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Abstract: Electric vehicles (EVs) have received widespread attention in the automotive industry as
the most promising solution for lowering CO2 emissions and mitigating worldwide environmental
concerns. However, the effectiveness of EVs can be affected due to battery health degradation and
performance deterioration with lifespan. Therefore, an advanced and smart battery management
technology is essential for accurate state estimation, charge balancing, thermal management, and fault
diagnosis in enhancing safety and reliability as well as optimizing an EV’s performance effectively.
This paper presents an analytical and technical evaluation of the smart battery management system
(BMS) in EVs. The analytical study is based on 110 highly influential articles using the Scopus
database from the year 2010 to 2020. The analytical analysis evaluates vital indicators, including
current research trends, keyword assessment, publishers, research categorization, country analysis,
authorship, and collaboration. The technical assessment examines the key components and func-
tions of BMS technology as well as state-of-the-art methods, algorithms, optimization, and control
surgeries used in EVs. Furthermore, various key issues and challenges along with several essential
guidelines and suggestions are delivered for future improvement. The analytical analysis can guide
future researchers in enhancing the technologies of battery energy storage and management for EV
applications toward achieving sustainable development goals.

Keywords: battery storage; electric vehicle; battery thermal management; state of charge; state of
health; battery equalization
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1. Introduction

The automobile industry has achieved several milestones toward developing reliable
and efficient technology for the safety of passengers and pedestrians [1]. On the contrary,
the rise in the number of vehicles has increased air pollution in the urban sector [2].
As per reports from the European Union, the transportation segment is responsible for
approximately 27% of greenhouse gas (GHG) emissions, while emissions from vehicular
transportation contribute to approximately 70% [3]. Hence, to tackle emission issues,
electric vehicles (EVs) have achieved wide acceptance and recognizability worldwide due
to several benefits, such as their ability to reduce GHG emissions and address global
warming issues [4–7]. EVs have emerged as a prosperous and promising alternative to fuel-
based vehicles, resulting in more simplicity, accuracy, and reliability [8]. Nevertheless, the
global trend toward their wider adoption necessitates the enhanced functionality of battery
management systems (BMS) with regard to thermal management, charging/discharging
techniques, power management, cell balancing, and monitoring [9].

Currently, BMS-based technology is useful in EV applications due to several advan-
tages, such as high power and energy density, longer life cycles, high voltage, and low
self-discharge rates [10,11]. However, the efficiency and accuracy of battery energy storage
are compromised due to their temperature and tendency toward aging [12,13]. Therefore,
it is crucial to focus on their working environment to avoid physical damage, aging, and
thermal runaways. Further, it is necessary to monitor various battery parameters such as
temperature, current, voltage, energy, temperature control, and fault identification [14]. To
introduce an effective and smart BMS for EV applications, state estimation for batteries
with regards to the state of charge (SOC), state of health (SOH), state of energy (SOE), and
remaining useful life (RUL) must be carefully performed [15]. Dai et al. [16] discussed
advanced battery management strategies for a sustainable energy future, multilayer de-
sign concepts, and research trends; the authors elucidated multilayer design concepts for
battery management systems. Hu et al. [17] reviewed second-life lithium–ion batteries
for stationary energy storage applications. BMS technology should be capable of control-
ling temperatures for safe battery operation within safe limits and of performing fault
identification and charge balancing among battery cells [18,19].

Analytical analysis refers to a research methodology that intends to deliver necessary
information, such as statistics and quantitative approaches, using library and informa-
tion science [20,21]. Analytical analysis is an essential tool for delivering insight into
particular and historical findings that can be utilized to construct future research paths for
researchers [22–24]. It has been proven an important tool for various universities, research
institutes, organizations, and industries to evaluate the quality of research by considering
various indicators such as current standing, citation, impact factors, and h-indexes [25]. A
few analytical papers have been published on BMS technology in EV applications. Table 1
represents a discussion of analytical manuscripts produced by various scholars as well
as research gaps. The focused areas of the existing analytical study include electrolytes
for sodium-ion batteries [26], recycled products and clean recovery of discarded/spent
lead-acid batteries [27], recycling methods of spent lithium–ion batteries [28], thermal
management of electric batteries [29], and thermal hazards-related research trends about
lithium–ion batteries [30]. To the best of the authors’ knowledge, no studies have conducted
an analytical analysis of BMS technology in EVs. Thus, this study presents a comprehensive
analytical analysis of BMS technology that has been conducted over the past 10 years
(from January 2011 to December 2021) to examine its evaluation, current trends, existing
issues, and problems. A comprehensive explanation of BMS operations, state-of-the-art
methods, algorithms, controllers, and optimization schemes has not been reported in detail
in previous studies.
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Table 1. Analytical analysis manuscripts and their limitations.

Focused Topics Research Gaps Year Ref.

Analytical analysis of energy management
strategies for hybrid EVs.

Although the authors provided a detailed keyword analysis,
the top most-cited list of manuscripts was absent. 2015 [31]

Review analysis of electrolytes for sodium-ion
batteries.

This survey was missing the most prominent keyword
analysis, study types, and recent article analysis. 2016 [26]

Survey on recycled products and clean recovery
of discarded/spent lead-acid batteries.

The recent progress on clean recovery processes was
discussed, but the research methodology was not mentioned. 2019 [27]

Analytical analysis of the recycling methods of
spent lithium–ion batteries.

The average citation per year was not considered. Hence,
recent manuscripts were missing in this analysis. The authors

did not include the main issues and challenges.
2020 [28]

Analytical survey on thermal management of
EVs.

An in-depth analyzing methodology was highlighted, but the
topmost cited article analysis was missing. 2020 [29]

Analytical study of thermal hazards related to
research trends about lithium–ion batteries.

Although the authors provided a detailed analysis of
keywords, the surveying methodology and recent research

trends were missing.
2021 [30]

To bridge the aforesaid research limitations, this study unveils new contributions
with a detailed investigation and critical discussion of analytical and technical assessment
for BMS technology in EV applications. The innovative contributions of this review are
highlighted below.

• This analytical study examines the highly influential manuscripts in BMS technology
for EV applications covering various vital aspects, including study type, subject area,
co-occurrence keywords, publishers, influential authors, and dominant countries.

• A critical analysis of the BMS components, functions, state-of-the-art methods, algo-
rithms, optimizations, and controllers for BMS technology are presented, highlighting
objectives, strengths, and weaknesses.

• The current issues, challenges, and limitations of BMS technology in EV applications
are explored.

• Future emerging directions and guidelines are delivered for the advancement of smart
battery storage technology in EV applications.

The rest of the paper is organized into six sections. Section 2 presents the different
surveying methods, inclusion and exclusion criteria for the articles, data selection processes,
publication trends, data extraction methods, and research characteristics. Section 3 outlines
the analytical discussion which considers citation analysis, the distribution of highly cited
papers, analytical analyses of keywords, the research area, publications, and authorship.
Section 4 depicts the technical evaluation of smart BMS technology, focusing on state-of-the-
art methods, algorithms, optimizations, and controller schemes. Section 5 covers issues and
challenges for BMSs in EV applications. Finally, conclusions and future recommendations
are covered in Section 6.

2. Surveying Methods for Analytical Evaluation

The search to obtain the appropriate number of research articles based on BMS tech-
nology in EV applications was performed in the fourth week of March 2022. The Scopus
database utilized to conduct the necessary search and select articles indexed in various
journals from 2011 to 2020 was chosen to perform the analytical analysis. The main aim of
the current study is to present state-of-the-art development in battery management schemes
over the last 10 years and understand the features of highly cited articles. The necessary
keywords such as state of charge (SOC), state of health (SOH), remaining useful life (RUL),
thermal management (TM), battery charge equalization (BCE), and fault diagnosis and
protection (FDP) were applied to find relevant articles for the proposed analytical analysis.
Due to resource limitations, the “English Language” filter was used to limit the number
of manuscripts found. The manuscripts obtained were organized according to “times
cited-highest to lowest” criteria. Further, the “exclude self-citations” filter was employed in
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the Scopus database to avoid “self-citations” from highly cited articles. Several resourceful
manuscripts were obtained by considering various criteria such as the title, abstract, key-
words, novelty, citations, and subject area. The comprehensive screening and data selection
procedures are depicted in Figure 1.

Figure 1. Methodology of extracting data and article selection from the Scopus database.
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2.1. Process of Data Selection

• Based on the utilization of appropriate keywords, the primary screening from the
Scopus database delivered 2760 articles (n = 2760).

• The second screening was performed by employing year limitations from 2011 to 2021
and, accordingly, a sum of 2595 (n = 2595) manuscripts were found.

• In the third phase of screening, the articles’ necessary selection was completed by
applying the “English language” filter, which delivered 2584 (n = 2584) articles.

• In the fourth assessment phase, only 120 (n = 120) highly cited manuscripts comprising
80+ citations were extracted.

• In the final evaluation stage, 10 articles were manually excluded from the search
database based on subject areas such as battery chemistry, electrolysis analysis, mate-
rial composition, electrochemical reaction, and nanowires and, subsequently, highly
relevant 110 (n = 110) articles consisting of journal articles, review papers, and confer-
ences were considered for carrying out the analytical analysis.

2.2. Research Trends

Globally, a significant amount of research has been carried out to develop a manage-
ment scheme and technology for battery energy storage in EV applications. As per the
Scopus database, the first article on lithium–ion BMS for EV application was published
in 2011 [32]. There have since been numerous techniques and models developed by re-
searchers and industrialists to integrate BMS in EVs. The initial phase of article selection
for lithium–ion BMS for EV applications from 2011 to 2021 is presented in Figure 2. As ob-
served from Figure 2, there was an upward trend in research around the globe from 2011 to
2021, which depicts the enthusiasm and research curiosity among research communities re-
garding the progress of BMS for EV applications. As observed, a total of 1120 manuscripts
were published from 2019 to 2021, whereas 1080 articles were published from 2015 to
2019. The current trend suggests an increase in the number of publications in recent years
(2019–2021) due to wide applications of BMS in EVs toward achieving the decarbonization
target by 2050.

Figure 2. Research trends between the years 2011 and 2021.

2.3. Data Extraction

Data collection was carried out by utilizing the Scopus database and articles were
selected individually to perform the analytical analysis. The extracted data from the
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110 highly cited manuscripts consisted of the following features: (1) 110 highly cited
manuscripts published between 2011 and 2020. (2) Type of research activity (review/problem
formulation. (3) Research field. (4) Name of the publisher. (5) Name of the journal.
(6) Journal impact factor (JIF). (7) Most prolific authors. (8) Affiliated country. (9) Title of
the article. After performing the necessary data extraction with the 110 selected articles, an
observation was presented to provide insight into lithium–ion BMSs in EV applications.

2.4. Research Characteristics

During the initial screening phase, 2760 articles were extracted from the Scopus
database. Further, 110 highly cited manuscripts were obtained after undergoing several
stages of filtering. The included manuscripts in the proposed analysis are tabulated in
Table A1 with the digital object identifier (DOI), author’s name, journal and publisher name,
year of publication, affiliated country, total citations, and citation in the last 5 years for
respective articles. The total number of citations for the chosen manuscripts was calculated
as 22,364 (mean: 201.47; median: 130; range: 86–2516). Overall, 91 articles from different
journals were cited more than 100 times and a further 78 articles were cited over 100 times
in the last 5 years. Some of the highly influential research articles with more than 500 cita-
tions in the previous 5 years were published by Lu et al. [33], Bandhauer et al. [34], and
Hannan et al. [35].

3. Analytical Evaluation and Critical Discussion

This section delivers an analysis and constructive discussion of various key indicators of
BMS technology in EVs, which are discussed comprehensively in the following subsections.

3.1. Citation Analysis of the 110 Highly Influential Articles

The citation parameter for a specific research field is important for categorizing and
evaluating state-of-the-art trends. Further, citation information depicts a journal’s impact
as well as the impact of a single publication. In this analysis, the objective is to describe the
most significant manuscripts in the research field of BMS technology in EV applications.
Table A1 presents the 110 highly cited manuscripts from 2011 to 2020 in the research area of
BMSs in EV applications from the Scopus database and provides information for conducting
future research activities. It is observed from Table A1 that the number of citations for each
of the 110 manuscripts varies, with the maximum citation being 2516 and the minimum
being 86. Further, the first six highly cited manuscripts contain more than 500 citations.
Due to the high applicability of the research field, 91 out of the 110 manuscripts have been
cited more than 100 times since the date of their publication. The review work published
by Lu et al. [33] in 2013 was the most cited, with 2516 citations, while the research article
from Bracco et al. [36] was the least cited, with 86 citations.

The most cited article in the research field of BMSs in EV applications, titled “A
Review on the key issues for lithium–ion battery management in electric vehicles,” was
published by Lu et al. [33] in The Journal of Power Sources, with 2516 citations and an impact
factor of 9.127. The article presented a literature review of lithium–ion battery-based BMS
issues regarding state estimation, fault diagnosis, battery cell voltage measurement, etc.
Further, key issues were outlined for future research activities to develop an efficient and
robust BMS. Additionally, Bandhauer et al. [34] presented the second-most-cited review
manuscript, titled “A Critical Review of Thermal Issues in Lithium–ion Batteries.” The
review article presented an insight into thermal issues occurring in lithium–ion batteries and
their effect on capacity and power fade. The article took the second spot with 978 citations
and was published in 2011 by Journal of the Electrochemical Society, with an impact factor
of 4.316. Lastly, the third most influential review, with 618 citations, was published by
Hannan et al. [33], titled “A review of lithium–ion battery state of charge estimation and
management system in electric vehicle applications: Challenges and recommendations.”
The article was published in Renewable and Sustainable Energy Reviews in the year 2017. The
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review article focused on SOC estimation techniques and their management systems for
developing future sustainable EV applications.

3.2. Distribution of 110 Highly Cited Articles between 2011 and 2020

The distribution of the 110 most-cited manuscripts in the research field of BMS tech-
nology in EV applications from 2011 to 2020 is depicted in Figure 3. The analytical graph
shows that the number of manuscripts published in 2011 and 2012 is 7 and 6, respectively,
while the years 2014 and 2015 showed an upward trend, with the number of published
manuscripts being 17 and 19, respectively, which further decreased in the years 2016 and
2017. Later, in 2018, the number of published articles again increased to 12, which decreased
to 5 in 2019. Overall, the number of published manuscripts from 2012 to 2015 indicated
an upward trend, while, in general, manuscripts published from 2015 to 2019 displayed a
downward trend.

Figure 3. Distribution of 110 most cited papers from 2011 to 2020.

3.3. Analytical Analysis of Co-Occurrence Keywords

The top 15 keywords utilized in various articles from selected databases published
from 2011 to 2020 are presented in Figure 4. Significant research gaps can be evaluated
from the conducted analysis and an understanding of the research field can be acquired.
As observed in Table A1 and Figure 4, the most influential keywords were “lithium–ion
battery,” “battery management system,” and “electric vehicle.” The statistical analysis
revealed that the keyword “lithium–ion battery” was utilized 52 times, whereas both
“battery management system” and “electric vehicle” were applied 32 times. Furthermore,
some other crucial keywords utilized in recent years were “battery charging/discharging,”
“temperature,” “controller,” and “methods/algorithms,” suggesting more research activities
toward developing accurate and robust BMSs for EV applications. A pictorial representation
of the important keywords is displayed in Figure 4.



