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Abstract: Remaining-useful-life (RUL) prediction of Li-ion batteries is used to provide an early
indication of the expected lifetime of the battery, thereby reducing the risk of failure and increasing
safety. In this paper, a detailed method is presented to make long-term predictions for the RUL based
on a combination of gated recurrent unit neural network (GRU NN) and soft-sensing method. Firstly,
an indirect health indicator (HI) was extracted from the charging processes using a soft-sensing
method that can accurately describe power degradation instead of capacity. Then, a GRU NN with
a sliding window was applied to learn the long-term performance development. The method also
uses a dropout and early stopping method to prevent overfitting. To build the models and validate
the effectiveness of the proposed method, a real-world NASA battery data set with various battery
measurements was used. The results show that the method can produce a long-term and accurate
RUL prediction at each position of the degradation progression based on several historical battery
data sets.

Keywords: lithium-ion batteries; remaining-useful-life (RUL); gated recurrent unit neural network
(GRU NN); real-world data

1. Introduction

Li-ion batteries have become an essential part of our everyday lives. Due to their low
cost, high energy density and long service life, they are already an essential component of
cell phones, laptops and electric cars [1]. In particular, the current progressive political de-
velopments away from combustion engines in the direction of electric mobility increasingly
support this spread of batteries [2], so that energy-efficient and at the same time safe use of
these energy storage devices is essential for an environmentally friendly, resource-saving
and economic future. The lifetime of these batteries is not unlimited, because conductiv-
ity decreases with repeated charging and discharging processes. As soon as the battery
falls below its end-of-life (EOL) threshold, the risk of battery failure or even battery fire
increases [3]. By monitoring the condition and predicting the expected EOL of the battery,
the risk of battery failure can be reduced, thereby increasing safety [4]. On the other hand,
replacing the battery too early leads to a waste of valuable resources, which contradicts the
claim of efficient use. Therefore, a precise prognosis is of essential importance.

To predict the remaining-useful-life (RUL) of Li-ion batteries, a differentiation is
usually made between model-based and data-driven methods. For the application of model-
based methods, detailed prior knowledge of the respective battery is required [5]. Mainly, an
electrochemical model is used, which is represented by differentiated mathematical models
in order to be able to represent the internal chemical process reactions [6]. Model-internal
variables can be represented precisely with this method, whereby a high accuracy in the
prediction can be achieved [6]. However, these models are highly complex and the battery
has to be disassembled for the parameterization of the electrochemical model [7], which
makes them difficult to integrate into real applications [8]. In contrast, data-driven methods
do not focus on the complex internal electrochemical reactions and failure mechanisms
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of the battery [9]. Rather, the internal behavior of a battery is considered as a black box
to model and simplify electrochemical dynamics. For this purpose, a model is generally
created first and then it is refined and optimized using plenty of historical data [10] so
that the model can learn battery performance degradation behavior directly from the
monitoring data.

In recent years, the data-driven method and in particular the AI-based methods have
attracted much attention in the research area of RUL prediction for Li-ion batteries. These
methods can be divided into the meta-areas of Neural Networks [11–13], Support Vector
Machines [14–16] and Deep Learning. One widely used method for predicting time-series
data is the Recurrent Neural Network (RNN). However, this method tends to explode and
vanish gradients due to its structure. Therefore, the RNN-based and improved variant, the
Long-Short-Term-Memory Neural Network (LSTM NN) is often used. For example, Zhang
et al. presented an LSTM NN that predicts the RUL based on historical capacity data [17].
Park et al. introduced an LSTM model using multi-channel charging profiles. However, the
prediction interval is set to a fixed value [18]. LSTMs are well suited to store and transfer
information from long data sequences, but LSTMs require a large number of parameters
for training.

To overcome this issue, the Gated Recurrent Unit Neural Network (GRU NN) was
developed. This method is similar to the LSTM but has a simplified structure and fewer
parameters, making it especially suitable for online RUL prediction. Previous works with
this approach are mostly based only on using classical performance indicators such as the
capacity to predict the RUL. However, these direct health indicators are difficult to measure
in real applications, because the particular battery must be separated from the original
application [19]. To overcome this challenge, indirect health indicators (HI) were used,
which can be obtained from the monitoring sensor data to represent the direct HIs. The
authors of [20] use the voltage-measured data of the discharge process for this approach.
In real applications, discharges mostly correspond to dynamic behavior that can lead to
large prediction errors. In contrast, the use of charging data is more static and thus more
controllable, which can lead to more reliable results. An open aspect in many of these
works is the detailed design and algorithm for the longer-term RUL prediction.

