a pre-
diction method that collects excess information and continues recording until battery health
reaches its limit. Meanwhile, applying a hybrid model implies combining a model-based
method with a data-driven model [76].
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Figure 9. Classification method estimation RUL battery [76,82].

Table 9 reviews variables used to optimize BESS capacity size and placement with
battery degradation models, which vary in different studies. Aside from the SOH and
RUL models, preliminary research also used fading capacity and residual battery life for
BESS optimization. Table 10 reviews the algorithm used for battery degradation models for
BESS optimization.
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Table 9. Review of variable features used in battery degradation models for optimization of BESS
sizing and siting.

Author
Feature Variables for Battery Degradation Model

Model Battery
DegradationSOC DOD Temperature Cycle Life Charging/

Discharging

Alsaidan I et al. [32] X X Lifetime
Khezri R, et al. [85] X X Capacity fade

Sayfutdinov T, et al. [86] X X X Capacity fade
Cardoso G, et al. [27] X X Capacity fade, lifetime

Hernandez J, C, et al. [87] X X X X X Lifetime
Garrido A.G, et al. [88] X X Capacity fade, SOH, lifetime

Shin H et al. [46] X X X Capacity fade, SOH
Arias N.B et al. [89] X RUL
Amini M, et al. [38] X X Capacity fade, lifetime

Mulleriyawage
U.G.K, et al. [90] X X SOH

Wu Y, et al. [91] X X X SOH, capacity fade

Table 10. Advantages and disadvantages of battery degradation algorithm for BESS optimization.

Author
Battery

Degradation
Factors

Algorithm
Battery

Degradation
Advantages Disadvantages

Alsaidan, et al.
(2018) [32]

Energy capacity fading,
cycle battery

Piecewise linear
approximation

Easy to apply in small
data on time to the

events provided

When much data
requires many limits

Timur Sayfutdinov, et al.
(2020) [86]

Energy capacity fading,
calendar aging,
cycling aging

Least-squares fitting Simple, easy to apply

Very sensitive to
outliers, tendency to

overfit, unreliable
when the data
distribution is

not normal

Mohammad Amini et al.
(2021) [38]

Energy capacity fading,
calendar aging, cycling
aging, lifetime battery

Mathematical model
Simple structure, low
model difficulty, and

fast performance

Less robust and
significantly affected by

operating conditions

Hunyong Shin, et al.
(2022) [92]

Energy capacity fading,
SOH, operating

temperature,
cycle battery

Rainflow-counting
algorithm

Estimation of model
parameters is based on

linear regression
analysis, which can be
carried out with simple

hand calculations.

Requires a lot of
experimental data

application of
parameters based

on estimates

Battery lifespan is influenced by calendar and cycling aging. However, this is also
determined by cycle or float lives [93]. Even though the computation of the BESS life value
tends to be inaccurate, its datasheet is dependent on two limits, cycle and float lives. Both
restrictions are measured in years, and when the BESS maximum life is equal to or exceeded
by its float life, it is said to have a floating life equal to or exceeds its maximum life. The
cycle life is represented as the maximum number of charge and discharge cycles that can
occur prior to the BESS failing, and it varies depending on the technology of both the BES
and the DOD [38].

6.1. Battery Degradation Due to Changes in Ambient Temperature

The performance of lithium-ion batteries and their lifespan is significantly influenced
by temperature. When exposed to high temperatures, its rate of degradation is significantly
accelerated. Li-Ion batteries are temperature-sensitive [9], and their performance is affected
not only by the temperature of the cell itself but also by the environment in which it is
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located. Battery degradation is caused by a combination of the SEI and the loss of active
material. The one brought about by SEI is the most common and fundamental cause of
capacity fade rate in batteries. As a result of the high temperature, the surface particles of
the electron undergo a rapid development of SEI, thereby causing the battery’s capacity to
reduce [94]. According to some literature [95] on the systematic establishment of the theory
on SEI growth and reduction in battery capacity, it was asserted that temperature changes
trigger capacity fade due to alterations in the SEI layer. Incidentally, SEI growth can occur
in idle situations, during the cycle, and during temperature changes. Some literature [96]
clearly stated that temperature changes severely affect battery degradation. This process is
of two types, namely actual and temporary capacity fading and loss. The actual capacity
fading suggests that there has been irreversible cell loss due to the ingestion of lithium-ion.
The high temperature of the battery accelerates the rapid rate of cell deterioration. On the
other hand, a temporary capacity loss is caused by a drop in temperature during a specific
cycle. It can be restored if the battery temperature returns to a certain level.

The literature [97] focuses on the ambient temperature impact on a battery’s lifespan.
The formation of the film on the electrodes of Li-Ion batteries explains the effect that the
surrounding temperature has on its lifespan. This is because of the oxidation of the cell,
proven by the film produced on the electrodes. It causes an irreversible increase in the
Li-Ion battery’s internal resistance, ultimately leading to damage. The findings on the
simulation process show that higher temperatures during idle battery scenarios resulted in
extreme capacity loss and self-discharge.

Some studies on calendar aging reported that it is related to temperature. Battery
aging testing is performed at different temperatures, SOC, and end-of-life. The tests were
conducted in a laboratory with temperature control facilities and charging or discharge
operations. In reality, the battery is in extremely harsh operational conditions. The results
of Li-Ion testing for EVs are reported to last 2000 and 800 cycles at temperatures of 25 ◦C
and 55 ◦C, respectively [98]. Additionally, testing the influence of battery temperature
due to discharge rate differences such as 1C, 2C, 3C, and 4C was also conducted [99]. It is
possible to determine the varying contours due to the changing temperatures of the battery
cells and their discharge at a consistent rate.

The pace at which capacity is lost is significantly affected by the temperature of the
surrounding environment. Meanwhile, when it is greater than 35 degrees Celsius, it triggers
more changes in the composition of the electrolyte due to the substantial temperature rise.
This causes the process at which active lithium is utilized to quickly move forward [100].
As a result, the battery’s capacity starts to decrease at various room temperatures, as shown
in Figure 10. It is evident that when the perimeter temperature is greater than 35 ◦C, the
capacity fades level drops significantly during the first 50 cycles. This phenomenon occurs
while the battery is being used. When the temperature is 55 ◦C, the maximum capacity
fades, while the temperatures of 25 ◦C and 35 ◦C are projected to be the same [100].