Batteries 2022, 8, 219 8 of 59

Figure 4. Top 15 widely utilized keywords distributed over the 110 most cited articles in BMS
technology for EV applications.

Table A1 (Appendix A) and Figure 4 reveal that current research activities focus
more on integrating BMSs with EV applications to deliver a long-term platform to achieve
sustainable development goals (SDGs), specifically SDG7, by 2030 by introducing state-of-
the-art algorithms, optimizations, and controller techniques. Further, an understanding
can be obtained of the articles that achieved a lot of citations in the past 5 years and those
with a high average citation per year (ACY).

The co-occurrence keyword analysis of the most cited articles in lithium ion-based BMS
technology for EV applications is presented in Figure 5 using VOS viewer software. The
impact of keywords determines the diameter of the circle and label, whereas the linking line
between keywords is shown as a continuative connection. The keywords are categorized
into four clusters: red, blue, yellow, and green. Distinct colors are used to designate
different clusters based on the topic of expertise. The most prominent cluster is the red
cluster, followed by the green cluster. Strong relationships were found between topics in
the red clusters, which consisted of thermal management systems, phase change materials,
heat generation, cooling, thermal management (electronics), thermal performance, cooling
systems, thermal analysis, battery packs, and automotive batteries. The green cluster
showed a strong link between battery health estimation components, including lithium–ion
cells, battery, state of health, state of charge, algorithms, extended Kalman filters, estimation,
and state-of-charge estimation. The blue cluster represents battery management systems,
temperature, digital storage, plug-in hybrid electric vehicles, learning systems, batteries,
and neural networks. The smallest cluster is the yellow cluster, containing only seven
components, including electric vehicles, electric discharge, lithium compounds, circuit
theory, equivalent circuits, energy management, and vehicle applications.
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Figure 5. Representation of co-occurrence keywords for analytical analysis of BMS technology for EV
applications.

3.4. Research Categories in 110 Highly Cited Manuscripts

The study types of the 110 topmost highly cited manuscripts obtained from the Scopus
database are presented in Table 2. Primarily, a vast, resourceful article was published
under the category of problem formulation and simulation analysis (59.45%) in the citation
range of 98–350. A review article achieved the second position (24.32%), with a citation
range of 120–2516. In comparison, the experimentation and performance assessment
activities contributed to 8.1% of the total number of articles, with a citation range of
177–311, whereas state-of-the-art technical work represented only 4.5% of articles. The
observational manuscripts were the least published and made up only 3.6% of articles from
2014 to 2019, with a citation range of 86–354.

Table 2. Study types of the 110 highly cited manuscripts in the Scopus Database.

Types of Manuscripts Frequency of Publications Year Range Citation Range

Problem formulation and simulation analysis 66 2011–2019 98–350

Review (systematic/nonsystematic) 27 2011–2019 120–2516

Experimental work, development, and performance assessment 9 2013–2018 177–311

State-of-the-art technical
overview 5 2012–2018 117–286

Observational 4 2014–2019 86–354

In the present scenario, many research activities are being undertaken to shift the
global trend from fossil fuel-based vehicles to EV applications due to the significant ad-
vancement of BMSs for EV applications. Of the 110 most cited manuscripts, the selected 27
review articles summarized in Table 2 were published in different research fields in BMS
technology. For instance, review articles on BMSs for EV applications were published by
Kim et al. [37] and Xia et al. [38]. The works focused on battery thermal issues, reviewing
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various battery thermal management systems along with their benefits and limitations and
thermal management strategies. Rezvanizaniani et al. [39] and Li et al. [40] carried out
work on battery state estimation and health prognostics. Several key topics were outlined
and discussed, such as SOC and SOH estimation techniques, strengths, and limitations
to utilizing online BMS applications with future recommendations. A comprehensive
description of current lithium–ion technology for EVs was reviewed by Miao et al. [41]
who provided a comparative analysis of important components of lithium–ion batteries
with other battery technologies and further described the approach for enhancing battery
lifespan, accuracy, and capacity. Chemali et al. [42] framed a review article to present an
overview of various battery/ultracapacitor technologies, energy management systems, and
hybrid energy storage systems.

3.5. Publisher and Highly Impactful Journals Assessment

The publication of the 110 most-cited manuscripts from 2011 to 2021 under various
publishers is presented in Figure 6. From the manuscripts chosen from the Scopus database,
most were published by Elsevier journals (61%). IEEE journals published the second-
highest number of manuscripts (30%). The third spot was acquired by MDPI journals (4%).
The rest of the most cited articles were published by IOP publishing, John Wiley and Sons,
SAGE Publishing, and Inderscience Publishers.
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The publication frequency of the articles in various journals as well as their impact
factor is illustrated in Figure 7. The 110 most cited articles selected from the Scopus
database were published in 21 peer-reviewed journals. The journal impact factor varied
from 3.004 (Energies) to 14.982 (Renewable and Sustainable Energy Reviews), as per Journal
Citation Reports. It can be observed from Figure 7 that The Journal of Power Sources pub-
lished the highest number of manuscripts (44), followed by Applied Thermal Technology and
IEEE Transactions of Vehicular Technology, with nine publications. Energy Conversion and
Management published six articles; IEEE Transactions on Industrial Electronics and Renewable
and Sustainable Energy Reviews also published some articles. The remaining 15 journals
published five or less than five manuscripts between 2011 and 2021.
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Figure 7. Distribution of 110 most cited research articles, indicating journal of impact factor and
publisher.

As depicted in Figure 7, Renewable and Sustainable Energy Reviews achieved the highest
impact factor of 14.982. The publication frequency remained at 5.40%, while IEEE Transac-
tions on Industrial Informatics achieved the second-highest impact factor of 10.215, with a
publication frequency of a mere 0.909%. The top three journals with the highest number of
published manuscripts (55.85%) were within the impact factor range of 5.295 to 9.127.

3.6. Country Analysis and Networking in 110 Most Cited Articles

The distribution of the selected articles for analytical analysis was among several coun-
tries. Figure 8 depicts the top 10 countries with the highest number of publications. China
secured first place in publishing the highest number of articles (38%), while the United
States achieved the second position (35%). The other countries published a cumulative
percentage of 27% of the articles. Figure 9 presents the connection diagram to depict the
impact of 14 countries on the publication trend. It presents a networking diagram to depict
the impact of 14 countries on the publication trend. The size of each label denotes the
impact of each country, whereas the width of the connecting line denotes the collaborative
approach from the researchers from different countries in the field of smart battery energy
management technology in EV applications. From the statistical analysis, Figure 9 can
provide a clearer idea about the countries that are the most prominent and enthusiastic in
this field of research. The dominant cluster is denoted with a green color and comprises
China, the United States, Denmark, Canada, and Mexico. In contrast, the second impactful
cluster is displayed in red, with South Africa, Sweden, the United Kingdom, and Belgium
as its key connections. The blue cluster comprises two countries, Italy and Germany, and
the yellow cluster includes South Korea and Singapore. Lastly, Australia represents the
only country in the purple cluster.
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Figure 9. The networking diagram to represent the impact of 14 countries on the publication trend in
BMS technology for EV applications.
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3.7. Most Prominent Authors and Collaborations

Information concerning the 10 most influential authors published twice or more in the
110 selected manuscripts is presented in Table 3. The author’s position, h-index, number
of citations, total number of articles, country, and current affiliation are tabulated. Rui
Xiong published 11 articles with an h-index and total citations of 55 and 10,111, respectively.
Currently, he is affiliated with the Beijing Institute of Technology, China. Out of 11 published
articles by Rui Xiong, there are 10 research articles and 1 review manuscript. Hongwen
He also belongs to the Beijing Institute of Technology and contributed to seven research
articles. Additionally, Jianqiu Li, Languang Lu, Minggao Ouyang, and Xuebing Han
published seven articles affiliated with Tsinghua University, China. Their contribution
toward review articles was limited to one, while the research group published four research
articles. Michael G. Pecht from the United States had the highest number of citations (23202)
among all 10 authors. Dirk Uwe Sauer from Rheinisch-Westfälische Technische Hochschule
Aachen, Germany, had the most citations (11,182) after Michael G. Pecht. The last two
spots were acquired by Fengchun Sun from the Beijing Institute of Technology, China,
and Ephrem Chemali from McMaster University, Canada, respectively. Fengchun Sun
published four research articles, while Ephrem Chemali published one review article and
two research articles.

Table 3. Ten most prolific authors’ profiles with 3 or more manuscripts.

Author Current Affiliation Country Articles Citations h-Index Author’s
Position

Rui Xiong Beijing Institute of Technology China 11 10,111 55
6- 1st author
4- Co-author

1- Senior author

Hongwen He Beijing Institute of Technology China 7 8199 40
2- 1st author
4- Co-author

1- Senior author

Jianxiang Qiu Li Tsinghua University China 7 10,468 52 6- Co-author
1- Senior author

Languang Lu Tsinghua University China 7 9379 46 1- 1st author
6- Co-author

Minggao Ouyang Tsinghua University China 7 18,305 68
1- 1st author
5- Co-author

1- Senior author

Xuebing Han Tsinghua University China 5 6391 32 3- 1st author
2- Co-author

Michael G. Pecht University of Maryland United States 4 23,202 71 4- Senior author

Dirk Uwe Sauer Rheinisch-Westfälische
Technische Hochschule Aachen Germany 4 11,182 50 4- Senior author

Fengchun Sun Beijing Institute of Technology China 4 8175 47 1- 1st author
3- Co-author

Ephrem Chemali McMaster University Canada 3 489 8 3- 1st author

The focused areas and research interests in the problem formulation of different au-
thors varied. For instance, Rui Xiong and Hongwen He primarily focused on battery state of
charge and capacity estimation [43–46], battery model-based energy management schemes
for EV applications [47,48], and the development of a hardware-in-loop approach for state
estimation [49]. Further, Rui Xiong focused on performing a critical review based on SOH
methods for BMS [50]. However, Jianqiu Li, Languang Lu, Xuebing Han, and Minggao
Ouyang from Tsinghua University developed review articles based on battery management
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issues [33] and SOC estimation techniques [51] for EV applications. Additionally, their
research articles concentrated on SOH estimation [52,53].

As per the discussion and evaluation from other perspectives on the 110 most cited
manuscripts from the Scopus database, it can be concluded that the majority of influ-
ential manuscripts published in recent years have been based on research work rather
than review activity. The recent trend suggests an inclination from the research fraternity
toward introducing an accurate, robust, and efficient BMS for the EV platform. Further-
more, battery state estimation plays a crucial role, which can be estimated using several
methods [13,48,54–61]. Different researchers carried out a variety of literature reviews that
emphasized topics related to BMSs, including battery SOC estimation, SOH prediction, and
thermal management.

A co-authorship analysis of the most prominent authors published twice or more
from the selected database is presented in Figure 10. A total of 304 authors were identified
from the selected 110 articles on lithium ion-based BMS technology for EV applications.
Among the 304 authors, only 60 authors contributed to publishing two or more articles.
Only 27 authors were found with interconnection and were categorized into five different
clusters according to the number of published documents, as presented in Figure 10. Rui
Xiong from China had the highest number of published articles, with 11 papers, including
4 articles with Hongwen He, 2 with Fengchun Sun, 1 with Michael G. Pecht, and 1 with
Chunting Chris Mi and J. Xu. Van Mierlo Joeri from Vrije Universiteit Brussel contributed
three articles with Y. Li, K. Liu, M. Berecibar, P. Hossche and N. Omar.

Figure 10. Co-authorship analysis of the selected most cited articles in the field of BMS technology
for EV applications.

4. Technical Evaluation of BEMS in EVs

This section critically discusses the various technical aspects of BMS, focusing on key
components, functions, algorithms, methods, optimizations, and control schemes in BMS
in EV applications.

4.1. Key Components and Functionalities of BMS

This section reveals the key components and functionalities of BMS. A detailed evaluation
of various key research domains of BMS technology is provided in the following subsections.

4.1.1. Battery Thermal Management

Battery thermal management is a vital issue concerning battery energy management
systems. Tang et al. [62] modeled and analyzed the coupling system of a liquid-cooled bat-
tery thermal management system (BTMS) and heat pump air conditioning system (HPACS)
for battery electric vehicles (BEVs) to predict cooling capacity and system coefficient of
performance (COP) of the BTMS using support vector regression (SVR). The correlation
coefficient (R) of cooling capacity and system COP for the proposed PSO-SVR model were



Batteries 2022, 8, 219 15 of 59

improved by 2.1% and 2.8, respectively [63–65]. The development of battery thermal
management solutions and thermal models was discussed by Wang et al. [63]. Thermal
runaway and the response of Li-ion batteries in cold temperatures were also investigated.

Moreover, a specific design for an air-cooled battery system was theoretically explored
and numerically designed by Park et al. [64] to determine the required thermal parameters.
As a typical battery system in HEV comprises several battery cells stacked on top of each
other, cooling performance is influenced mainly by airflow in the coolant channel. The
authors revealed that the advection thermal resistance was approximately 2.4 ◦C W−1.
Zhao et al. [65] developed a model where thermal-lumped treatment was applied to the
individual battery in the module. The authors analyzed the impacts of the interface area of
the battery and the channel outside the wall, heat exchange area between batteries, liquid
flow rate, and charge/discharge C-rate on the thermal behavior of the battery module using
the introduced strategy. The maximum temperature in the battery module was lowered by
approximately 12.5 K.

4.1.2. State of Charge

State of charge (SoC) is considered one of the core research areas in battery energy
management systems. Most of the selected papers introduced new methods and approaches
to estimate the SoC. Tian et al. [66] introduced a deep learning approach to estimate the SOC
of LiFePO4 batteries. A closed-loop framework was developed for improving robustness.
The proposed method could quickly adapt to new scenarios via transfer learning. The root
mean square error was less than 3.146% and 2.315% for aged batteries and different battery
types, respectively [35]. The energy-sharing SOC balancing control strategy presented by
Huang et al. [67] was based on a distributed BESS architecture in which the cell balancing
and DC bus voltage regulation systems were merged into a single system. Small power
converters were used to provide SOC balance between the battery cells and DC bus voltage
management. The authors revealed that the overall efficiency of the complete system was
95–97%. Based on the measured current and voltage, an ANN-based battery model was
designed by He et al. [68] to estimate SOC. The neural network-based SOC estimation
was improved by using an unscented Kalman filter. The proposed model was validated
using EV drive cycles under various temperature settings. A SOC technique based on a
thorough electrochemical model of a lithium–ion battery was presented by Klein et al. [69].
The authors presented an output error injection observer based on a reduced set of partial
differential-algebraic equations. The authors revealed that the SOC error was less than 10%.

4.1.3. Energy Management Strategies

Zhou et al. [70] introduced a heuristic rule-based local controller (LC) embedded
within the deep reinforcement learning (DRL) loop to eliminate irrational torque allocation,
considering the characteristics of powertrain components. The authors reported that the
robustness was approximately 92.95 ± 1.24. Hannan et al. [71] delivered a thorough
examination of state-of-the-art lithium–ion batteries, including primary structures and
overall performance evaluation along with battery fault diagnosis, temperature control,
heat management, protection and equalization, state estimation, charge and discharge
control, cell condition monitoring, and assessment aimed at improving overall system
performance. The price of a Li-ion battery pack is 25–30% of the price of an electric car.
A comparison of several EMSs for an electric aircraft’s fuel cell-based emergency power
supply was presented by Njoya et al. [72]. Supercapacitors, lithium–ion batteries, and fuel
cells with the integration of DC-AC and DC-DC converters were thoroughly discussed.
According to the analysis, the equivalent consumption minimization model, frequency
decoupling/fuzzy logic control, classical proportional-integral control, rule-based fuzzy
logic model, and state machine control strategy were among the most commonly used
EMSs in fuel-cell vehicle applications.
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4.1.4. Battery Materials and Technology

Battery materials and technology are a crucial part of battery energy management
systems. Various authors have evaluated battery materials and relevant technologies. For
example, Li et al. [73] built a sandwiched cooling structure out of copper metal foam
saturated with phase change material (PCM). The system’s thermal efficiency was tested
and compared to two control stages including cooling with pure PCM and cooling with air.
The findings revealed that thermal management using natural convection air could not meet
the lithium–ion battery’s safety requirements. The paraffin remained in a solid state for the
lower discharge rate of 0.5 C. For EV battery strings, a modularized charge equalization
based on the monitoring integrated circuit (IC) was introduced by Kim et al. [74]. The
suggested technique achieved effective charge equalization while keeping the monitoring
IC under easy control. Instead of a dedicated charge equalizer for each cell, a central
equalization converter in the master module was used. This proposed control strategy
reduced the SOC error gap from 21.3% to approximately 1.3%.

4.1.5. Battery Modeling

Battery modeling plays another crucial role in battery management strategies. Nu-
merous authors have developed new and improved battery modeling methods in their
research. For example, He et al. [75] compared and evaluated an improved Thevenin
model, including PNGV, RC, and Rint, called dual-polarization (DP). Moreover, the authors
added an extra RC to mimic electrochemical and concentration polarization separately.
The authors found that the SOC terminal error was within 1.56%. To construct a battery
model with sufficient precision and complexity, He et al. [76] first outlined the seven sample
battery models under the simplified electrochemical or comparable circuit categories. The
model equations were then formulated and model parameters were determined using
an online parameter identification method. For constructing a model based on an SoC
estimate strategy, a parametric modeling method was introduced by Sun et al. [77]. The
proposed approach estimated the SoC of selected and unselected cells using micro and
macro time scales.

4.1.6. Fault Diagnosis and Protection

Fault diagnosis and protection are vital parts of battery energy management systems.
Here, different authors explored different fault diagnosis strategies, while some authors
also outlined fault protection strategies. For instance, Chang et al. [78] proposed a medium-
time scale diagnosis method to detect battery micro-faults. Medium-time scale fault real
vehicle data were used to verify the effectiveness of the method. An optimized heat pipe
thermal management system (HPTMS) for fast-charging lithium–ion battery cells/packs
was introduced by Ye et al. [79]. A numerical strategy was created and thoroughly validated
using experimental data. The thermal performance of the HPTMS was then investigated
using this proposed model under transient situations and steady-state conditions. The
authors demonstrated that the lithium–ion batteries charged at a high C rate (up to 8 C rate).
Hendricks et al. [80] demonstrated how the failure modes, mechanisms, and effects analysis
(FMMEA) of battery failure can be used to improve battery failure mitigation control
systems. The average error was less than 1.2% at each temperature.

4.1.7. Remaining Useful Life

Wang et al. [81] adopted several statistical methods to perform the prediction and com-
pared the results of different models on experimental data (NASA dataset). The maximum
predicted end of life (EOL) was 1602, with a difference rate of 1.14%.
Dong et al. [82] focused on two key ways of determining a battery’s health: (1) RUL
prediction and (2) battery SOH monitoring. These were calculated using the support vector
regression-particle filter (SVRPF). Novel capacity degradation criteria were included in
models for battery SOH monitoring based on SVR-PF. Furthermore, an RUL prediction
technique was introduced, offering the RUL value and updating the RUL probability distri-
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bution to the end-of-life cycle. The RUL threshold value was changed to 85% of nominal
capacity. Rezvanizaniani et al. [83] examined battery prognostics and health management
(PHM) strategies, focusing on the important needs of battery producers, EV designers, and
EV drivers. A range of methodologies for monitoring battery health status and perfor-
mance, and the evolution of prognostics modeling tools, were also discussed. This study
aims to provide practical and cost-efficient solutions for dealing with battery life difficulties
in dynamic operation situations.

4.1.8. Vehicle Performance Assessment

Vehicle performance assessment is directly related to the battery energy management
system. Hence, numerous authors have examined vehicle performance assessment-related
issues. For example, Rezaei et al. [84] proposed a single PCM heat exchanger in a reversible
heat pump for the air conditioning of EVs. PCM increased the EV range by 19% and 11%
in cooling and heating modes, respectively. The proposed system increased the vehicle
range by 19% and 11% compared with the conventional heat pump systems. Ecer et al. [85]
introduced a novel integrated multiple criteria decision-making (MCDM) model for BEV
selection. The suggested aggregation framework was capable of assisting customers,
decision-makers, and authorities to make reliable decisions in evaluating BEVs. Methods
for monitoring the SOH, SOC, available power, capacity, RUL, and impedance parameters
of batteries were examined by Waag et al. [86]. Here, the authors focused on the strengths
and shortcomings of online BMS applications. Omar et al. [52] carried out a comparative
performance evaluation among several lithium–ion battery characteristics and rechargeable
ESSs, including electrical-double layer capacitors, nickel-metal hydride, and lead-acid. The
investigation revealed the advantages of lithium–ion batteries in achieving satisfactory
current rate capabilities, power density, and energy density.

4.1.9. Energy Utilization and Efficiency

Energy utilization and the efficiency of battery storage systems are of vital concern to
scholars. Hence, many studies have been conducted on enhancing energy consumption
and efficiency in EV applications. For example, Zhang et al. [87] proposed an energy-saving
optimization and control (ESOC) method to improve the energy utilization and efficiency
of autonomous electric vehicles. The proposed ESOC effectively avoided the high-power
output of the vehicle’s powertrain. Einhorn et al. [88] introduced an active cell energy
balancing solution for lithium–ion battery stacks based on a flyback DC/DC converter
topology. Simulation and prototype validation were performed to determine the energy
gain for 10 series-connected cells during discharge cycles. The efficiency of the proposed
topology was improved by utilizing the capacity and SOC as the balancing criterion
rather than the voltage. The usable energy of the battery stack was improved by 15%.
Zheng et al. [89] focused on error analysis to determine the energy utilization and SOC of
lithium–ion batteries, considering the measured data, state parameters, and algorithms. A
flow diagram was developed to investigate energy consumption and error sources, ranging
from signal measurement to algorithms for online SOC estimate methods in EVs.

4.1.10. Aging and Battery Degradation

Another important concern in battery energy management systems is aging and
battery degradation. Many studies have been performed to solve aging- and battery
degradation-related issues. For example, Xu et al. [90] proposed a Q-learning-based strategy
to minimize battery degradation and energy consumption. Besides Q-learning, two rule-
based energy management methods have also been proposed and optimized using a
particle swarm optimization algorithm. Q-learning reduces battery degradation by 20%
and extends vehicle range by 2%. The RUL and SoC estimation were tested against
temperature uncertainty and incorrect primary SOC values by Xiong et al. [91]. A double-
scale particle filtering model was created on two different timescales to predict SOC and
other characteristics. The suggested strategy considered the battery parameter in short
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time-varying features and the battery state in swift time-varying characteristics. The
maximum SOC estimation and prediction errors were both less than 2%. Han et al. [92]
examined battery life cycles based on the actual operating conditions in EVs. The test results
were compared among five different commercial lithium–ion battery cells at different
temperatures. The results of the life cycle experiments were fitted to the genetic algorithm
to recognize the battery aging mechanism.

4.1.11. Battery Equalization/Charge Control

To enhance battery charge efficiency, battery equalization/charge control plays an
important role in battery energy management systems. Therefore, many in-depth investi-
gations have been conducted in this area. For instance, Shang et al. [93] proposed a direct
cell-to-cell battery equalization based on a boost DC-DC converter (BDDC) and quasi-
resonant LC converter (QRLCC). The QRLCC was used to achieve zero-current switching,
reducing power losses. The BDDC was used to increase the equalization voltage gap. Fur-
thermore, the topology could limit the equalization current based on the voltage difference
by changing the duty cycle. The authors revealed that the energy conversion efficiency
was higher than 98%. Duong et al. [94] presented a unique technique that combined a
simple model with multiple adaptive forgetting factors recursive least-squares (MAFF-
RLS) to properly capture the battery cell balancing under varying dynamic conditions.
The experimental outcomes indicated that the proposed technique could characterize the
battery model parameters while estimating SOC with a battery cell balancing error of less
than 2.8%.

4.1.12. Validation under Different Operating Conditions

An appropriate validation process under different case studies and operating condi-
tions must be introduced to verify the performance of algorithms and controllers.
Schuster et al. [95] proposed the electrochemical and thermal coupled model to exam-
ine the heating performance of lithium–ion batteries under mutual pulse, convective, and
self-internal heating. Klass et al. [96] employed the SVM technique to predict the SOH
of lithium–ion batteries under different SoCs and temperature ranges in EV applications
to assess online battery degradation. A 30% difference in impedance resulted in a 60%
difference in peak cell current. Hannan et al. [97] verified the machine learning-based SOC
estimation technique under different temperatures and in diverse EV drive cycles. The
battery capacity and error rate decreased as the aging cycle progressed. A summary of the
comparative study of various BMS functions is presented in Table 4.

4.2. State-of-the-Art Algorithms, Optimizations, and Controllers Applied in BMS Technology
in EVs

This section discusses recent and state-of-the-art algorithms, optimizations, and con-
trollers applied in BMS technology for EV applications. A detailed technical comparison is
carried out, emphasizing target, input features, structures, configurations, dataset, accuracy,
and strengths and weaknesses.

4.2.1. Algorithms and Methods in BMS

Recently, several algorithms have been implemented in BMSs for EV applications. The
execution of algorithms and methods is conducted in BMSs for various purposes such as
state estimation, remaining useful life prediction, thermal management, fault diagnosis,
and charge equalization.
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Table 4. Comparative analysis of BMS components and functions in EV applications.

Subject Area Ref. Target/Focused Areas Key Contributions Limitations/Research Gaps Battery Type Validation Approach Performance Metrics

Battery Thermal
Management

[62]

To predict cooling
capacity and system

coefficient of performance
(COP) of battery thermal

management systems
(BTMSs).

The coupling system of a
liquid-cooled BTMS and a

heat pump air conditioning
system (HPACS) for battery
electric vehicles (BEVs) were

designed and analyzed.

The internal thermal
characteristics of the battery
were not considered in this

study.

Lithium-ion power
battery pack

Compared with SVR
model.

Correlation coefficient I of
cooling capacity and

system COP were
improved by 2.1% and

2.8%, respectively.

[64] To determine the required
thermal parameters.

A specific design for an
air-cooled battery system was

theoretically explored and
numerically designed.

Due to the layout limitation of
the battery system in the
HEVs, both the inlet and

outlet should be located on
the same side.

Lithium-ion batteries A theoretical analysis
was performed.

The advection thermal
resistance was 2.4 ◦C

W−1.

State of Charge

[66]
A closed-loop framework

was developed for
improving robustness.

To estimate the SOC of
LiFePO4 batteries.

Only current and voltage data
were used to fine-tune the

DNN
LiFePO4 batteries

Compared with other
relevant machine

learning approaches.

The root mean square
error was less than 3.146%

and 2.315% for aged
batteries and different

battery types, respectively.

[67]

The cell balancing and dc
bus voltage regulation

systems were merged into
a single system.

Compact size,
tiny power converters were

used to provide SOC balance
between battery cells and DC

bus voltage management.

Battery deterioration,
overheating, and even

catching fire in a worst-case
scenario.

Lithium-ion batteries

A scaled-down
distributed BESS

prototype with the
proposed energy

sharing controller was
built in the laboratory.

The overall efficiency was
95–97%.

Energy management
strategies

[70]

A hybrid method was
proposed using a mixed

experience buffer
consisting of

environmental
disturbances.

A novel DRL algorithm was
introduced to formulate an
intelligent HEV for EMS.

Some unreasonable and
meaningless torque

allocations may occur during
exploration

Lithium-ion batteries
Compared with deep

Q-networks
(DQN)-based EMS

Robustness (%) = 92.95 ±
1.24.

[71]

A comprehensive study
on the state of the art of

Li-ion batteries including
the fundamentals,

structures, and overall
performance evaluations

of different types of
lithium batteries.

Improving the system’s
overall performance and

efficiency.

Environmental impact and
recycling,

protection circuitry, and
excitability of Li-ion safety.

Lithium-ion batteries Compared with other
relevant literatures

The price of a Li-ion
battery pack was 25–30%
of the price of an electric

car.
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Table 4. Cont.

Subject Area Ref. Target/Focused Areas Key Contributions Limitations/Research Gaps Battery Type Validation Approach Performance Metrics

Battery materials and
technology

[73]

A sandwiched cooling
structure out of copper

metal foam saturated with
phase change material

(PCM).

The system’s thermal
efficiency was tested in the lab
and compared to two control

stages: cooling with pure
PCM and cooling with air.

Thermal management using
natural convection air could
not meet the Li-ion battery’s

safety requirements.

Lithium-ion batteries

Thermal efficiency of
the system was
experimentally
evaluated and

compared with two
control cases.

The paraffin remainId in a
solid state for the lower
discharge rate of 0.5 C.

[69]

The authors presented an
output error injection
observer based on a

reduced set of partial
differential-algebraic

equations.

Reliable and safe operation.

Detailed stability analysis of
the observation error was not
possible due to the complexity

of the problem.

Lithium-ion batteries Compared with other
cell chemistries.

SOC error of less than
10%.

Battery modeling

[75]
To improve the use of

lithium–ion batteries in
EV applications.

The proposed DP approach
had the best dynamic

performance and provided a
more accurate SoC estimation.

In future research, another
artificial intelligence-based
algorithm can be utilized to

improve SOC estimation.

LiMn2O4 battery
module

The dynamic
performances of the
battery models were

compared with a
robust extended

Kalman filter.

SOC terminal error was
within 1.56%.

[74]

To achieve effective
charge equalization while
keeping the monitoring IC

under easy control.

The battery string was
modularized into a master

module.

Large circuit size and high
implementation cost. Lithium-ion batteries Compared with

relevant literature.

The SOC gap decreased
from

21.3% to approximately
1.3%.

Fault diagnosis and
protection

[79]

To predict battery life,
which consists of life cycle
variables and numerous
failure causes, and their
impact on battery safety

and health.

Temperature homogeneity
was improved by using a

cylinder vortex generator in
front of the heat pipe

condensers in the coolant
stream.

Limitation of low specific heat
capacity. Lithium-ion batteries

The numerical model
was comprehensively

validated with
experimental data.

Lithium–ion batteries
charged at a high C rate

(up to 8 C rate).

[80]
To improve battery failure

mitigation control
systems.

Enhanced failure mitigation
control. Testing cost is higher. Lithium–ion batteries

An SBPM-based SOH
monitor was

compared with a
polynomial model.

The average error was less
than 1.2% at each

temperature.

Remaining useful life

[98]

A combined SOC and
SOH estimation approach

toward the lifespan of
Li-ion batteries.

The presented model was
effective with online SOH

estimation and offline SOC
estimation.

Complex computation and
mathematical model.

Accurate input parameters
required.

Lithium–ion batteries Compared to the
second order EKF.

The voltage errors stayed
below 0.7%.