Characteristics of the capacity fade rate of the battery which is affected by the ambient
temperature as shown in Figure 11. Yuhan Wu et al. [31] stated that LiFePO4 battery
degradation caused by the average temperature in BESS is modeled by combining cal-
endar and cycle aging. This model is depicted by a single operating cycle, as shown in
Equations (3)–(8). By knowing the characteristics of the battery aging cycle to set the opti-
mal operating temperature of BESS, it can reduce the battery degradation rate so that the
battery life is longer.

ξ = ξcal + ξcyc (3)

ξcyc = fd,soc
(
SOCavg

)
(4)

ξcal = ∑n
i=1 fd,dod(DODi) fd,T

(
Ti,avg

)
(5)

fd,soc
(
SOCavg

)
= k1SOC2

avg + k2SOCavg (6)

fd,dod(DODi) = k3DOD2 + k4DOD (7)
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fd,T
(
Ti,avg

)
=

{
ek5/T/k6, 298K ≥ T ≥ 273K
ek7/T/k8, 333K ≥ T ≥ 298K

(8)

where ξ represent of battery degradation from calendar aging (ξcal) and cyclic aging (ξcyc).
n is the number of cycles charged or discharged in one day. SOCavg represents the average
SOC, DODi depicts the difference between the i-th charge and discharge cycles DOD, and
Ti,avg is the average temperature in BESS. In most cases, the value of the k parameter is
determined by the experimental observation [31,35].
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6.2. Battery Thermal Management

Complex electrochemical reactions and electric-to-thermal conversion determine the
thermal characteristics of a battery [101]. The production of heat by Li-Ion batteries is a
complex process that involves a knowledge of how the rate of electrochemical reaction
varies with time and temperature, in addition to how current flows within the battery [102].
Simply, heat generation of the battery is written as Equation (9):

Q = I(U −V)− I
(

T
dU
dT

)
(9)

where Q denotes the rate of heat generation, I denotes the electric current flowing through
the cell, U denotes the open-circuit voltage, and V represents the voltage of each individual
cell in the Li-Ion batteries. In general, the thermal model of a battery has been examined
according to the dimensions of the battery as well as the physical mechanism (electro-
thermal model, electrochemical thermal model, and thermal runaway propagation model)
(lumped model, 1D, 2D, and 3D). In most cases, the charging and discharging procedures for
Li-Ion batteries result in the production of three distinct types of heat. These forms of heat
include activation of irreversible heat as a result of the polarization of an electrochemical
reaction, joule heating as a result of ohmic losses, and reversible reaction heat as a result
of the change in entropy that takes place during the charging and discharging processes.
Consequently, if the heat created by the battery while charging or discharging is not
correctly dissipated, the temperature of the battery may grow because of heat accumulation,
which may have a severe influence on the battery’s performance, life, and safety [102].

The thermal management process, which is a critical component of the battery man-
agement system, is most concerned with estimating the precise state of temperature (SOT).
Using more traditional measurement methods, such as thermocouples, it is simple to obtain
an accurate reading of the temperature at the surface of the battery. Nevertheless, the
temperature on the inside of the cell during transients is significantly different [103]. In
general, the SOT estimation methods can be broken down into four categories: the direct
measurement method, the electrochemical impedance-based method, the model-based
estimation method, and the data-driven method.

Using a direct measurement methodology, researchers proposed ways for monitoring
the temperature of a battery’s internal layers. Temperature micro-sensors are integrated into
the interior layers of the battery cells in these technologies. Thermocouples and resistance
thermometers are the two most common types of sensors used to indicate the temperature
of a battery’s interior. The model-based estimation approach typically makes extensive
use of numerical thermoelectric and thermal models when attempting to determine an
object’s internal temperature. To construct thermoelectric and thermal models such as the
lumped-parameter battery model and the distributed battery thermal model, it is very
required to understand heat generation, conduction, dissipation, balancing, and thermal
boundary conditions. A few different approaches for calculating the temperature of a
battery based on electrochemical impedance spectroscopy EIS measurements have been
proposed in the electrochemical impedance-based approach without first constructing a
thermal model. Temperature can be linked to impedance indicators acquired via EIS. These
indicators include phase shift, real part amplitude, and imaginary part amplitude, per
the most recent data-driven strategies. Data-driven approaches were used to estimate the
temperature of the batteries inside [103].

7. Objective, Design Constraint, and Algorithm BESS Optimization

This section explains the objective functions frequently reported by previous studies,
design constraints, algorithms used for BESS optimization, and a review of its state-the-art
development. The steps involved in BESS optimization are depicted in the flowchart shown
in Figure 12. This starts with collecting input system data, then determining the direction of
the model development, selecting an objective function and design constraints, optimizing
strategy and algorithm, and finally evaluating the optimization results.
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7.1. Objective Function BESS

Since BESS plays an important role, its sizing is essential to ensure the normal func-
tioning of distribution networks. An accurate and realistic model improves the operating
systems from an economic and safety standpoint [104]. BESS optimum sizing is centered
on finding its optimal capacity and the ability to minimize distribution network operating
costs while meeting performance goals. Its investment cost is an essential component in
calculating the distribution network operating expense. Moreover, this is affected by the
investment payback period. As a result, BESS life is significant, and the number of cycles it
can complete as well as the SOC at which it runs, are the two most important parameters
used to determine the longevity of the battery. To assess the expenses linked to BESS, the
anticipated lifespan was used [105]. In [106], the lifetime was determined by predictive
models. The main objective of the study is to reduce costs, integrate RES, analyze its effects,
and obtain benefits for the network.

7.1.1. Objective Function BESS to Reduce Total Cost Storage Expansion Planning

In the literature [32] the objective function was considered to reduce the total cost of
storage expansion planning on the microgrid. It is defined as follows

Min ∑
i∈G

∑
d

∑
h

Fi

(
Pidh(), Iidh()

)
+ ∑

d
∑
h

ρdhPM
dh()

+∑
s

prs ∑
b∈K

∑
d

∑
h

LSbdhsv

+∑i∈B ∑b∈K
(

PR
ib
(
CPa

i + CMi
)
+ CR

ib
(
CEa

i + CIa
i
)) (10)

The first two-term Equation (10) indicates the operating cost of the microgrid when
connected to the grid. Where b, d, h, i, l, s and B are the bus, day, hour, distributed energy
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resources, lines, scenarios, and battery technologies indices, respectively. Fi represents
the microgrid local DG units cost function, Pidh() is DG output power, Iidh() depicts the
commitment state of dispatchable units, ρdh is electricity market price ($/kWh), and PM

dh()
illustrates the power transferred to and from the utility grid. The third term accounts for
the costs of dissatisfying the requirements of the MG demand. Due to insignificant changes
in the demand for microgrids, the output of generators distributed at the price of electricity
during the planning period need to consider the historical data of one year. Where prs is
the probability of islanding scenarios, LSbdhs depicts load curtailment, and v represents
the value of lost load ($/kWh). Incidentally, the value of lost load (VOLL) measures the
economic losses associated with underserved energy. It depicts the willingness of customers
to pay for reliable electrical services. This number is not dependent on the time or length
of the outage rather, it is determined by the kind of consumer and location. The last term
reflects the costs of BESS. Where CR

ib, PR
ib is BESS rated energy and power, CEa

i , CPa
i depicts

annualized energy or power investment cost of BESS, CIa
i is the cost of BESS installation

on an annualized basis and CMi represents the annual operating and maintenance cost
of BESS.

In addition, there is also a BESS objective function to be applied in storage expansion
planning on the grid. Based on the literature [35], it is stated as follows

min ∑s∈S πs ∑t∈T

[
∑i∈I AG

i PG
s,i,t

2 − BG
i PG

s,i,t + ∑km∈Br

(
F2

s,km,t
Rkm

V2
km

CAPL

)]
∆t + ∑k∈K ∑j∈J

EES
j,k CE

j + PES
j,k CP

j

365 TLt
j

(11)

Equation (11) shows the objective function that considers the exchange between
investment costs and BESS operations. Due to this, BESS can demonstrate energy time-
shift applications, which, in turn, contributes to the reduction in the day-to-day running
expenses of the network. This is accomplished through a series of hypothetical situations
that reflects the whole life span of BESS. The first group indicates the total operating cost
of DG, where S represent the set of future network operation scenarios, T is the time
intervals, πs depicts the probability value of the scenario s, I represent the generation units,
AG

i , BG
i illustrates a generation cost function, and Ps,i, it is the scheduled power output of a

thermal unit. The second term shows active power losses on the network, Fkm, Rkm, Vkm
depicting thermal limit, resistance, and the voltage level of the line. Br is an index of
branches connecting pairs of nodes km, while CAPL represent energy price for active power
losses. The last term illustrates the investment cost of BESS, where K represent of index of
transmission grid nodes, J is the set of energy storage technologies, PES

j,k , EES
j,k represents the

rated power and energy capacity of BESS, CE
j , CP

j depicts the investment costs of battery

technology, and TLt
j is the service lifetime battery.

7.1.2. Objective Function BESS of Life Cycle Cost Energy System

This energy system objective Life Cycle Cost (LCC) is used to minimize the total
planning costs calculated only from BESS [91]. It is defined by some literature as follows:

Min LCC = Cbatt + CO−M (12)

CO−M =
∑Y

y=1(1 + r)Y−y[∑8760
t=1 (Cout.y(t) + C f it.y(t) + ξCbatt]

(1 + r)Y (13)

Cbatt = Capbat µbatt (14)

Cout.y(t) =
(

Pg−b
y (t) + Pg−l

y (t)
)

∆t ∅buy (15)

C f it.y(t) =
(

Pb−g
y (t) + Ppv−g

y (t)
)

∆t ∅sell (16)
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Equation (12) is an LCC consisting of the initial investment cost of BESS (Cbatt), in-
cluding the cost of operation and maintenance BESS (CO−M). Furthermore, Equation (13)
is used to obtain the operation and maintenance costs where y and t is the index year,
and time interval respectively, Cout.y(t) depicts electricity bills, and C f it.y(t) is the benefit
from selling electricity to the grid. Equation (14) represents the initial investment cost of
BESS, where Capbat depicts the capacity of the battery, and µbatt is the unit capacity price.
Additionally, Equation (15) is used to calculate the electricity bills where Pg−b

y (t) represents

the power flow from grid to BESS (kW), Pg−l
y (t) is the power flow grid to the line, and

∅buy depicts electricity price. Equation (16) is the profit realized from selling electricity to

the grid, where Pb−g
y (t) represents power flow battery to the grid, Ppv−g

y (t) illustrates the
power flow PV to the grid, and ∅sell is feed-in tariff.

7.1.3. Objective Function BESS for Battery Degradation Cost

According to the literature [107], the optimal scheduling of BESS is supposed to
minimize the degradation costs, which are the proposed objective function. The intended
degradation charge model accounts for the nonlinearities of battery life. As a result, the
ideal SOC profile is the same regardless of the degradation cost model if the pricing pattern
is either too flat or there are excessive disparities between the maximum and minimum
prices. The objective function is stated in the following equation:

Min ∑t(
(

λtPgrid,t

)
+ CE(SoCaux

t )− CE(SoCt−1) (17)

Equation (17), is the optimal cost scheduling of BESS. It consists of power grid expense
and degradation cost function for optimal scheduling, where t represents index of time
interval, λt is electricity price, Pgrid,t represents the power from the grid, CE denotes
degradation cost for scheduling, SoCaux

t , SoC is auxiliary and actual SOC BESS.