[82]

Focused on two key ways
of determining a battery’s

health: RUL prediction
and battery SOH

monitoring.

Enhanced the RUL probability
distribution to the End-of-Life

cycle.
Problem of degeneracy. Lithium–ion batteries

Compared the
estimation and

prediction capability
between the SVR-PF

and standard PF.

The RUL threshold value
was changed to 85% of

nominal capacity.
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Table 4. Cont.

Subject Area Ref. Target/Focused Areas Key Contributions Limitations/Research Gaps Battery Type Validation Approach Performance Metrics

Vehicle performance
assessment

[84]

Performance assessment
of EVs under real driving
conditions in cold and hot

starts.

To mitigate the unfavorable
effects of conventional HVAC

systems on the EV range.

Model parameters can only be
parameterized accurately for

new batteries.
Lithium–ion batteries

Compared to the RLS,
LMS, and WRLS

filters.

The proposed system
increased the vehicle

range by 19% and 11%
compared with

conventional heat pump
systems.

[85]
A novel, integrated

MCDM model for BEV
selection.

To assess BEV alternatives
comprehensively from the
customer’s point of view.

Battery weight was not
considered in this study. Lithium–ion batteries Compared with the

existing literature.

The suggested
aggregation framework
was capable of assisting

customers, decision
makers, and authorities in

order to make reliable
decisions in evaluating

BEVs.

Energy utilization and
Efficiency

[88]

To determine the energy
gain for 10

series-connected cells
during discharging cycles.

An active cell balancing
solution for li-ion battery

stacks.

Technical and economical
limitations. Lithium–ion batteries

Compared with the
rated capacities of the

used cells.

The usable energy of the
battery stack

could be improved by
15%.

[87]

Proposed an
energy-saving

optimization and control
(ESOC) method.

To improve the energy
utilization efficiency of

autonomous electric vehicles.

The regenerative braking
situation was not considered

in this work.
Lithium–ion batteries

Compared the
proposed ESOC with

model predictive
control (MPC) and

energy optimal
control (EOC).

The proposed ESOC
effectively avoided the

high-power output of the
vehicle’s powertrain.

State of Health

[99]
End-to-end prognostic

framework applicable to
SOH/RUL tasks.

To capture the hierarchical
features between several

variables affecting battery
degeneration.

Training time and inference
latency were not considered in

this study.
Lithium–ion batteries Compared with the

existing NNs.

Lower average RMSE
0.0072 and global average
RMSE 0.0269 for SOH and

RUL tasks.

[100]

A novel
deep-learning-enabled
estimation method for
battery state of health.

To perform accurate state of
health estimation for battery

systems on real-world electric
vehicles.

The existing SOH estimation
methods were mostly limited

to laboratory research.
Lithium–ion batteries

The vehicle’s data
were derived from the

Serving and
Management Center
for EVs (SMC-EV) in

Beijing.

Maximum error ≤
0.1323%

Mean relative error (MRE)
≤ 0.0546%

Root mean square error
(RMSE) ≤ 0.232%

Mean squared error (MSE)
≤ 0.0538
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Table 4. Cont.

Subject Area Ref. Target/Focused Areas Key Contributions Limitations/Research Gaps Battery Type Validation Approach Performance Metrics

Aging and battery
degradation

[91] To predict the SOC and
other characteristics.

To identify the incorrect
primary SOC values

Easily caused an unstable SOE
estimate. Lithium–ion batteries

Compared the
performance of the

developed approach
with Kalman filter

methods.

The maximum SOC
estimation and prediction
errors were both less than

2%.

[90]

Two heuristic strategies
were proposed and

optimized by particle
swarm optimization.

Q-learning was proposed to
actively determine the

engagement of the
ultracapacitor.

Different component sizes
were still required for further

investigation.
Lithium–ion batteries Compared with the

rule-based method.

Q-learning reduced
battery degradation by

20% and extended vehicle
range by 2%.

Battery
equalization/charge

control

[93] To achieve zero-current
switching.

Reduced, power losses,
increasd the equalization

voltage gap, and reduced the
size and cost of

implementation.

Long equalization time, high
switching loss, and over

equalization.
Lithium–ion batteries

A quantitative and
systematic

comparison with the
existing

active balancing
methods.

The energy conversion
efficiency was higher than

98%.

[94]

To properly capture
real-time fluctuations and

the varied dynamics of
the parameters while

maintaining
computational simplicity.

Precisely characterize the
battery model parameters. Divergence problem. LiFePO4

The proposed
technique compared
to the conventional

RLS
technique.

The SOC with an absolute
error of less than 2.8%.

Validation under
different operating

conditions

[95]

To mimic the process of
heating li-ion batteries

from sub-zero
temperatures.

An electrochemical and
thermal coupled model.

Insufficient balancing or
cooling methodologies. Lithium–ion batteries

Compared to
conventional

topologies

The strength of variation
and the number of

outliers both generally
increased as aging

progressed.

[96]
To design a system that

can perform conventional
tests virtually.

New features such as capacity
estimates and temperature

dependency.

Methods were only valid
within the trained data range.

Limitations of the load.
Lithium–ion batteries

The outcome of this
study was compared

with the relevant
existing literature.

A 30% difference in
impedance resulted in a
60% difference in peak

cell current.
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Kai et al. [101] developed an improved SOC estimation technique based on the adap-
tive square-root unscented Kalman filter method. The proposed work was implemented on
18,650 model dynamic lithium–ion batteries with a rated capacity of 2.2 Ah. The improved
Kalman filter method was validated with other techniques such as enhanced Kalman filter
and unscented Kalman filter.

Qu et al. [102] introduced a hybrid SOH and RUL prediction for lithium–ion batteries
based on the LSTM model. The work employed NASA battery datasets, namely, B0005,
B0006, and B0018. The model operation was enhanced by applying the particle swarm
optimization (PSO) technique by optimizing key parameters such as the weights and biases
of the model. Additionally, model training was conducted based on different training ratios
such as 30:70, 50:50, and 70:30.

A hybrid Kalman filter and particle filter method-based SOC estimation was conducted
by Zheng et al. [103] The proposed method was based on differential voltage analysis for
SOC estimation. The model employed three LiFePO4 battery cells with a rated capacity
of 60 Ah. Furthermore, validation of the method was conducted with test data from three
battery cells operated above 1800 cycles. It was noted that temperature dependency was
not assumed in the conducted work, which may have significantly impacted the SOC
estimation outcomes.

Ansari et al. [104] developed a backpropagation neural network (BPNN)-based RUL
prediction method for lithium–ion batteries. The proposed work was conducted by utilizing
four battery datasets from the NASA database, namely, B0005, B0006, B0007, and B0018. The
BPNN model hyperparameters were selected using a trial-and-error method. The validation
of the proposed model was conducted using different combinations of training datasets.

Park et al. [105] proposed an LSTM-based RUL prediction algorithm for lithium–ion
batteries. The algorithm employed a systematic sampling technique for the appropri-
ate extraction of data samples to develop a 31-dimensional data format. The developed
31-dimensional data format consisted of battery parameters such as voltage, current, tem-
perature, and discharge capacity. The proposed LSTM model delivered satisfactory out-
comes, however, more sophisticated RUL prediction techniques could be developed by
integrating the LSTM model with other intelligent models.

Part et al. [106] presented an ANN-based supervised learning for thermal management
in EV applications. The ANN model was employed and trained with data extracted from
EV driving operations. The model delivered satisfactory outcomes and reduced power con-
sumption by 48.5% and 6.9% in the integrated and separate operating modes, respectively.

With regards to the application of algorithms in thermal management in battery
technology, Zhu et al. delivered an LSTM model-based data-driven algorithm for analyzing
the thermal effect in batteries [107]. To conduct this work, an open-source battery database
from MIT, Stanford was considered which consisted of three battery datasets with different
cycle numbers. Model training was conducted based on three training ratios, i.e., 80:20,
50:50, and 20:80. The work accurately predicted future temperature; however, the research
was confined to using a time-series approach.

Another important area in BMS technology is related to fault diagnosis. In this
regard, Yao et al. developed a support vector machine (SVM)-based intelligent algorithm
to perform fault diagnosis on lithium–ion batteries [108]. The proposed experimental
setup consisted of a battery test bench (Digtron Battery Test System: BTS-600), vibrating
test bench, information collector, voltage sensor, and host computer. The presented SVM
model-based work was quick to detect faults with a modified covariance matrix (MCM) as
compared to a covariance matrix (CM).

Charge equalization is also regarded as a key research area in BMS technology for EV
applications. Zhang et al. [109] developed an effective active equalization control method
to conduct SOC estimation of lithium–ion batteries. The work considered various battery
parameters such as voltage, internal resistance, and temperature to analyze inconsisten-
cies in battery SOC. It was estimated that under active equalization control, the error in
measured voltage was limited to 3 mV.
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Table 5 represents a summary of the recent methods and algorithms for BMSs in
EV applications.

4.2.2. Optimization Approaches in BMS for EV Applications

Optimization techniques have been implemented to improve and enhance model
operations. Model enhancement results in appropriate SOC, SOH, and RUL estimation,
thermal management, and fault diagnosis of the lithium–ion battery in EV applications.

Qui et al. [110] presented SOC, SOH, and RUL estimations based on an improved par-
ticle filter technique. The PF technique was enhanced by implementing the cuckoo search
optimization technique. Five LiCoMnNiO2 batteries were used to conduct the proposed
experiment. The proposed method was validated with conventional PF and unscented PF
methods. Although the proposed work was largely based on outcomes, the utilization of
battery parameters from discharge profiles may be considered in further research.

Lipu et al. [111] introduced a backtracking search algorithm (BSA) for the SOC esti-
mation of lithium–ion batteries. The work employed a BSA-integrated BPNN approach
to select suitable model hyperparameters. The analysis was conducted based on dynamic
stress test (DST) and federal urban driving schedule (FUDS) drive profiles datasets for
testing the model at different temperatures. The proposed model was validated with other
models such as the radial basis function neural network (RBFNN), generalized regression
neural network (GRNN), and extreme learning machine (ELM).

Wang et al. [112] proposed a genetic algorithm (GA)-based optimization technique to
obtain the optimal electric braking torque and current distribution factor by considering
battery SOC, OCV, and heat loss. Furthermore, a neural network-based PI control model
was established to regulate the rotating speed of the flywheel motor. The proposed model
was established for the battery-flywheel system for energy recovered during the EV braking.
The work delivered theoretical and analytical support; however, further work could achieve
cost improvements.

A SOH estimation of a lithium–ion battery was conducted by enhancing the support
vector regression (SVR) model with improved ant lion optimization (IALO) [113]. Three
NASA battery datasets, namely, B05, B07, and B34 were considered to verify the proposed
work. Furthermore, charge and discharge voltage curve data were considered to map
SOH estimation. The accuracy of the SVM-IALO model was compared to that of other
models such as the SVR and SVR-ALO. The SVR-IALO model demonstrated satisfactory
outcomes in terms of accuracy and time complexity; nonetheless, performance can be
further examined using reliable battery datasets.

Wang et al. [114] presented a fruit-fly optimization technique-based RUL prediction
of a lithium–ion battery. Fruit-fly optimization was used to optimize the Hurst expo-
nent (H) that denotes the dependence of the fractional Brownian motion model for RUL
prediction. Four NASA battery datasets, namely, B5, B6, B7, and B18 were employed. The
proposed fruit-fly optimization technique delivered appropriate outcomes; however, the
computational complexity was a crucial factor that should be rectified in future work.

To conduct the thermal management of a lithium–ion battery, Deng et al. [115] em-
ployed GA to optimize the convective heat transfer and surface friction coefficients. The
constraints considered to perform the experiments were the maximum temperature of the
battery pack and the maximum temperature difference between cells. It was concluded that
length and thickness played an important role in the performance of the cooling system.

Zhang et al. [116] proposed a multi-objective PSO-based optimization technique to
deliver optimal results based on the thermal conductivity and thickness of phase change ma-
terial, length of the heat pipe, and velocity of inlet water. Table 6 represents the optimization
approaches for BMS in EV applications.
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Table 5. State-of-the-art methods and algorithms for BMS in EVs.

Methods and
Algorithms Objectives Ref. Input Features Structure/

Configuration Type of Dataset Accuracy/Error Rate Strengths Weaknesses Research Gaps

UKF SOC [101]
Ohmic internal resistance,

polarization resistance, and
polarization capacitance.

2RC Thevenin
model.

18650 model dynamic
lithium–ion

battery.
Accuracy of 99.04%.

High SOC
estimation accuracy,
better stability, and

fast convergence
speed.

More sophisticated model
should be considered for

SOC estimation.

Parameter identification
could be improved.

LSTM-PSO SOH and
RUL [102] Capacity.

C1-0.5
C2-0.3
w-0.9
(PSO).

NASA battery dataset. 0.006 (RMSE) for
B0005.

High robustness
with improved

estimation
capability.

Model complexity and high
training time.

Integration of model-based
methods for different types

of batteries.

EKF and PF SOC [103] Cell terminal voltage. Number of PF
particles: 1001. Three LiFePO4 battery cells. 1.75% (MAE),

1.10% (RMSE).

Capability to handle
a large volume of

data for SOC
estimation.

The SOC estimation was
conducted with just one

battery parameter.

A suitable selection of data
samples could be carried

out with different sampling
techniques.

BPNN RUL [104] Voltage, temperature,
current, and capacity.

Learning rate
0.005, hidden
neurons 10,
epochs 500.

NASA battery dataset.
0.0819 (RMSE), 0.0423

(MAPE), 0.0681 (MAE),
0.0717 (SD).

High prediction
accuracy and
robustness.

The model
hyperparameters were not

selected appropriately.

Optimization technique
may be employed for
selecting model hyper

parameters.

LSTM RUL [105] Voltage, temperature,
current, and capacity.

LSTM cell 10,
iterations 500,
learning rate

0.001.

NASA battery dataset 0.0168 (RMSE), 0.0146
(MAE), 1.05 (MAPE).

Appropriate
extraction of data

samples was
achieved.

Validation using other
battery datasets was not

conducted.

Bidirectional LSTM-based
intelligent model can be

framed.

ANN
Thermal
manage-

ment
[106]

Controllable,
environmental, and

feedback inputs.

Hidden neurons
16. Not mentioned.

Power consumption
was reduced by 48.5%

and 6.9%.

Regulated battery
temperature with
acceptable range.

Validation of the proposed
model was not conducted.

Further research can focus
on online learning.

LSTM
Thermal
manage-

ment
[107] Temperature. Learning

rate-0.001.
LiFePO4/graphite

lithium–ion batteries.

0.044, 0.055, and 0.622
(RMSE) at different

training ratios.

Predict wider
temperature

Change efficiently.

More improvements in
selecting hyperparameters

need to be considered.

The correlation between
battery parameters and

varying temperature
profiles must be

investigated.

SVM Fault
diagnosis [108] Cell voltage.

Penalty factor C
[−10, 20],
function

parameters [−5,
10].

LiMn2O4 Lithium–ion cells. Accuracy of more than
95% was achieved.

Timely detection of
fault and severity.

The validation of SVM was
not conducted

comprehensively with other
methods.

Battery system fault
hierarchical management
strategy can be studied.

SVM

Battery
charge

equaliza-
tion

[109] Voltage, resistance, and
temperature. Not mentioned. 18650 lithium–ion batteries.

The maximum SOC
estimation error was
approx. 4%, voltage
variance was within

2%.