7.2. Design Constraint

In an arbitrary situation, the requirements or needs that must be considered are re-
ferred to as constraints. The power balance between the consumption and generation aspect
is the most important constraint [108]. In distribution networks, electricity is imported or ex-
ported to the major grid, although this is often limited [109], to BESS-based operations [31].
The following are the most important limitations in maximizing the BESS size.

7.2.1. BESS Operation Constraint

The most common operational constraints when sizing BESS optimization techniques
are charge or discharge or SOC constraints. In addition, battery degradation rate and
life span needs to be regarded. The literature published by [110–113] reported other-
wise, that the optimization of the BESS must consider the SOC. This constraint was taken
into [114–118] consideration by maximizing BESS power loss, capacity, method, power
balance, and battery lifecycle. In [32], the impact of BESS operation constraints is analyzed
based on microgrid application and stated as follows

Pmin
i xib ≤ PR

ib ≤ Pmax
i xib (18)

αmin
i PR

ib ≤ CR
ib ≤ αmax

i PR
ib (19)

PR
ib , CR

ib denote power and energy rating BESS. The maximum and lowest BESS power
ratings of Pmin

i , Pmax
i are represented by Equation (18). To determine the current investment

status of BES technology, the binary variable x is used. Equation (19) utilized the power
capacity to compute the maximum discharge time and measure the BESS capacity, where
αmax

i , αmin
i indicates the highest and lowest possible energy to power rating ratios for

the BES.
0 ≤ Pdch

ibdhs ≤ PR
ib uibdhs (20)
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− PR
ib(1− uibdhs) ≤ Pch

ibdhs ≤ 0 (21)

The charging or discharge power of BESS Pch
ibdhs, Pdch

ibdhs is limited depicted in
Equations (20) and (21), where i, b, d, h, and s denote the distributed energy resources,
bus, day, hour, and scenarios indices, respectively. uibdhs is BES operating state. BESS power
turns negative and positive while charging and discharging, respectively. The current state
of the BESS operation is determined by the value of the binary variable u. BESS can only
flow when it is equal to one, and charges when it is equivalent to zero. The magnitude
of the discharge has a direct bearing on the BESS life cycle, which varies from the diverse
technologies. The BESS cycle refers to a complete one that includes both charging and
discharging of the battery.

ξibdhs =
(

uibdhs − uibd(h−1)s

)
uibdhs (22)

∑d ∑h prsξibdhs ≤
1
T ∑m∈N KimWibm (23)

Equation (22) is used to determine the BESS cycle, where ξibdhs is BESS cycle indicator.
Every time the charging process begins, the value is bound to be one, otherwise, it is zero.
During the planned time horizon, the total BES cycle need not exceed the specified lifespan
regarding the determined maximum DOD and the life project stated in Equation (23),
where Kim is BESS lifecycle, and Wibm represents a binary variable that reflects the value of
the BESS maximum DOD.

∑m∈N Wibm ≤ xib (24)

Cibdhs = Cibd(h−1)s −
Pdch

ibdhsT
ηi

− Pch
ibdhsT (25)

(1−∑m∈N YibmWibm)CR
ib ≤ Cibdhs ≤ CR

ib (26)

Equation (24), assures that for each BESS deployed, only one maximum depth of
discharge value is evaluated. According to Equation (25), the energy stored at each time
interval is equal to the preceding period minus the discarded or charged energy, where
Cibdhs is stored energy BESS during each interval. Meanwhile in Equation (26), BESS cannot
be discharged with less energy than the minimum value specified by the maximum depth.
This is not indicated by the discharge, nor can it be charged with more energy than its rated
capacity allows during the process. Where Yibm is maximum DOD BESS.

7.2.2. Battery Degradation of BESS Constraint

Battery degradation in BESS is important to consider. Cardoso et al. [27], stated that
the total annual electricity cost savings from PV and BESS can be reduced by 5–12% by
solely considering the battery degradation constraint limitations. Furthermore, some litera-
ture [35] stated that a battery degradation model is based on cycling and aging conditions.
Afterwards, it is used in the BESS operation constraint to support its optimization by
lowering the planning cost of energy storage.

γIdl
(

SoCj,k

)
= AIdl

j SoC2
j,k + BIdl

j SoCj,k + Cidl
j (27)

γCyc
(

DoDj,k,n

)
= ACyc

j DoD2
j,k,n + BCyc

j DoDj,k,n (28)

Equations (27) and (28) are capacity fade rates during idling and cycling conditions
resulting from historical data on battery characteristics and adjusted to the least squares
fitting method [35]. Where j, k, n are the battery technology, transmission grid nodes, and
charge/discharge cycles indices, respectively. γIdl , γCyc is the capacity fade rate during the
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idling condition, and AIdl
b , BIdl

b , CIdl
b , ACyc

b , BCyc
b is a quadratic, linear, and constant of the

degradation functions during idling and cycling.

0 ≤ EBESS
s,j,k,t ≤ EBESS

j,k

[
1−

(
γIdl

(
SoCj,k

)
+ ∑n ynγCyc

(
DoDj,k,n

))
Y(s)

]
(29)

BESS charging is limited to the energy rating of those batteries which continues to fade
due to the life horizon, depicted in the Equation (20), where EBESS

b,i,y,d,t is the BESS continuity

energy, and EBESS
b,i represents the installed BESS Energy. The value can be 0.5 for half cycles

and 1.0 for full ones yn. Y represents years for the number of the scenario s.

remj,k = 1−
(

γIdl
(

SoCj.k

)
+ ∑n ynγCyc

(
DoDj.k,n

))
TLt

j (30)

EoLj ≤ remj.k ≤ 1 (31)

Equation (30), remj,k is a formulation of the remaining BESS capacity at the end of
battery service life due to idling degradation and cycling. TLt

j represents service lifetime
period BESS of a manufacturer. The selected operating strategy is dependent on the
remaining BESS capacity. remj.k ensures that the remaining capacity is not less than the
EOL threshold, moreover a constraint is applied in Equation (31).

7.2.3. Power and Energy Balance Constraint

When it comes to BESS size, the power, and energy balance between demand and
generation is crucial. In the following literatures [112,116,118–122], the energy and power
balance are constraints in the process of optimizing the size of the BESS. Based on [32], the
power and energy balance constraints are expressed as follows

∑g∈[G,W]
µibPidhs + ∑b∈B

(
Pch

ibdhs + Pdch
ibdhs

)
+ ∑i∈I ψib fidhs + PM

dhs + LSbdhs = Dbdh (32)

The balance of power and energy constraints are stated in Equation (32). This guaran-
tees the amount of power provided by the distributed energy resources (DER) installed on
that bus, plus or minus the amount of electricity going into or emanating from it, is equal
to the quantity of power locally needed on that bus. If there is not enough generation to
maintain BESS balance, the load is reduced, and the strength tends to be positive while the
system is discharging and negative while it is charging. However, if the power is flowing
from the utility grid into the microgrid, then it has a positive value, otherwise, it is negative.
Where i, b, d, h, and s are the distributed energy resources, bus, day, hour, and scenarios
indices, respectively. µib is a generation-bus incidence matrix element, Pidhs is DER output
power, Pch

ibdhs, Pdch
ibdhs depicts BESS charging and discharging power, ψib represents a line-bus

matrix element (one if line l is connected to bus b, 0 if otherwise), fidhs denotes distribution
line power flow, PM

dhs is electricity moved to and from the utility grid, LSbdh is the load
shedding cost, and Dbdh is total load demand.

− PM,maxzdhs ≤ PM
ds ≤ PM,maxzdhs (33)

0 ≤ LSbdh ≤ (Dbdh − CDbdh) (34)

− f max
l ≤ fidhs ≤ f max

l (35)

Equation (33) is the limitation of a microgrid network of power transfer to the grid.
Furthermore, Equation (34) is the limit for load reduction, where PM,max denotes the
maximum power capacity of the microgrid to the utility grid, zdhs is microgrid/utility grid
status, Dbdh, CDbdh represents the sum of all load demands as well as the critical load
demand. Equation (35) is the amount of power that flows through a distribution network
microgrid due to channel capacity constraints, where f max

l is the maximum power capacity
of distribution line.
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7.3. Optimization Strategy and Algorithm

Size, capacity, cost, and lifetime are all aspects of the BESS that need to be improved.
Existing research on BESS sizing-related problems is categorized according to grid scenario,
goals that need to be achieved, the strategy applied, test bus, and various advantages and
limitations to optimize the different algorithms. These include genetic algorithms (GA),
particle swarm optimization (PSO), dynamic programming (DP), taboo search, fuzzy PSO,
and bat algorithm. Simulation and modeling technologies such as PSLF, MATLAB, CPLEX,
OpenDSS, GAMS, Gurobi, PowerFactory, and DIgSILENT are extensively used to improve
BESS sizes. MATLAB is also a viable choice. Moreover, several research use a test bus
from the IEEE study case to evaluate the system’s performance instead of the current test
systems [44]. The following are some of the most often used algorithms for predicting
BESS size.

7.3.1. Probabilistic

Since several parameters tend to be improved, the probabilistic technique is regarded
as one of the simplest ways of measuring BESS. The fundamental constraint of such a
method is the number of parameters that need to be examined. Based on preliminary
research, the probabilistic method was discovered to be the most useful approach for
calculating the uncertainty parameter of the optimization process to obtain the best BESS
measure [123–129]. Its key benefit is the need for a small amount of data to conclude. As a
result, probabilistic approaches are excellent in circumstances where information is scarce.

7.3.2. Deterministic

The deterministic techniques examine various electrical configurations, system com-
ponents being altered, and how they need to be optimized based on preset principles. A
deterministic technique is a direct approach to cost [130] and capacity [131,132] alongside
the optimization process investigated by some other analysis.

7.3.3. Rule-Based Optimization

The rule-based optimization (RBO) method defines an expected solution, such as
fuzzy logic. In accordance with the following literature [131,133–136], optimization of BESS
sizing is realized using fuzzy logic. Based on the research, a fuzzy-based method was
adopted to reduce both the RES and the cost of BESS [137]. According to the data, an ideal
BESS reduces microgrid costs by 3.2 percent, and battery longevity significantly affects
MG costs. The primary advantage of utilizing a fuzzy optimizer is that either the total
number of parameters is unknown or the scale of the optimization issue is unaffected by
any change [138].

7.3.4. Mathematical-Based Optimization

The most comprehensive method is mathematical modeling when it comes to finding
the solution to the BESS sizing-related problem. This approach for determining the optimal
size of the BESS is categorized as linear programming (LP), nonlinear, or mixed-integer
programming (MILP). Mathematical optimization is approached in three different ways,
namely DP, convex programming (CP), and second-order cone programming (SOCP). Since
the DP model separates this process into several different time slots, and the solutions are
recognized at each level, it is both possible and advantageous to combine time-varying
elements. In some literature, this model was used to maximize BESS size [111,139–141].
The CP technique also has the advantage of discretionary independence. Furthermore,
its optimization strategy is employed in [142,143], to achieve the best possible results
in minimizing the linear objective function. It is necessary to intersect the affine linear
manifold with the product of second-order cones. Based on the literature published
by [144,145], SOCP is used to size BESS.
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7.3.5. Heuristics

Heuristic strategies allow suitable, non-ideal arrangements to be applied in real time.
There is no mathematical foundation that is effective in obtaining optimal solutions, instead,
approaches such as nature-inspired algorithms are used. These include GA [146], PSO [147],
bat algorithm [148], and taboo search [149]. The key benefits of using heuristic approaches
are flexibility, high accuracy, and computation timelessness.