High accuracy.
Prototype or hardware

validation of the method
was not conducted.

Other KF-based methods
and improved an Thevenin

battery model could be
employed in future study.
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Table 6. Optimization approaches for BMS in EV applications.

Optimization
Technique Objectives Ref. Input Features Structure/Configuration Type of Dataset Accuracy/Error Rate Strength Weakness Research Gaps

Cuckoo
optimization

SOC, SOH, and
RUL [110] Capacity. Not mentioned. LiCoMnNiO2

batteries.

3.3, 2.4, 1.0 0.5
(Relative error at
different cycles).

Reduced Pdf width
and resampling rate,

low convergence
time.

Reliable battery datasets
from NASA and CALCE

may be used.

Battery parameters related to
discharging profiles may be

considered.

Differential Search
Optimization SOC [117] Voltage, current, and

temperature.

The population size was 50
while the iteration was

500.

HPPC, DST,
FUDS.

MAE of 0.193% in
DST and 0.346% in

FUDS
at 25 ◦C.

High robustness and
stability.

Comparative study with
recent optimization

schemes can be
conducted.

Validation through
a hardware-in-the-loop test in
real-time can be performed.

BSA SOC [112] Voltage, current, and
temperature.

The population size was
100 while the iteration was

250.
DST and FUDS. SOC error at 0 °C

[−4.8, +9.8]. High accuracy.

The data collected
experimentally can be
validated with other

reliable battery datasets.

Model validation can be
conducted with other
optimization schemes.

Ant lion
optimization SOH [113]

Voltage curve from
charge and

discharge profile.

The population size was 20
and the number of

iterations was 200. Penalty
factor C and kernel

function parameter σ were
set as (0.01,100).

NASA battery
dataset.

0.53 (RMSE),
0.71(MAPE) for

battery B05.

Improved estimation
accuracy.

Validation with other
battery datasets was not

performed.

Further study to improve
convergence speed can be

explored.

Fruit fly
optimization RUL [114] Capacity.

The Hurst exponent was
0.6638. The population size
was 50 and the maximum
number of iterations was

100.

NASA battery
dataset

RMSE 2.0813%. MSE
4.3333%.

Better prediction
outcomes.

Low prediction accuracy
under large datasets and
varying environmental

conditions.

Better
model-hyperparameters

should be selected.

GA Thermal
management [115] Temperature. Not mentioned.

Four square
lithium–ion

batteries.

Maximum
error of 3.17% in
convective heat

transfer coefficient
(h).

Low pressure drops
compared to
conventional

serpentine channels.

Aspects of channel
thickness and length

ratio should be
comprehensively

studied.

Work on channel thickness
and length ratio aspect can be

conducted in future.

PSO Thermal
management [116]

Thermal
conductivity, PCM
thickness, heat pipe

length,
and inlet velocity.

The population size was
100.

The number of generations
was 300.

Learning factor C1 2.
Learning factor C2 2.

Lithium–ion
battery dataset.

Optimized design
3.26 mm for PCM
thickness and 92.4
mm for heat pipe

length.

Delivered best heat
dissipation

performance.

Inefficient to work in
dynamic and unknown

environments.

Appropriate utilization of
recent optimization

techniques can be applied.

Firefly algorithm SOC [118] Voltage, current, and
temperature.

The population size was 50
while the iteration was

500.
SDT and HPPC RMSE below 1%.

SOC error below 5%.

Improved
convergence speed

and
enhanced

exploration and
exploitation
capacities.

Complex execution and
high computational costs. Validation using an EV

dataset was not considered.
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4.2.3. Controllers Schemes in BMS for EV Applications

The controller technology in BMS is important for maintaining battery heating, cooling,
charging, and discharging within a prescribed boundary to achieve optimal performance.
Various work has been accomplished to implement controllers in BMS.

Afzal and Ramis [119] developed a hybrid GA and fuzzy logic controller-based ther-
mal management system for lithium–ion batteries. The objective functions selected in the
proposed study were average Nusselt number, friction coefficient, and maximum temper-
ature. The proposed controller technique achieved the desired results by achieving the
maximum temperature within the desired range.

Park and Ann [120] proposed a stochastic model predictive controller (SMPC) im-
plemented to create a battery-cooling controller. The proposed controller technique suc-
cessfully reduced the computational load by introducing an unequally spaced probability
distribution mode, which is a common issue with conventional stochastic model predictive
control. The computational load was reduced by 91%, with a performance declination of
only 4%.

Rahman et al. [121] proposed three controller technologies, namely, the sliding mode
controller (SMC), integral sliding mode controller (ISMC), and double integral sliding mode
controller (DISMC) for EV applications, consisting of a battery, fuel cell, and supercapacitor.
The controller was employed to achieve the control objectives in terms of current tracking,
voltage regulation, and stability. It was observed that the least error was achieved by
DISMC compared to the SMC, ISMC, and proportional-integral (PI) controllers.

In another work, Hussain et al. [122] introduced a real-time bi-adaptive controller-
based energy management system for hybrid battery-supercapacitor technology in EV
applications. The PI controller was employed to protect the supercapacitor from overcharg-
ing, whereas a fuzzy logic controller was used for optimal power sharing between the
battery and the supercapacitor. Validation of the proposed method was conducted with
three different cycles such as the New York City cycle (NYCC), Artemis urban (AU) cycle,
and New York composite cycle (NY company).

Miranda et al. [123] developed an FL control technique to increase the efficiency and
dynamic performance of electric motors in EV applications by conducting a power split.
A PSO-based optimization technique was employed to deliver the optimal mass of the
electric components such as the electric motor and battery. The best optimal solution was
delivered at a driving range of 124.2 km with a 235.8 kg battery (387.8 V and 91.2 Ah).
Although high stability and robustness were achieved, the model was not implemented
using an experimental setup. This could be investigated in future studies.

Ahmad et al. [124] employed an integral backstepping sliding mode controller (IBS-
SMC) and a backstepping sliding mode controller (BS-SMC) to design a robust charging
system, achieving various objectives such as output voltage regulation and power factor
correction in grid-to-vehicle (G2V) mode. Furthermore, to achieve the effect of chattering
and super twisting, a sliding mode controller was designed. The proposed controller
technique delivered satisfactory outcomes with better dynamic responses and robustness,
among other external noises.

Table 7 represents a summary of the various controller schemes applied to BMS for
EV applications.
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Table 7. Controller schemes for BMS in EVs.

Controller
Schemes Objectives Ref. Input Features Structure/

Configuration Type of Dataset Accuracy/Error Rate Strengths Weaknesses Research Gaps

GA-PSO-FL

Maximize rate of
heat transfer and
minimize yearly

cost.

[119] Not mentioned. W [0 1.2],
C1, and C2 [0 2]

Lithium–ion
battery. Not mentioned.

Achieved a safe
operating

temperature.

Complex method
and long training

time.

Further investigation on
the influence of weight
components and inertia
factors can be explored.

SMPC

Maximize the
vehicle driving

range and minimize
energy

consumption.

[120] Heat generation
of the battery. Not mentioned. Lithium–ion

battery. Not mentioned.

Low
computational
time and low

energy
consumption.

Required a large
number of model

coefficients.

Further research can be
conducted with a hybrid
energy storage system.

ISMC

Eliminate the
steady-state error
and mitigate the
chattering effect.

[121]

Fuel cell voltage,
battery voltage,
supercapacitor
Voltage, and
load current.

Ideality factor
1.052.

Fuel cell, battery,
and

supercapacitor.
Steady-state error 1.8 V.

Achieved all
desired objectives

accurately.

The chattering
issue was not
considered.

Implementation of other
control strategies can be

investigated.

PI and FLC

Maximization of the
effectiveness of the

supercapacitor
bank utilization.

[122] Not mentioned. Battery and
supercapacitor.

High performance value for
different drive cycles.

Easy
implementation.

Conventional
method and did
not describe the

novelty.

Implementation of the
proposed model on

hardware using FPGA.

BS-SMC
Development of an

appropriate
charging system.

[123] Not mentioned.

c1 2000
c2 700

p1 0.015
p2 0.018

Battery. Steady state error 5.4562.
High robustness

with external
disturbances.

Complex model
with

computational
complexity.

Utilization of an AI-based
non-linear controller may

be employed.

FL-PSO

TO improve the
dynamic efficiency
of electric motors in

EV applications.

[124] Current (A) Not mentioned. Not mentioned

Best optimal solution was
delivered at 124.2 km drive

range with a 235.8 kg battery
(387.8 V and 91.2 Ah).

High stability and
robustness.

Validation of the
proposed

controller was not
conducted.

The proposed model may
be conducted with an
experimental setup.
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5. Open Issues and Challenges of BMS Technology in EV Applications

The presented analytical analysis comprising 110 highly cited articles on lithium–
ion BMSs in EV applications utilized the Scopus database. Nevertheless, the extraction
of resourceful articles and manuscripts lacked several journal databases such as Google
Scholar and Web of Science, which may have affected the originality of the analysis. The
extraction of articles from other databases was not performed due to the complexity of the
compilation process for the 110 articles extracted from the Scopus database. Additionally,
several high-impact articles may not have been considered in this work due to the usage of
several filters. The filtering of the articles was based on publication years from 2011 to 2021,
the English language requirement, and the inclusion of articles based on several criteria.
The assessment process tended to deviate from its originality due to the occurrence of
inter-crossing and a combination of many disciplines. The consideration of research areas
based on state estimations such as SOC, SOH, RUL, TM, BCE, and FDP was prioritized, but
work related to nanomaterial and battery chemistry was not considered. Some limitations
of the proposed analytical research analysis are mentioned; nonetheless, some issues and
challenges in the integration of lithium–ion BMS for EV applications must be explored,
which are presented in the following subsections.

5.1. Algorithms/Method Issues

Implementing intelligent algorithms for BMS technology has demonstrated promising
outcomes but constitutes some limitations. Satisfactory results can be obtained with neural
network approaches but require ample space for storage and processing time. Further,
regression- and probabilistic-based techniques deliver satisfactory results against noise,
uncertainty, and data-overfitting issues; nevertheless, accurate solutions are not achieved for
high-dimensionality and non-linear problems. Future predictions with time-series-based
techniques are accurate; however, it requires the determination of past information selection
and feedback steps. Deep learning techniques deliver accurate results, but their operational
skill is constrained by the requirement of a large volume of data and high computational
processors. Thus, further studies including data collection, suitable parameter selection,
and performance verification under uncertainties are essential to developing advanced
algorithms and methods in BMS.

5.2. Optimization Integration Issues

The integration of optimization techniques is a challenging and time-consuming pro-
cess. Various optimization schemes can be integrated with different intelligent algorithms,
but their outcomes vary with regard to execution time and convergence speed. Further,
developing an optimization technique requires in-depth knowledge for initializing parame-
ters and executing the operational loop. Although BMS techniques have been significantly
improved by including optimization techniques with an intelligent algorithm regarding
accuracy, prediction efficiency, and robustness, some issues persist concerning complex
computation and long processing times. Unsatisfactory convergence, searching capability,
and parameter settings may result in inaccurate predictions. Hence, further exploration is
required to overcome optimization integration issues.

5.3. Controller Execution Issues

Controller schemes have been widely explored in BMS technology for various ap-
plications such as temperature control, minimizing capacity loss, increasing battery life,
and avoiding non-uniformity in battery aging [125–127]. The fuzzy logic controller has
been utilized in BMS technology for EV applications [128–130] for temperature regulation,
SOC balancing, etc., but its outcomes are limited by human expertise intervention. Further,
model predictive control (MPC) for BMS technology [131–133] is implemented due to
its various benefits such as optimal control, smoothing power, and robustness against
uncertainty but suffers from several shortcomings in terms of high maintenance costs and
a lack of flexibility, resulting in improper controller operations [134,135]. The implementa-
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tion of droop control technology is observed in some work [136,137] due to its simplicity
and ability to operate independently with internal communications between converters;
nevertheless, it suffers from poor transient performance. Therefore, further investigation is
essential to address the abovementioned issues.

5.4. Appropriate Configuration and Hyperparametric Adjustment

One of the key issues for developing a BMS-based sustainable transportation system re-
lates to the selection of suitable hyperparameters and algorithms for the integration of BMS
in EVs. Various hyperparameters, such as hidden layers, the number of hidden neurons,
epochs, iterations, learning rates, biases, weights, batch sizes, time steps, etc., are usually
considered to frame a sophisticated algorithm. The computational complexity in terms of
overfitting and underfitting can be minimized by utilizing optimal hyperparameters and
grouping functions. Further, implementing hit-and-trial methods consumes more human
energy and time. Therefore, it is necessary to develop an optimized and robust framework
for hyperparameter adjustment and control to accomplish desired BMS outcomes.

5.5. Charging Imbalance Issues in Lithium–Ion Battery Packs

The charging technique implemented in BMS for EV applications plays a key role
in obtaining an appropriate operational balance among battery temperature, efficiency,
battery health, SOC, and lifecycles. A slow charging process might hinder the widespread
acceptance of EVs. Additionally, the fast-charging technique causes excessive heat genera-
tion and reduces operating life. Further, the issue of charging imbalance is prevalent due to
material defects, alterations in physical characteristics, battery health degradation, aging
cycles, manufacturing technology, and tolerances. The charge imbalance also results in
unpredictable state estimation, leading to unexpected circumstances. Hence, an efficient
charging technique is necessary for uplifting performance toward sustainable development.

5.6. Data Abundance, Variety, and Integrity

The main challenges in putting intelligent algorithms into practice are data diversity
and abundance. The accuracy of intelligent methods depends on having enough good-
quality data. However, gathering a sufficient amount of diverse, large-scale data takes
time and effort. Typically, data are gathered through trials with a 1 Hz sampling frequency.
With varying forms of voltage and current values, the data length between EV driving
cycles varies [138]. One EV drive cycle, for example, is calculated to last 1372 s by federal
urban driving schedule (FUDS), 360 s by dynamic stress test (DST), 916 s by Beijing
dynamic stress test (BJDST), and 600 s by US06 drive cycle [139]. Multiple EV drive cycle
repetitions are used to prepare data since intelligent algorithms need a vast pool of data
for training operations [140]. Having more data can help to find better outcomes, but it
can also make the computer work harder and take longer to train, which might cause
over-fitting problems [141]. As a result, concerns with data variety and quantity need
specific consideration.

Another obstacle to putting intelligent approaches into practice in real-world settings
is data integrity. Some well-known automotive research teams [142,143] have made a
high-quality battery dataset that is freely accessible to the public. This dataset contains a
fixed pattern of charge–discharge current that ensures the various protocols of EV drive
cycles. Studies to gather the various EV drive cycle data are conducted in a laboratory
setting with the suggested temperature and charge/discharge current rates. The current
and voltage profiles of EV drive cycles obtained by simulated data do not match those of
actual data collected in a real-world setting. Therefore, more research is required to verify
intelligent algorithms in real-world scenarios.