7.4. Review of Existing Studies BESS

A state-of-the-art review of BESS optimization considering battery degradation was
conducted to discover new perspectives in terms of developing its models. Table 11
summarizes several selected studies that can be distinguished based on main objectives,
design constraints, algorithms, and battery degradation factors. It is evident that the
perspective of battery degradation in BESS optimization is getting deeper. Its factors
vary, such as energy capacity fading, calendar, and cycling aging, battery lifetime, cycle
battery, and temperature. The development of the BESS optimization model considering
battery degradation due to temperature is an interesting and rare study. There are certain
related studies [27,35] in terms of developing a battery degradation model for optimal BESS
using a fixed value of battery temperature. Meanwhile, literature [31] tends to develop
a degradation battery model due to ambient temperature with dynamic values during
the winter. Based on the study of the optimal BESS, ambient temperature affects battery
degradation, according to the literature [100] The capacity fade level drops significantly
when the perimeter temperature exceeds 35 ◦C. Therefore, the development of a battery
degradation model due to ambient temperature is a new perspective in optimizing BESS.

Table 11. Literature review of studies of the BESS optimization effect considering battery degradation.

Author Main
Objective Constraint Battery

Technology Case Study
Algorithm/Method
Optimization

BESS

Battery
Degradation

Factors

Algorithm
Battery

Degradation

Ting Qiu, et al.
(2017) [150]

Sizing BESS for
co-planning the

transmission model
of expansion

CDC, CC, PEBC,
PELC, RCC Li-Ion

Modified
IEEE-RTS

24-bus system
MILP

Energy capacity
fading, calendar,

and cycling aging

Flat rate
degradation

Cardoso, et al.
(2018) [27]

Sizing BESS by
considering the linear
battery degradation

model for
microgrid problem

CDC, PEBC, FC Li-Ion San Francisco MILP

Capacity loss,
battery lifetime,

and cycle,
operating

temperature

Mathematical
model

Alsaidan, et al.
(2018) [32]

Optimal sizing BESS
for microgrid

expansion problem
by considering

technology, cycle life,
and maximum depth

of discharge

CDC, CC, PELC,
PEBC, RCC Li-Ion Modified

IEEE-5 bus MINLP
Energy capacity

fading, cycle
battery

Piecewise linear
approximation

A. Pena-Bello, et al.
(2019) [34]

Sizing BESS by
considering

self-consumption,
demand load-shifting,

demand peak
shaving and
avoidance of

PV curtailment.

CDC, PELC,
PEBC, EFC

NCA, NMC,
LFP, LTO,

VRLA, & ALA

Austin (US),
Geneva

(Switzerland)
MILP N/A N/A

G. Mohy-Ud-Din,
et al. (2020) [36]

Energy management
system for industrial

microgrids with
optimal size BESS

CDC, PELC,
EFC Li-Ion Australia

two–stage
energy

management
strategy

(single-stage
linear program)

Energy capacity
fading, cycle

battery

Mathematical
model

V.V. S. N. Murty, et al.
(2020) [151]

Microgrid energy
management by

considering
multi-objective

solution and optimal
sizing BESS

CDC, PELC,
PEBC Li-Ion N/A Multi-Objective

(MILP, Fuzzy) cycling aging Mathematical
model



Batteries 2022, 8, 290 28 of 39

Table 11. Cont.

Author Main
Objective Constraint Battery

Technology Case Study
Algorithm/Method
Optimization

BESS

Battery
Degradation

Factors

Algorithm
Battery

Degradation

Timur
Sayfutdinov, et al.

(2020) [35]

Optimal siting,
sizing, and

technology selection
of BESS

CDC, CC,
PEBC, PELC

LFP, LMO,
NMC, LTO

Modified
IEEE-9 bus,

14 bus, 24 bus,
39 bus

Mixed Integer
Convex

Programming
(MICP)

Energy capacity
fading, calendar,

and cycling aging,
cycle battery

Least-squares
fitting

Yang Li, et al.
(2020) [25]

Application of Li-Ion
for optimal sizing of
BESS in renewable

power plant

CDC, CC Li-Ion
A hypothetical
100-MW wind

farm

Particle Swarm
Optimization

Energy capacity
fading, SOH, state
of energy (SOE)

Physics-based

Hunyong Shin, et al.
(2020) [92]

The process of sizing
BESS for renewable

power plant is
becoming economical

CDC, CC, FC Li-Ion

RES with
storage power

plants in
South Korea

battery
augmentation
scheme (BAS)

Energy capacity
fading, SOH,

operating
temperature,
cycle battery

Rainflow-
counting
algorithm

Mattia Secchi, et al.
(2021) [152]

Multi-objective sizing
BESS for renewable

energy with
communities

CDC, PEBC Li-Ion

Modified IEEE
906-bus

European Low
Voltage

NSGA-II N/A Mathematical
model

Farihan
Mohamad, et al.

(2021) [153]

Sizing and Siting
BESS to minimize

solar energy
curtailment

CDC, CC,
PEBC, PELC Li-Ion

IEEE 24-bus
reliability test

network (RTN)

GA dan
Sequential

Monte Carlo
(SMC)

N/A Mathematical
model

Nataly Bañol
Arias, et al.
(2021) [89]

Sizing BESS by
considering

frequency regulation
and peak shaving

CC, PEBC,
PELC Li-Ion

240-node
three-phase
distribution

system

Pareto optimal
Energy capacity

fading, cycle
battery

Mathematical
model

Yunfang Zhang,
et al. (2021) [37]

Optimal Sizing BESS
for grid scale by

considering
uncertainties and
wind generation

CDC, CC,
PEBC, PELC Li-Ion Modified IEEE

RTS-24
Two-level

model (MILP) N/A N/A

Mohammad
Amini, et al.
(2021) [38]

Sizing BESS for
flexible, effective,

efficient and better
microgrid

performance

CDC, CC,
PEBC, RCC,

PELC

NaS, Li-Ion,
Lead-Acid,

Nicd

Connected/Islanded
Microgrid MILP

Energy capacity
fading, calendar,

and cycling aging,
battery lifetime

Mathematical
model

U.G.K.
Mulleriyawage,

et al. (2021) [154]

Optimal sizing BESS
by considering the

demand and
management

attributes

CDC, CC,
PELC, PEBC Li-Ion

A
grid-connected
residential DC

microgrid

MILP

Energy capacity
fading, calendar,

and cycling
aging, SOH, EOL

Physics-based

Yuhan Wu, et al.
(2021) [31]

Optimal capacity
location BESS by
considering the

ambient temperature

CDC, CC,
PEBC, PELC LiFePO4

modified IEEE
33 distribution

network

Bi-level (GA,
simulated
annealing

algorithm (SA))

Energy capacity
fading, calendar

and cycling
aging, ambient

temperature

Rainflow-
counting
algorithm

Yaling Wu, et al.
(2022) [91]

Sizing BESS by
considering the

long-term battery
degradation

CDC, CC,
PEBC, PELC Li-Ion Connected/Islanded

Microgrid

two-layer
optimization

method
(MINLP)

Energy capacity
fading, calendar,

and cycling
aging, SOH

Mathematical
model

Davide Fioriti, et al.
(2022) [155]

Multi-year sizing
BESS for residential

applications

CDC, CC,
PEBC, PELC Li-Ion

Residential
grid-connected

(399
Italian

households in
different regions
(North, Center,

South, and
islands))

Heuristic
optimization

Energy capacity
fading, calendar

and cycling
aging, operating

temperature

Rainflow-
counting
algorithm

Waqas ur
Rehman et al.

(2022) [39]

Optimal sizing BESS
and solar generation
system in an extreme
fast charging station

to reduce the
annualized cost

CDC, CC,
PEBC, PELC Li-Ion

Extreme fast
charging station
(XFCS) demand

modeling

MILP
Energy capacity

fading, cycle
battery

Mathematical
model
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Table 11. Cont.

Author Main
Objective Constraint Battery

Technology Case Study
Algorithm/Method
Optimization

BESS

Battery
Degradation

Factors

Algorithm
Battery

Degradation

Mohammad-Ali
Hamidan, et al.

(2022) [156]

Optimal sizing BESS
for loss reduction and

reliability
improvement

CDC, CC, PEBC,
PELC Li-Ion

30-bus radial
distribution

network, 69-bus
radial

distribution
network

Evolutionary
algorithm
based on

decomposition
(MOEA/D)

N/A N/A

Noman Shabbir, et al.
(2022) [157]

Optimal sizing BESS
for solar PV systems
to be self-sufficient

and sustainable

CDC, CC, PEBC,
PELC, FC Li-Ion

Estonian low-
distribution

network

Heuristic
optimization

Energy capacity
fading, cycle

battery

Mathematical
model

CC, capacity constraint, CDC, charging and discharging constraint, PEBC, power and energy balance constraint,
PELC, power and energy limit constraint, EC, environmental constraint, RCC, ramping capability, EFC; efficiency
losses constraint, FC, financial constraint.

In addition, the battery degradation algorithm needs to be considered. Similar models
are generally mathematical, physics-based, data-driven, and hybrid. Algorithm battery
degradation affects the speed and convergence of BESS optimization. Therefore, several
studies still utilize mathematical algorithm models because they are simple and exhibit
rapid performance. However, data-driven models are flexible in modeling battery degra-
dation due to several factors. Examples are piecewise linear approximation, least-squares
fitting, and the rainflow-counting algorithm.

8. Issues and Challenge BESS

In terms of optimizing BESS sizing and location, several factors need to be considered
by the expected operating objectives. To reduce the investment cost BESS not only makes
it cost-effective. But, can be adjusted to boost reliability, power and voltage quality, peak
shaving, load smoothing, frequency control, and energy arbitrage. One of the challenges of
BESS optimization is battery degradation. The selection of battery technology is essential
and BESS optimization solutions need to be assessed.

8.1. Economic Analysis

The economic aspect of building a BESS system is perhaps the most challenging. Pre-
liminary studies created a BESS sizing and siting system to reduce investment costs or
optimize profits received once it was implemented. Its cost is determined by numerous
aspects, including the type of BESS technology selected, the number of energy source inte-
grations, geographical conditions, features of the deployed region, installation expenses,
and maintenance expenses. Technology types differ depending on energy density, efficiency,
battery longevity, and cost. Installation and maintenance expenses include the capital for
converter interface power, such as energy costs for storage capacity investment, replace-
ment, annual operating and maintenance expenditures. Furthermore, various factors
influence the cost of the BESS system, including service life, battery capacity, degradation
rate, power loss, and SOC. As a result, its capacity and placement must be properly speci-
fied to minimize the installation cost. A BESS capacity that is extremely large is bound to
raise the total cost of the system, thereby resulting in power loss. Assuming it is extremely
tiny, it reduces efficiency and creates an imbalance in supply and demand.

The uncertainty of the RES system influences BESS cost optimization, such as peak
shaving and load shifting. Peak shaving is an efficient method of lowering demand costs
by leveling the highest electricity consumption. Meanwhile, load shifting is a temporary
reduction in power used followed by subsequent production increases when prices are low.
As a result, advanced optimization of the BESS model is required in conjunction with the
uncertainty of RES to achieve optimal system planning and operational costs.
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8.2. Technology Battery Storage Selection

Some of the battery technologies for BESS include LA, Li-Ion, Nickel Batteries, ZnBr,
NaS, PSB and VRB. The appropriate one can be employed to optimize the system planning
or operational costs. Energy density, extended discharge time, battery efficiency, longevity,
and life cycle are all factors that determine technology selection. This battery is great
for power quality and frequency management applications. It is due to the high-power
density possessed as well as the lightning-fast response time. Although this type of battery,
with its high energy density and longer discharge time, is ideally suited for long-term
applications, it can also be used in certain circumstances to enable peak shaving and load
shifting. This is because of the battery’s extended discharge period. Therefore, the selection
of battery technology is critical to supporting its applications and indirectly impacts the
cost of installing BESS.

8.3. Optimal Charge or Discharge

Selecting the optimal BESS charge or discharge strategy is an important aspect of
optimal sizing and tends to influence the life cycle of the battery. When determining the
ideal size of a BESS, the most important parameters to take into consideration are speed
of charging, rate of discharging, efficiency, and length of service life. Additionally, the
effective control of the BESS charge and discharge can contribute to developing more
advanced models.