5.7. Battery Energy Storage Material Issues

Despite the good properties of lithium–ion batteries, estimating SOC is significantly
impacted by the performance variations between positive and negative electrodes. Lithium
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cobalt oxide (LCO) batteries have a low capacity and exhibit good performance; nonethe-
less, they are expensive and have a limited supply of cobalt. The lithium nickel manganese
cobalt oxide (LNMC) and lithium nickel cobalt aluminum oxide (LNCA) batteries deliver
outstanding performance with regard to high capacity and extended lifespan; however,
they are expensive due to a lack of nickel and cobalt supplies. Batteries made of lithium
manganese oxide (LMO) have a high voltage, a reasonable level of safety, decent per-
formance, and a sufficient supply of manganese; nevertheless, they have a low capacity
and short lifespan [144,145]. In [146], the authors employed two different chemistries of
lithium–ion batteries such as lithium titanate (LTO) and lithium iron phosphate (LiFePO4)
to examine the accuracy of the SOC estimation method. Validation was performed through
a test bench platform and an aging cycle test. Initially, the experiments were conducted
using fresh lithium–ion battery cells where a LiFePO4 battery demonstrated better ac-
curacy than LTO, indicating an RMSE of 0.5305% at 25 ◦C. However, the LTO battery
illustrated better outcomes under the aging cycle test, estimating an RMSE of 0.00334%
after 1000 aging cycles.

5.8. Prototype Design and Real-Time Validation

To date, a variety of experimental studies have been conducted to confirm the via-
bility of intelligent methods to examine diagnosis, thermal management, and condition
estimation. However, there has not been a thorough investigation of the application of
intelligent approaches in real-time BMS with compact memory units and low computing
costs. Therefore, further investigation is required to create an embedded prototype system
for state estimation and control in real-time BMS. A study in [147] validated the machine
learning-based SOC estimation approach in real-time using the hardware-in-the-loop (HIL)
experimental platform. A DC source, current sensor, battery monitoring device, host com-
puter, battery management unit, and CAN analyzer were used in the creation of the HIL
test bench. The results showed that the SOC and capacity errors in the HIL test were 2%
and 19.7%, respectively. The authors of [148] evaluated the adaptive network-based fuzzy
inference system (ANFIS)-based SOC estimation in real-time with HIL experimental setup
utilizing the dSpace MicroLabBox hardware controller. The HIL results were highly similar
to the simulated outcomes, demonstrating the appropriateness of the suggested model for
real-time EV applications.

5.9. IoT integration and Cloud Computing Technology

Through cloud storage, cloud computing, and big data platforms, the accuracy and
resilience of intelligent algorithms and controllers of BMSs in real-world settings can be
significantly improved. The use of huge memory devices, computing, and analysis in
conjunction with intelligent approaches is made possible by big data technology. The
constant transfer of EV voltage, current, temperature, and other data to the big data
platform enables the training of intelligent methods using real-time data to produce more
accurate results. The estimation of the battery condition, including SOC, SOE, SOH, and
RUL predictions, as well as thermal runaway and fault diagnosis over the course of the
battery’s lifetime, can be tracked and saved in the cloud. The battery monitoring and
control center will then pre-process the data, run the analysis, and provide useful decisions
for enhancing performance in the future. Haldar et al. [149] examined real-time battery
monitoring and management in Evs based on the internet of things (IoT). To assess battery
health and discharging behavior for Evs in real-time, the authors created a wireless battery
management system. An IoT-based BMS was created by Sivarman and Sharmeela [150]
to control charge imbalance, monitor SOC and SOH, and diagnose faults. Kim et al. [151]
unveiled a cloud-based battery monitoring system for EV applications. Using Raspberry
Pi3 IoT boards, a cyber-physical testbench was used to validate the proposed system. The
findings showed that the condition monitoring algorithm accurately estimated SOC and
capacity while the data mining method evaluated fault diagnosis.
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5.10. EV Regulations, Policies, and Decarbonization Target

Implementing energy policies and regulations would lead to achieving several eco-
nomic and social objectives ranging from energy cost reduction, economic prosperity,
system reliability, and security. Three main points, such as clean development mechanisms
(CDM), joint implementation (JI), and emission trading (ET), which are proposed with
regard to the Kyoto Protocol, have been defied by the United Nations (UN) [152,153].
Several studies have been carried out on decarbonizing the energy sector in Europe. In this
regard, an economic transformation for the energy sector in Europe has been undertaken
to reduce greenhouse gas emissions by 80–95% in 2050 by employing a linear dynamic
optimization model [154]. As per the energy model suggested by Lappeenranta Univer-
sity of Technology (LUT), the power sector in Europe will be 100% based on RES until
2050. It is expected that favorable decarbonized policy implementation would result in a
demand surge for EV transportation by electric cars, buses, and motorcycles to 1.8, 1.5, and
0.6 billion-per km in 2050, respectively, while a decrease of 0.8, 0.6, and 0.2 billion-per km
by 2050 by combustible fuel vehicle. Further, favorable regulations and policies would shift
the market trend from combustible fuel vehicles toward Evs [155].

5.11. Environmental Concerns and Recycling Process

Torabi et al. [156] focused on environmental and decarbonization problems with Evs.
The effects of Evs on lowering carbon emissions should be the subject of further exploration.
As oil price rises and the need for vast amounts of energy for sustainable transportation
increases, automotive electrification, such as Evs, HEVs, and PHEVs, grows in popularity.
Toyota predicted that more than 7% of all transportation would be made up of EVs by
2020 [28]. Despite their positive impacts on the environment by reducing the number of
oil-based cars, lithium–ion batteries emit CO2 and GHGs during their manufacturing and
disposal [157]. The US EPA previously investigated the use of nickel- and cobalt-based
cathodes in lithium–ion batteries as well as the processing of electrodes using solvents.
They discovered significant environmental effects, including resource depletion, global
warming, ecological toxicity, and effects on human health [158]. Utilizing a lithium–ion
battery recycling process might reduce this risk and conserve natural resources by using
nickel and cobalt less frequently [158,159]. Therefore, it is necessary to further analyze how
EVs can affect the environment and contribute to achieving the Sustainable Development
Goals (SDGs).

6. Conclusions and Emerging Future Directions

The work presents an analytical analysis of smart BMSs for EV applications. A
total of 110 high-impact articles from the Scopus database were considered between 2011
and 2021. Primarily, citation analysis was performed, depicting a significant impact on
the desired research area of the manuscript. Further, several investigations have been
carried out consisting of essential keywords such as published articles in a year, number of
citations, highly cited articles in the last 5 years, affiliated country, journal name, publisher,
and research areas. The primary aim of this paper is to showcase the most influential
articles and offer insight into the evolution of battery energy storage technology for EV
applications. In addition, 13 major research areas of BMS in EVs have been discussed
thoroughly. Moreover, notable methods and algorithms in the highly impactful articles
for BMS have been investigated. The articles provide various effective suggestions and
directions for future improvement trends for smart BMS in EVs, which are as follows.

• The application of smart BMS in EV applications is now being widely accepted as the
future of mobility for delivering sustainable development in the transportation sector.
However, there are some issues with BMS in EV applications, such as short driving
range, short battery lifespan, long charging times, high initial costs, poor vehicles,
and ineffective EV-based policies. Thus, further analysis is essential for developing
accurate BMS technology in better controlling mechanisms, favorable market policies,
global collaboration, and sustainable development for enhanced EV performance.
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• BMS utilization significantly controls the battery heating and cooling in EVs and hence
increases the stability and reliability of battery operation. Nonetheless, due to thermal
effects, deep diving range loss occurs in EVs, reducing the overall system’s efficiency.
Additionally, the involvement of thermal effects due to thermodynamics and the
kinetics of electrochemical processes may deliver poor efficiency and performance
and pose a danger to the functionality of BMS. To prevent issues as mentioned earlier,
dynamic instability can be minimized by applying a supercapacitor integrated with
lithium–ion battery storage and dynamic regulation and frequency management.
Furthermore, issues related to system aging and power curtailment can be minimized
by utilizing optimized BMS and dynamic thermal rating in real-time applications.

• To operate BMS in EVs effectively and appropriately, it is crucial to accurately predict
a lithium–ion battery’s SOC, SOH, and RUL. An inaccurate prediction of SOC would
lead to overheating, overcharging, and over-discharging problems. Moreover, inaccu-
rate predictions of the SOH and RUL of a battery would result in prematurely replacing
the battery or waiting until an explicit failure event occurs, thereby increasing the
capital cost. Therefore, more research activities in terms of deep learning algorithms
should be implemented for state estimation to improve the prediction accuracy, robust-
ness, and reliability of BMS in EV applications. Further, the estimation of battery SOC,
SOH, and RUL can be enhanced by employing multi-scale and co-estimations that
could improve the system’s operational efficiency and minimize the computational
complexity of BMS.

• The controllers applied in BMS play a vital role in battery equalization and fault
diagnosis. Battery inconsistency issues relate to changes in their internal parameters,
such as internal resistance and capacitance, due to various factors such as battery aging
and temperature variation. Additionally, fault diagnosis in BMS is important as it can
prevent various issues such as thermal runaway, short circuits, electrolyte leakage,
battery swelling, over-discharging, and overheating. Therefore, appropriate controller
techniques are required to obtain the safe operation of BMSs in EV applications.

• The hybridization or integration of intelligent algorithms has enhanced outcomes
over non-hybrid intelligent algorithms. The hybridized algorithm is developed by
integrating an intelligent algorithm with an optimization model or a combination of
two intelligent algorithms that need complex mathematical computation, a higher con-
figuration processor, and human expertise, leading to undesirable results. Therefore,
future studies are necessary while considering practicability issues for developing an
effective hybrid model.

• To date, the validation of intelligent algorithms of battery SOC, SOH, RUL, TM,
BCE, and FDP has been validated with experimental tests. Nonetheless, the real-
time execution of intelligent algorithms with a low computational burden and small
memory devices has not been carried out. Therefore, further research is necessary to
design an advanced battery testing system and establish an embedded prototyping
product or hardware-in-the-loop system for real-time algorithm execution, control,
analysis, and management in BMS.

• Although BMS-integrated EV has gained substantial ground toward grid decarboniza-
tion and sustainable development, some environmental issues, such as soil and ground-
water contamination, causing landfill fire and air pollution, have been ignored. Further,
the improper disposal of batteries would result in health hazards as well as water
and air pollution. Hence, to prevent inappropriate disposal, lithium–ion batteries
should be reused and recycled effectively to reduce the carbon impact and minimize
the environmental issue. The appropriate utilization of battery materials, discharge
time, power output, rated power, specific energy, and expenses would prove beneficial
for achieving SDG.

• The efficiency and robustness of the algorithms implemented in BMS techniques can
further be improved by integrating real-time monitoring, big data, and cloud-based
technology. The accuracy and efficiency of the implemented algorithm in BMSs can be
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precisely evaluated by utilizing the real-time data from EVs regarding voltage, current,
temperature, etc. Further, battery state estimation data can be acquired through
monitoring and stored in a cloud-based database. The future performance of the
system can be improved by performing various steps consisting of data extraction,
data analysis, and future prediction. Thus, the efficiency of BMS can be significantly
enhanced to deliver better outcomes.

• Many intelligent functionalities are difficult to address in BMSs for EV applications
due to the low computational resources, typically around 300 MHz. The cloud
BMS topic has recently been discussed in several works to overcome this limitation.
Yang et al. [160] introduced a general framework utilizing an end-edge-cloud ar-
chitecture for cloud-based BMSs with the composition and function of each link.
Madhankumar et al. [161] introduced a technique to examine the health and life of
a battery. Wang et al. [162] investigated digital twin technology and cloud-side-end
collaboration for future battery management systems. Nonetheless, there are some
concerns with respect to the implementation of this technology. Therefore, further
research can be conducted to overcome these issues.

Top-quality, highly cited research articles significantly influence the corresponding
research fields. In the presented analytical analysis, 110 highly cited articles were selected
after several filtering processes to present a broad view of the research activities in BMSs
for EV applications. Further, the analysis discussed recent trends in publishing articles,
issues, and recommendations. Therefore, understanding the features of most cited articles
presents several advantages, as follows:

• Future research activities can benefit from the characteristics of highly cited articles in
the field of BMSs for EV applications.

• Highly cited articles could form a foundation for young researchers to develop and
promote up-gradation in a particular field.

• The analytical analysis presented provides an outline and investigation of the selected
most cited articles and guides academicians, researchers, and engineers to explore
possible research collaborators around the globe.

• The discussion and analysis offered in this article will lead journal editors, reviewers,
and other resourceful researchers to evaluate the submitted article.

• The analytical analysis can assist decision-makers and government/private officials in
drafting a long-term energy plan toward developing a prosperous and healthy society
and achieving global decarbonization targets by 2050.

Overall, it can be observed that analytical analysis for the most cited articles between
2011 and 2021 is expected to contribute to the sustainable operation and management of
battery storage systems for EV applications. Thus, further investigation of smart battery
management technology will not only enhance battery lifetime and performance but also
expand the battery and EV market, thereby achieving a pathway for SDGs concerning
emission reduction, clean energy, employment opportunities, economic development, and
sustainable cities.
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Appendix A

Table A1. 110 top-cited and highly influential manuscripts (2011–2020) in the area of battery management technology for EV applications.

Refs. Keywords Journal Name Publisher Article Type Year Country Total Citations Contributions Research Gaps/Limitations

[33]
BFD; BMS; BSE; Battery

uniformity and equalization;
CVM; PHEV

JPS Elsevier Ltd. Review 2013 China 2516 Reviewed BMS and its
key issues.

Other BMS technologies,
such as ultracapacitor, were

not reviewed.

[163]
Charge and discharge; CT;
ED; HGR; HEV; LIB; LIC;

LTP; OP; RC; SE; TM
JESOA IOP

Publishing Review 2011 United
States 974

Thermal issues related to
lithium–ion batteries

were discussed.

Other lithium–ion battery
issues such as cell

unbalancing and fault
diagnosis may be discussed.

[35] BMS; EV; LIB; SOCE; SOC RSERF Elsevier Ltd. Review 2017 Malaysia 618
SOC estimation in EV

application was
discussed.

Other state estimations, such
as SOH and RUL, were not

covered.

[86] BM; On-line estimation
algorithm; PP; SOC; SOH JPS Elsevier Ltd. Review 2014 Germany 574

Monitoring for
lithium–ion battery

operation was reviewed.

Issues and future prospects
were not discussed
comprehensively.

[75] EV; ECM; Experiment; LIB;
SOCE Energies MDPI AG Article 2011 China 557

Presented various ECM
models to improve
lithium–ion battery
performance in EV

applications.

Further exploration with
filter-based techniques
should be conducted.

[164] EV; ES; PCM; PB; TEM RSERF Elsevier Ltd. Review 2011 China 549

A review based on
thermal

management-based BMS
in EV applications was

performed.

Issues and future suggestions
related to thermal

management were not
covered comprehensively.

[165]
BMS; BT; Charge/discharge;

EV; OC; SOH; SOC; EV;
Management; SPG

IIEM IEEE Article 2013 United
States 470

The application of BMS in
EVs and smart grids was

reviewed.

Issues and challenges were
not covered.

[166] BM; EV; Electrochemical; EC;
Lithium Sulphur RSERF Elsevier Ltd. Review 2016 United

Kingdom 352 Lithium-sulfur battery
technology was reviewed.

The review was not
comprehensive and depicted

the initial stage of Li-S
implementation in various

applications.
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Table A1. Cont.

Refs. Keywords Journal Name Publisher Article Type Year Country Total Citations Contributions Research Gaps/Limitations

[83]
LIB; Mobility; Prognostics
and health management;

Safety; SOH; SOC
JPS Elsevier B.V. Review 2014 United

States 349
Battery state estimations
such as SOC and SOH

were reviewed.

Comprehensive descriptions
of future prospects were not

mentioned.