8.4. Degradation of Battery Due to Ambient Temperature

Due to calendar and cycle aging, the amount of time a battery has been in use impacts
how old it appears. Even though its life is determined by calendar aging, the BESS datasheet
includes two limits cycle and float life. The likely computation of the BESS life value being
accurate is low since battery life is dependent on cycle or float life. This is unlikely to
affect the computation process. The term float life refers to the length of time that a BES
is guaranteed to operate at its maximum capacity. When designing a BES system, the
impacts of battery aging need to be considered with respect to the overall cost. High
operating temperature, SOC, DOD, and charge or discharge current rate are all nonlinear
factors that influence battery degeneration. The aging of the battery has an impact on the
BESS performance and the cost of the electric power system. The major parameters of
its deterioration capacity are voltage, current, charge or discharge cycle, and battery life.
Generally, two things contribute to battery degeneration. First, there is loss of lithium ions
as a result of SEI production. Second, it is caused by the loss of electrode particles. This is
because the battery experiences an increase in its internal resistance. It causes a decrease in
the battery’s capacity as well as its efficiency, which eventually results in a shorter lifespan.

The battery performance and life cycle of Li-Ion batteries are susceptible to high
temperatures, which tend to accelerate degradation significantly. This triggers the rapid
growth of SEI on the surface of electron particles, leading to a loss in battery capacity. It
is since the rapid growth of SEI on the surface of electron particles causes a decrease in
battery capacity. In addition to this, the temperature of the surrounding environment has
a significant bearing on the rate at which capacity is lost. The temperature of the battery
cell and the high ambient contribute to the rapid growth of SEI on the surface of electron
particles. Its development also contributes to a decrease in the capacity of the battery.
According to the literature [100], when the ambient temperature exceeds 35 ◦C, changes in
electrolyte composition increase. This is due to a significant temperature rise, accelerating
active lithium consumption rate. Therefore, ambient temperature considerations can be
challenging in influencing BESS battery degradation.

8.5. Retired Batteries for BESS

Hazardous chemical waste on BESS construction cells significantly affects the en-
vironment. Damaged batteries can be recycled and reused. Approximately 95% of the
main material in LA batteries are recyclable and reusable [15,158]. In the past ten years,
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approximately five million EVs and 400 GWh of lithium-ion batteries have been sold all
over the world [159]. The development of the EV market will eventually result in a large
flow of retired batteries. Meanwhile, Li-Ion recycling is likely feasible, battery reuse and
recycling are complementary processes that only slow down the cycle of excess resources.
lion recycling has proven to be uneconomical [160]. The repurposing of retired batteries
from EVs as BESS is a new challenge. To reduce battery disposal problems due to EOL [161]
in electric power systems, BESS can be built to provide related services from EOL batter-
ies. This is because these batteries tend to qualify for less-demanding grid services [162].
Retired BESS can increase the RES penetration of the electric power system for reverse
spinning [163] with relatively cheaper installation costs.

8.6. Flexibility of Variable Renewable Energy Sources

Because of nature intermittency, RES such as solar PV and wind energy are inextricably
connected to uncertainty. Higher renewable penetration rates substantially influence
microgrid or grid system operation, data transfer, and handling, including remote sensing,
decision-making, and system control. Therefore, this RES requires storage facilities such as
BESS to store and supply electricity as needed. Most studies generate RES variability data
using probabilistic methods such as Monte Carlo simulations, analytical and approximation
models. However, these methods are insufficient for expressing random variables. These
processes are also computationally challenging and need large amounts of historical data,
extended run times, and precise mathematical premises. As a result, precise modeling
and analytical treatment of this uncertainty while considering the geographic situation
are crucial to making the best operational and financial decisions during microgrid or
grid applications.

9. Conclusions

This study reviews the state-of-art BESS optimization methods considering battery
degradation in connection to its diverse technologies. A comprehensive analysis of the
development of the current BESS modeling approach with the objective function, battery
degradation characteristics, and design constraints was employed. BESS is related to
expansion planning, often called SEP. Its primary goal is to ensure that central planners,
such as vertically integrated power companies and policymakers from governments or
groups of countries responsible for minimizing costs rather than maximizing the benefits
to private investors. Additionally, the use of BESS on the grid or microgrid is adopted to
improve power quality, voltage and frequency control, peak shaving, load smoothing, and
energy arbitrage.

LA, Li-Ion, NaS, and VRB are grid applications most common battery technologies.
The energy density, efficiency, longevity, and cost of batteries linked to a storage network
are all classed. Battery degradation reduces power efficiency in BESS. As a result, its dete-
rioration needs to be considered during BESS optimization. The degradation of batteries
owing to ambient temperature is currently understudied. Lithium-ion batteries’ perfor-
mance and life cycle are extremely temperature sensitive. In addition, high temperatures
greatly accelerate battery degradation. The ambient temperature has a significant influence
on the capacity fading rate, especially when it surpasses 35 ◦C, the composition of the
electrolyte changes because of the large increase in temperature.

Generally, the objective function of optimizing BESS is to reduce the total cost of
planning. The objective function and design constraints of BESS are highly dependent on the
purpose for which BESS is used. BESS objective function is used to reduce LCC and battery
degradation costs to minimize the total cost of system planning. The only components
that make up this LCC are the costs of operation and maintenance, as well as the initial
investment in the BESS. Based on the study of the optimal BESS, ambient temperature
affects battery degradation. The development of its model due to ambient temperature can
be a new perspective in optimizing BESS. The battery degradation algorithm affects the
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speed and convergence of BESS optimization. The determination of the model algorithm
and battery degradation factors needs to be appropriately considered.

The challenges that need to be faced and the scope of future research in optimizing
BESS by considering battery degradation of ambient temperature are the economic analysis,
utilizing proper battery storage technology, and developing optimal charge or discharge
model. Others include developing model degradation due to ambient temperature of BESS,
considering retired batteries for BESS, and using the RES variable due to the uncertainty of
natural conditions.
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RF Redox Flow
RUL Remaining Useful Life
SEP Storage Expansion Planning
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