[98] EV; KF; LIB; RLS; SOH; SOC JPS Elsevier B.V. Article 2015 China 341
A hybrid SOC and SOH
estimation using a filter

technique was proposed.

Validation using other
filter-based techniques was

not covered.

[167] BMS; Li-ion technology; Real
applications; SOHE RSERF Elsevier Ltd. Review 2016 Spain 333

SOH estimation
techniques were

reviewed.

Other important battery state
estimations, such as SOC,

were not covered.

[63]
HP; LIB; BTM; Low carbon
vehicles; Pure electric and

hybrid cars
RSERF Elsevier Ltd. Review 2016 United

Kingdom 332

A review on two aspects,
battery thermal model

development and
thermal management

strategies, was
conducted.

Issues related to the thermal
management of batteries

were not covered
comprehensively.

[168]
Aging mechanism; DV;

Incremental capacity; LIB;
SOH

JPS Elsevier B.V. Article 2014 China 332
The aging mechanism of

five different batteries
was analyzed.

Further research on
lithium-manganese battery to

achieve on-board
identification was not

covered.

[169] BM; LIB; PC; Temperature
effects; TMS ECMAD Elsevier Ltd. Review 2017 Hong

Kong 304

Battery thermal
management and its
related issues were

reviewed.

Future suggestions to
eliminate thermal

management issues were not
covered.

[72]
Batteries; dc-dc converters;

EM; FC; hybridization;
optimization; SC

ITIED IEEE Article 2014 Canada 299

A comparative analysis of
various EMS schemes for

a fuel-based cell was
proposed.

A design for a multiobjective
optimization of EMS

to optimize all the
performance criteria was not

included in the method.

[76] BMS; BM; EV; LIB ECMAD Elsevier Ltd. Conf. Paper 2012 China 279
A comparative study of

various model-based
methods was conducted.

Filter-based techniques could
be employed for suitable

model parameters selection.
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Table A1. Cont.

Refs. Keywords Journal Name Publisher Article Type Year Country Total Citations Contributions Research Gaps/Limitations

[170]
Air-cooled module; EV; LIB;

TMS; Temperature rise;
Temperature uniformity

JPS Elsevier Ltd. Article 2013 United
States 265

3D CFD simulations were
performed for an

air-cooled PHEV Li-ion
battery module.

Further research on filling the
air gaps and analyzing heat
transfer was not performed.

[171] AEKF; BMS; EV; LIB; SOC ITVTA IEEE Article 2013 China 254
SOC estimation based on

a filter technique was
conducted.

Meta-heuristic optimization
techniques may be employed

for better outcomes.

[172] BMS; LIB; SOC; SOH; SOL Energies MDPI AG Review 2011 Hong
Kong 253

BMS in the EV
application was

reviewed.

The review was not
comprehensive.

[74] BMS; CE; EV; LIB ITPEE IEEE Article 2013 South
Korea 227

Development of a
Modularized Charge

Equalizer.

Research based on a high
stack of Li-ion batteries can

be conducted.

[64] Air cooling; EV; HEV; LIB JPS Elsevier Ltd. Article 2013 South
Korea 226

Air flow configuration to
cool batteries in EV

applications was
proposed.

Further study can be
conducted with

fuel-cell-based vehicles.

[173] Bayesian Inference; EV; ES;
HM; LIB; ML ITIED IEEE Article 2016 China 224

Battery health was
analyzed with sample

entropy.

Appropriate selection of
battery parameters may be

conducted for better
outcomes.

[88] Batteries; BMS; dc-dc power
converters; EV; ES ITVTA IEEE Article 2011 Austria 224

A cell balancing
technique was discussed
for lithium–ion batteries.

Further work to implement a
capacity balancing strategy

can be conducted.

[174] BTM; CM; Cooling model;
LIB ATENF Elsevier Ltd. Article 2016 United

States 220

A 3D- electrochemical,
thermal modeling of the
battery cooling method

was conducted.

Appropriate use of low mass
flow rates to regulate

temperature rise should be
conducted.

[68] BMS; EV; LIB; NN; SOCE;
Unscented Kalman filter IEPSD Elsevier Ltd. Article 2014 United

States 216 SOC estimation with NN
model was performed.

Appropriate selection of
model hyperparameters
should be conducted by
employing optimization

techniques.
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Refs. Keywords Journal Name Publisher Article Type Year Country Total Citations Contributions Research Gaps/Limitations

[175] BMS; BM; BSE; Capacity
estimation; HEV; LIB JPS Elsevier Article 2015 Germany 208

State estimation methods
for lithium–ion batteries
in EV applications were

reviewed.

Issues and challenges were
not discussed.

[176] Heating; LIB; Low
temperature; Modeling; TMS ELCAA Elsevier Ltd. Article 2013 United

States 203

Development of heating
strategies for lithium–ion

batteries operating at
subzero temperatures.

Effect of the heating model
on battery cycle life should

be quantified.

[177] Convection cooling;
Discharge; LIB; MM; TMS IJERD John Wiley &

Sons, Inc. Article 2013 Canada 199

Implementation of
appropriate cooling

strategies for lithium–ion
batteries.

The effect of forced cooling
and application of PCMs at
the battery pack boundaries

should be further
investigated.

[67]
BMS; CB; Cell Equalization;
DCDC Converter; EV; LIB;

BP; SG; SOC
ITIED IEEE Article 2015 United

States 198
An energy-sharing SOC

balancing control scheme
was developed.

Future work can be
conducted based on other

battery applications such as
DC micro grids and

aerospace battery systems.

[73] LIB; Metal foam; PCM; TMS JPS Elsevier Ltd. Article 2014 China 195
A cooling structure for

lithium–ion batteries was
developed.

Validation with other models
was not comprehensively

performed.

[71] EV; EMS; LIB; SOC; SOH IEEE Access IEEE Review 2018 Malaysia 194

A review based on
various lithium–ion

battery technologies was
conducted.

The battery state estimation
was not reviewed
comprehensively.

[178] Battery; EV; LIB; PI;
Sliding-mode observer; SOC ITVTA IEEE Article 2014 China 188

Developed a SOC
estimation technique for

lithium–ion batteries.
Complex methodology.

[179]
BTM; Liquid cooled cylinder;
Local temperature difference;

MT
ECMAD Elsevier Ltd. Article 2015 China 185

Cooling technique based
on a mini-channel

liquid-cooled cylinder
was presented.

Further work may be
concentrated on analyzing

the entrance size with regard
to heat dissipation.
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Refs. Keywords Journal Name Publisher Article Type Year Country Total Citations Contributions Research Gaps/Limitations

[180] Capacity; Degradation; EV;
Impedance; LIB; SOH JPS Elsevier B.V. Review 2018 China 179

SOH estimation
techniques were analyzed

and reviewed.

Issues and challenges were
not comprehensively

described.

[181]
Cooling configuration; EV;

LIB; Temperature
distribution; TMS

JPS Elsevier B.V. Review 2017 China 177
Thermal issues and

cooling configurations
were reviewed.

Future suggestions for
developing enhanced cooling
strategies were not covered.

[182] LIB; EV; SOH; RLU; Thermal
runway; Aging JCLEPRO Elsevier B.V. Review 2018 Malaysia 177 SOH and RUL techniques

were reviewed.

The review was not
comprehensive based on

SOH and RUL.

[69] BMS; electrochemical model;
LIB; PDE observer design IETTE IEEE Article 2013 United

States 176
Presented a state

estimation strategy for
lithium–ion batteries.

Development of a parameter
estimation technique for

estimating parameter
changes.

[183] BTM; LIB; Next generation
battery; VCC ATENF Elsevier Ltd. Review 2019 South

Korea 173
Various battery thermal
management systems

were reviewed.

The issues associated with
various battery thermal

management systems were
not covered

comprehensively.

[184]
Convergence behavior; EKF;

LIB; Robust estimation;
SOCE

JPS Elsevier Ltd. Article 2013 Germany 166

Conducted a comparative
study for the SOC

estimation of lithium–ion
batteries.

Appropriate data sampling
techniques can be used for

better outcomes.

[185] BMS; LIB; LSTM; ML; NN;
RNN; SOC ITIED IEEE Article 2018 Canada 165 SOC estimation with

LSTM networks.

Requires a sufficient amount
of data to deliver satisfactory

SOC results.

[186] LIB; Nail penetration; PCM;
TMS; Thermal runaway JPS Elsevier B.V. Article 2017 United

States 163

Development of a phase
change composite

material for thermal
runaway protection.

Features such as higher
energy density cells, cell

state-of-charge, and spacing
between cells should be

studied in the future.

[89] BMS; EV; Estimation error;
LIB; SOC JPS Elsevier B.V. Review 2018 China 162

SOC estimation
techniques were

reviewed.

Issues and challenges related
to SOC estimation were not

covered.
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Refs. Keywords Journal Name Publisher Article Type Year Country Total Citations Contributions Research Gaps/Limitations

[79] HP; LIB; Numerical model;
TMS ATENF Elsevier Ltd. Article 2015 Singapore 162

Optimization of a heat
pipe thermal

management system.

Other charging scenarios
should be considered for
better validation of the

proposed method.

[93]
BMS; dc-dc power converters;

EV; equalizers; LIB;
zero-current switching

ITPEE IEEE Article 2015 China 161

Direct cell-to-cell battery
equalizer based on

quasi-resonant
LC converter and boost

converter
is proposed.

Future work can be
performed with a battery

pack with more than a
hundred cells in EV

application.

[187] LIB; Online estimation; SOC;
SOF; SOH ITVTA IEEE Article 2018 China 159 SOC, SOH, and SOF

estimation is performed.

The execution of RC model in
SOF estimation can be
performed to estimate

non-instantaneous power.

[188]
Batteries; electrochemical
modeling; OC; PHEV; PM;

stochastic control
IETTE IEEE Article 2013 United

States 158

Power management
techniques for optimal
balance e lithium–ion

battery pack health and
energy

consumption cost.

Battery health models can be
integrated with a control

algorithm to develop
accurate power management

techniques.

[82]
Capacity degradation

parameter; LIB; RUL; SOH;
SVM

JPS Elsevier B.V. Article 2014 China 154
SOH and RUL estimation
of lithium–ion batteries is

conducted.

The delivered outcomes can
be improved with the

inclusion of other battery
parameters.

[189] BTM; EV; Liquid; TE; VTM ECMAD Elsevier Ltd. Review 2019 China 152

Discussed battery
management system, and
a systematic review of the

liquid-based system is
performed.

The issues related to the
liquid-based system in EV

were not discussed.

[190] Aging; batteries; lifetime
estimation; NN; SOC; SOH ITVTA IEEE Article 2017 Canada 151

SOC and SOH estimation
of the lithium–ion battery

was conducted.

Careful selection of data
samples should be

performed.
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[191]
Battery cooling; Electrode

modification; HG; LIB; TMS;
TP

JPS Elsevier Review 2015 Canada 150

The heat generation and
dissipation of

Lithium–ion batteries are
reviewed.

Future suggestions could be
discussed more

comprehensively.

[192] BTM; HP; LIB; PCM;
Thermal network model JPS Elsevier B.V. Article 2014 United

Kingdom 144 Battery thermal-related
issues were investigated.

Further research is required
to validate the model with

other existing literature.

[77]
Dual-scale; Inconsistency;
LIB; Model-based; SOC;

Uncertainty
JPS Elsevier B.V. Article 2015 China 139

SOC estimation of the
lithium–ion battery pack
for EV applications was

performed.

Validation with other models
was not performed.

[193] BMS; DNN; ESS; LIB; LM;
SOCE JPS Elsevier B.V. Article 2018 Canada 138

DL technique-based SOC
estimation of a

lithium–ion battery was
performed.

Suitable model
hyperparameters should be

selected for accurate
outcomes.

[91]
Double scale; LIB; PF;

Remaining available energy;
SOC

ITIED IEEE Article 2017 China 136
SOC estimation for

lithium–ion batteries with
a particle filter.

Validation with other models
was not performed.

[95]
Aging; EV; Dispersion;

Distribution; Production;
Variation

JPS Elsevier Article 2015 Germany 135

Characterization of 484
cells was performed by
capacity and impedance

measurements.

The increased variation with
new cells should be

investigated.

[194]

Ageing mechanism; Battery
health diagnostics and

prognostics; Data-driven
approach; EV; LIB; SE

RSERF Elsevier Ltd. Review 2019 United
Kingdom 130

Data-driven based SOH
and RUL estimation

techniques for
lithium–ion batteries

were reviewed.

DL-based SOH and RUL
estimation techniques were

not included.

[195] BMS; BP; EV; ECM; LIB JPS Elsevier Article 2016 United
Kingdom 130

Exploration of varied
properties of cells

connected in parallel.

Ageing testing and
analysis may be performed to

evaluate the impact of
connecting cells in parallel on

ageing.
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[196] LIB; MECM; SOC; UKF JPS Elsevier Article 2014 China 129
Model-based SOC

estimation of lithium–ion
batteries.

Validation was not
conducted comprehensively.

[92] Capacity loss model; CL; EV;
LIB; SOH JPS Elsevier B.V. Article 2014 China 129

An experiment based on
dynamic life cycle was
developed and capacity
loss was simulated by

employing a
semi-empirical method.

Further experiments can be
perfumed with battery packs

for EV applications.

[197]

Capacity and power fade;
Cycle-life prognosis; LIB;

NMC-LMO cathode; PHEV;
Semi-empirical model

JPS Elsevier Article 2015 United
States 126

Aging model was
developed for

Lithium–ion batteries.

The developed aging model
can be used to examine the
aging propagation among

cells in a battery.

[96] Capacity; EV; LIB; Resistance;
SOC; SVM JPS Elsevier Article 2014 Sweden 126

SOH estimation of a
lithium–ion battery was

conducted.

Suitable selection of battery
parameters and their data

samples should be
performed for accurate SOH.

[80]

BR; Failure modes,
mechanisms, and effects

analysis; LIB;
Physics-of-failure

JPS Elsevier B.V. Review 2015 United
States 125

Failure modes and
mechanisms of

lithium–ion batteries
were discussed.

Further research based on
design and testing should be
conducted to develop a better

and more reliable battery
management system.

[198] AC; Local temperature
difference; MT; PB; TMS ATENF Elsevier Ltd. Article 2015 China 124

Thermal model was
developed for a

cylindrical lithium–ion
power battery pack.

The outcomes when the cell
is in the flow direction

should be analyzed carefully.

[199] CS; HP; HEV; LIB; Transient
input power ATENF Elsevier Ltd. Article 2014 France 124

Development of a heat
pipe to mitigate the

temperature of a battery
module.

The effectiveness of flat heat
pipes under different road

conditions should be studied.
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[200] Battery in the loop; capacity;
HIF; LIB; Multiscale; SOC ITPEE IEEE Article 2018 China 122

SOC estimation
framework for

lithium–ion batteries with
a filter technique.

Suitable meta-heuristic
techniques could be

employed for better model
parameter selection.

[201]
BTM; EV; Electro-thermal

model; Finite volume
method; LIB

JPS Elsevier Ltd. Article 2012 United
Kingdom 122

Thermal modelling for a
lithium–ion battery was

constructed.

A cell electrical dynamics
model can be developed and

effects on the voltage and
temperature can be studied.

[202] BTM; Passive system; PCM;
Semi-passive system JPS Elsevier B.V. Review 2018 France 121

A review based on a
battery thermal

management system was
conducted.

Issues related to battery
thermal management

systems for EV applications
were not covered
comprehensively.

[203]
BIM; BMS; EV; LIB;

Perturbation; PCC; SG; SOC;
SOH

ITIED IEEE Article 2014 United
States 121 Proposed an online

impedance measurement.

Further work to estimate
SOH could be conducted by

utilizing the online
measurement.

[204]
BA; BMS; Charge control

optimization; EV;
Experimental validation

ITVTA IEEE Article 2017 China 120

Developed a
mathematical

formulation to optimize
the control problem.

Real-time optimization can
be achieved by combining a

coupled
electro-thermal-aging model
with an adaptive estimator.

[205] BMS; EV; LIB; PF; Prognostics
and health management IEIMA IEEE Article 2016 Hong

Kong 120

An RUL prediction
framework was
developed for

lithium–ion batteries.

Further research should be
based on the hybridization of

the proposed model with
other data-driven models.

[206]

Advanced vehicle control
systems; BMS; BP; Charging

time; EPSC; PHEV; AC;
Computational speed; OC;

LIB

PRACE IEEE Conf. Paper 2011 United
States 120

Explored the utilization
of charging strategies for

charging.

Battery charging parameters
with aging should be studied

with the proposed model.
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[207] BMS; BM; BT; EMS; ESS;
HESS; LIB; UC JESTPE IEEE Review 2016 Canada 119

Reviewed various energy
storage and management

systems for EV
applications.

The fuel-cell based energy
storage was not considered in

the review.

[208] BR; Battery second use; Grid
stabilization; LIB Energies MDPI AG Review 2019 United

States 118 Discussed various battery
technologies.

The work was not
comprehensive and lacked

the addressment of BMS and
its applications.

[209] EV; LIB; Mini-channel
cooling; TMS ATENF Elsevier Ltd. Article 2016 United

States 117 Proposed a thermal
management system.

Factors such as pressure drop
and pump power should be

carefully studied.

[210] HEV; LIB; BP; Pin fin heat
sink; TMS JPS Elsevier B.V. Article 2015 United

States 117
The assessment of an

air-cooled module was
conducted.

The trend based on the
relationship between inlet air

velocity and temperature
should be further

investigated.

[211]

Galerkin; HEV; LIB; Model
order reduction; Model
simplification; Porous

electrode

JPS Elsevier B.V. Article 2012 Canada 117
A simplification of the

lithium–ion battery
model was presented.

The proposed method can
also be implemented in
charging applications.

[212] Battery; BMS; CS; FEV; HEV;
Lead-acid battery; LIB; SC PMDEE SAGE

Publishing Review 2013 Germany 116

Current battery
technology for the

automotive industry was
discussed.

Battery management system
application was not

discussed comprehensively
with regard to its various

applications.

[213] EV; LIB; Liquid metal
cooling; TMS ECMAD Elsevier Ltd. Article 2016 China 115

New technology based on
coolant was proposed for

thermal management.

Future work can be based on
optimizing the cooling

channel.

[214] BM; ED; HPPC-test; LIB;
Performance tests; PD; RC Energies MDPI AG Article 2012 Belgium 114

Lithium–ion battery
technologies were

investigated.

Future suggestions for the
implementation of
lithium–ion battery

technologies were not
presented.
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[215] HGR; Internal preheating;
LIB; Low temperature JPS Elsevier Article 2015 China 112

A method to preheat
lithium–ion batteries at
low temperatures was

developed.

Further investigation based
on the selection of amplitude
and frequency of AC current

should be studied.

[216] EV; Flat plate loop heat pipe;
LIB; TMS ATENF Elsevier Ltd. Conf. Paper 2016 Indonesia 111

A thermal management
model based on a flat

plate loop heat pipe for
EV applications was

studied.

The phenomenon of
temperature shoot-up during
start should be reduced for

better outcomes.

[217] BC; BD; Charge optimization;
EV; LIB JESTPE IEEE Article 2014 United

States 110
Developed a model to

minimize vehicle
charging costs.

Future work can be based on
the implementation of pro
work in onboard vehicle

chargers.

[218] Batteries; BMS; EV; EC;
Parameter extraction ITCNE IEEE Article 2014 Finland 109

A Thevenin-equivalent
circuit-based lithium–ion

battery model was
developed.

Further work can focus on
temperature and rate effects.

[219] SOCE; HEV; KF; PHEV JPS Elsevier Ltd. Article 2013 Canada 106
SOC estimation
framework for

lithium–ion batteries.

Improved KF techniques can
be employed for better SOC

outcomes.

[220] BD; EV; V2G JPS Elsevier B.V. Article 2016 United
States 105

Employed
comprehensive thermal

and EV powertrain
models to estimate SOC,

current, internal
resistance, etc.

Other capacity fading models
from other battery

technologies can be
implemented with the

proposed work.

[65]
Channeled liquid cooling;

LIB; TMS; Numerical
simulation; Thermal model

IJHMA Elsevier Ltd. Article 2018 China 104

The thermal behavior of
lithium–ion batteries was
studied during charging

and discharging.

Work based on optimizing
channeled liquid flow was

not conducted.
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[221]
Comparison; LIB; NLF;
Online implementation;

SOCE
ITIAC IEEE Article 2018 China 104

Various models were
analyzed for the SOC

estimation of lithium–ion
batteries.

Real-time implementation of
the proposed method can be

carried out.

[94]

BMS; LiFePO4 battery; Model
parameters estimation;

Multiple adaptive forgetting
factors; RLSE; SOCE

JPS Elsevier B.V. Article 2015 Australia 103

A SOC estimation
framework was
developed for

lithium–ion batteries.

Appropriate selection of
battery parameters such as

voltage, current, and
temperature was not carried

out.

[222]

Entropy weight method;
Grey relational analysis;

Incremental capacity analysis;
LIB; SOH

JPS Elsevier B.V. Article 2019 China 102

A SOH estimation of
lithium–ion batteries

framework was
developed.

The proposed model can be
integrated with other models
and SOH estimation accuracy

can be calculated.

[223] Coolants; CP; CS; LIB ATENF Elsevier Ltd. Review 2018 China 101
Studied different coolants
and cooling strategies for

lithium–ion batteries.

Further investigation to
select a better coolant should

be conducted.

[224] BMS; CM; CE; EV; LIB; SOCE - IEEE Conf. Paper 2012 Austria 100
Proposed a design of a
battery management

system.

Further investigation should
be conducted to demonstrate

the effectiveness of the
battery management system.

[225]

Battery thermal efficiency;
BTM; Cell thermal design;
Extreme fast charging; HG;

LIB

JPS Elsevier B.V. Article 2017 United
States 99

Reviewed thermal
management in the

battery storage system.

The impact of cell design on
temperature variation
within the cell and the
temperature imbalance

within the pack should be
studied.

[226] BT; EV; Electro-thermal
model; HG; LIB JPS Elsevier Ltd. Article 2014 Singapore 99

Modeling of the electrical
and thermal behavior of

lithium–ion batteries was
constructed.

Rapid and fast charging
scenarios during driving

conditions were not covered
in the study.
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[227] Battery; BT; PHEV JPS Elsevier Ltd. Article 2011 United
States 98

Study to analyze battery
degradation through

experiments for
lithium–ion batteries was

proposed.

Development of smart
degradation control
strategies should be

performed.

[228]
Adaptive extended Kalman
filter; BP; EV; Filtering; SOC;

Unit model
JPS Elsevier Ltd. Article 2013 China 96

SOC estimation of a
lithium–ion battery pack

was presented.

Application of intelligent
AI-based models should be

undertaken for better
outcomes.

[229] BMS; EV; Health indicator;
LIB; Moving window; RUL ITVTA IEEE Article 2019 China 95

RUL prediction of the
lithium–ion battery was

proposed.

Other data sampling
strategies could be employed

and the outcomes can be
compared.

[97] BPNN; BSA; EV; LIB; SOC IEEE ACCESS IEEE Article 2018 Malaysia 95

SOC estimation for
lithium–ion batteries was
proposed by the neural

network model.

An accurate selection of
battery parameters and data

samples should be
conducted.

[230] Internal resistance; LIB;
On-board diagnosis; SOH JPS Elsevier B.V. Article 2011 Germany 95

A new instrument was
developed in a lab to

satisfy the requirements
of electrochemical

impedance.

Further study is required to
validate the newly developed

instrument.

[231]
EV; LIB; Mini-channel

cooling; NP; TMS; Thermal
runaway

ATENF Elsevier Ltd. Article 2017 United
States 93

Proposed mini channel
cooling for the battery

system to investigate the
ability to mitigate
thermal runaway.

Further investigation is
required to study the effect of

multifunctional
material-based electrodes for
mitigating thermal runaway.

[232] ECM; BMS; EV; LIB; NN;
SOC ITVTA IEEE Article 2016 Australia 93

Developed an SOC
estimation framework for

lithium–ion batteries.

Appropriate selection of
neural network

hyperparameters was not
considered.
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[233] Battery; BD; EV; LIB;
Modeling; SOC; SOH ITIAC IEEE Article 2015 United

States 93

Investigated the features
of a lithium–ion battery

pack with parallel
connections.

Delivered low accuracy;
further research may

consider the implementation
of cell impedance and

resistance.

[234]

Battery charging
optimization; EV;

Electrothermal-aging model;
Fast charging; LIB

TII IEEE Article 2018 Sweden 91

A model-based
framework was

developed to enable
accurate and effective fast
charging of lithium–ion

batteries.

Further investigation
regarding the adjustment of

charging patterns for a
certain application must be

explored.

[235] ANN; DC; EV; LIB; SOC ITIAC IEEE Article 2015
United
Arab

Emirates
90

An SOC estimation
framework was

developed.

Model hyperparameters
should be selected

appropriately.

[236] TMS; EV; LIB; Thermoelectric
coolers ITVTA IEEE Article 2013 Saudi

Arabia 90

Developed a battery
thermal management

system for lithium–ion
batteries.

Further optimization can be
conducted to achieve
appropriate thermal

responses and energy
consumption.

[237]
EV; LIB; Model simplification;

Pseudo-two-dimensional
model; SOC

JPS Elsevier B.V. Article 2015 China 89

An SOC estimation
technique was proposed
with an improved single

particle model.

The effectiveness of the
proposed SOC estimation

technique could be observed
in real-time applications.

[238]

BS; Fault isolation and
estimation; Learning

observers; Luenberger
observers; System transform

IETTE IEEE Article 2014 United
States 89

Developed a fault
isolation mechanism for

lithium–ion batteries.

Only lower-order systems
were considered for
experimentations.

[239]

EV; Lithium-ion battery;
Fault diagnosis;

Equivalent circuit model;
Long short-term memory
recurrent neural network;

Modified adaptive boosting

TPE IEEE Article 2020 China 88

An equivalent circuit
model was developed to
analyze the internal short

circuit detection of
lithium–ion batteries.

The influence of
an online balance process on

internal short circuit
detection should be studied.
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[240] BAM; Battery lifetime
estimation; ESS; PHEV IJPELEC Inderscience

Publishers Article 2012 United
States 88

Framed a battery life
estimation technique
based on DOD and

temperature.

Further work should be
conducted to explore

real-time driving features.

[241] EMS; SOC; HEV; LIB; PPC Complexity
Wiley

Hindawi Article 2020 China 87

Developed a framework
to estimate the maximum

power capability of
lithium–ion batteries.

Hybridized state estimation
can be performed for better

prediction accuracy.

[242] Battery; BMS; EV; LIB; SOC JPS Elsevier B.V. Review 2016 Germany 86

State of power (SOP)
estimation frameworks
for lithium–ion batteries

were reviewed.

Future work may focus on
improving the robustness of

SOP techniques under
various conditions, such as
wide temperature ranges,

including low temperatures.

AB = Automotive Batteries, AC = Air Cooling, ACS = Automobile Cooling Systems, AI = Artificial Intelligence, AM = Aging of Materials, AP
= Accurate Prediction, AT = Atmospheric Temperature, ATENF = Applied Thermal Engineering, AV = Amphibious Vehicles, BD = Battery
Degradation, BFD = Battery Fault Diagnosis, BM = Battery Modeling, BMS = Battery Management Systems, BP = Battery Pack, BTM = Battery
Thermal Managements, CE = Capacity Estimation, CS = Cooling Systems, CT = Circuit Theory, CV = Commercial Vehicles, DDC = DC-DC
Converters, DR = Discharge Rates, DS = Digital Storage, EB = Electric Batteries, EC = Equivalent Circuits, ECM = Equivalent Circuit Model, ECMAD
= Energy Conversion and Management, ED = Electric Discharges, ELCAA = Electrochimica Acta, EMC = Electric Machine Control, EMS = Energy
Management Systems, EPTN = Electric Power Transmission Networks, ES = Energy Storage, ESS = Energy Storage Systems, EV = Electric Vehicles,
GG = Greenhouse Gases, HED = High Energy Densities, HEV = Hybrid Electric Vehicle, HG = Heat Generation, HP = Heat Pipes, HR = Heat
Resistance, HT = Heat Transfer, HV = Hybrid Vehicles, IEIMA = IEEE Transactions on Instrumentation and Measurement, IEPSD = International
Journal of Electrical Power and Energy Systems, IETII = IEEE Transactions on Industrial Informatics, IETTE = IEEE Transactions on Control
Systems Technology, IIEM = IEEE Industrial Electronics Magazine, IJERD = International Journal of Energy Research, IJESTPE = IEEE Journal of
Emerging and Selected Topics in Power Electronics, IJHMA = International Journal of Heat and Mass Transfer, IJPE = International Journal of Power
Electronics, ITCNE = IEEE Transactions on Energy Conversion, ITIED = IEEE Transactions on Industrial Electronics, ITVTA = IEEE Transactions on
Vehicular Technology, ITIAC = IEEE Transactions on Industry Applications, ITPEE = IEEE Transactions on Power Electronics, JESOA = Journal
of the Electrochemical Society, JPS = Journal of Power Sources, LA = Lithium Alloys, LAB = Lead Acid Batteries, LB = Lithium Batteries, LC =
Lithium Compounds, LE = Laboratory Environment, LIB = Lithium–ion Batteries, LIC = Lithium–ion Cells, LS = Learning Systems, ML = Machine
Learning, MM = Mathematical Models, MT = Maximum Temperature, MTR = Maximum Temperature Rise, NF = Nonlinear Filtering, NN = Neural
Networks, OCV = Open Circuit Voltage, OT = Operating Temperature, PC = Power Converters, PCM = Phase Change Materials, PE = Parameter
Estimation, PHEV = Plug-In Hybrid Electric Vehicle, PHV = Plug-in Hybrid Vehicles, PMDEE = Proceedings of the Institution of Mechanical
Engineers, Part D: Journal of Automobile Engineering, PRACE = Proceedings of the American Control Conference, RH = Reconfigurable Hardware,
RO = Reliable Operation, RSERF = Renewable and Sustainable Energy Reviews, RUL = Remaining Useful Lives, SB = Secondary Batteries, SC =
Solar Cells, SG = Smart Grid, SOC = State Of Charge, SOCE = State-of-charge Estimation, SOH = State of Health, SPG = Smart Power Grids, TB =
Thermal Behaviors, TC = Temperature Control, TD = Temperature Differences, TE = Thermoelectric Equipment, TM = Thermal Management, TMS
= Thermal Management Strategy, TR = Thermal Runaways, TU = Temperature Uniformity, TVC = Thermal Variables Controls.
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