Therefore, this paper proposes a detailed described RUL method from the combination
of soft sensing and deep learning. To avoid difficulties in measuring HI directly, an indirect
health indicator is extracted from the monitoring data. In addition, a GRU NN is presented
using the sliding window method and detailed procedure. The major contributions of this
paper are listed as follows:

• A specific indirect HI is extracted from the charge monitoring data. A correlation anal-
ysis is used to show that these indirect HIs accurately reflect the capacity. Therefore,
complicated measurements or elaborate calculations are no longer needed.

• The combination of soft-sensing and GRU NN with sliding window produces a
model capable of both accurate state-of-health estimation and reliable long-term RUL
prediction using historical data sets.

• Dropout and early stopping methods were also used to prevent overfitting.
• The effectiveness of the method is validated and verified by the real-world NASA

data set.

The structure of this paper is as follows: Section 2 shows the general structure of GRU
NN. Section 3 presents data preparation and the construction of indirect HI. The algorithm
and the approach of the GRU NN model are proposed in Section 4. Section 5 includes the
results and discussion and Section 6 represents the conclusion.

2. Gated Recurrent Unit Neural Network

A GRU NN is a neural network based on Gated Recurrent Unit and is a further
development of RNN to overcome the exploding and vanishing gradient problem in
long-term dependencies. The structure of the GRU NN is also a simplified version of the
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LSTM since no cell state is needed anymore. The hidden cell state takes over the data
transfer tasks.

The output of the GRU NN depends on the parameters update gate and reset gate.
The update gate decides which new information should be added and which information
should be dropped. The reset gate decides which and how much information from the past
should be forgotten. The general architecture of a GRU NN is shown in Figure 1. Moreover,
it is described by the following equations [21]:

zt = σ(Wz·[ht−1; xt] + bz) (1)

rt = σ(Wr·[ht−1; xt] + br) (2)

h̃t = tanh(Wh·[(rt � ht−1); xt] + bh) (3)

ht = (1− zt)� ht−1 + zt � h̃t (4)

where zt represents the update gate and rt the reset gate. Both gates depend on the current
state xt and hidden state ht−1 at the previous time. For the output of the hidden state
ht at time t, the candidate state h̃t is also required. Wz, Wr, Wh are weight matrices and
bz, br, bh indicates the biases for the update gate, candidate state and reset gate. The
symbol � shows an element-wise multiplication, σ is the sigmoid function and ; indicates a
vector-concatenation operation.
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3. Data Preparation
3.1. Test Data

The data used here were derived from a battery data set from NASA Ames Research
Center [22]. Four Li-ion batteries (Bat. 5, Bat. 6, Bat. 7, and Bat. 18) were fully charged
cyclically at room temperature (24 ◦C) and then fully discharged. The batteries were
charged with the constant current-constant voltage (CC-CV) mode with a constant current
of 1.5 A until the battery voltage reached 4.2 V. The battery was then charged in a constant
current mode. Then, charging was continued in a constant voltage mode until the charge
current dropped to 20 mA. Discharging was performed at a constant current mode of 2 A
until the discharge voltage dropped to 2.7 V for Bat. 5, 2.5 V for Bat. 6, 2.2 V for Bat. 7, and
2.5 V for Bat. 18. The nominal capacity of the batteries is equal to 2 Ah. EOL is reached
when the capacity value of the respective battery falls below 70% of the nominal capacity
(from 2 Ah to 1.4 Ah).

Another step of data preparation is data cleaning. Since the tests for Bat. 5, Bat. 6, and
Bat. 7 were recorded at the same time, these batteries have the same documented irregular
behavior. To maintain a regular and cyclically ordered sequence, the first measurement
series for both charging and discharging was removed because it was an outlier. Measure-
ment series 12 and 33 were dropped for charging, as the batteries were charged twice here
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without any documented discharge in the meantime. Measurement series 90 was dropped
for discharging, due to a double discharge without documented charging. The charging
process of cycle 170 was an incomplete charge. For Bat. 18, the first charge and discharge
measurement series was also removed because it was also an outlier. In addition, charge
cycles 47 and 58 were dropped because here the batteries were charged twice, without
documented discharge. After data cleaning, the records for Bat. 5, Bat. 6, and Bat. 7 had
166 complete cycles and Bat. 18 had 131 complete charge and discharge cycles.

3.2. Health Indicator Extraction

Capacity and internal resistance are direct health indicators of power degradation, but
they are difficult to measure in real time. Therefore, an effective indirect health indicator is
needed to reflect the performance degradation of the battery. To achieve this, a soft-sensing
method was used. In this method, a directly measured variable that is difficult to measure is
represented by an easily measurable variable or several variables of the existing monitoring
data [23].

The charging process was used for this since it is more stable than the discharging
process. As an example, the voltage and current values for cycles 10, 60, 100, and 160 are
shown for Bat. 5 in Figure 2. The time range of the constant current charge time (CCCT)
decreases as the number of cycles increases. The documented voltages started at different
voltage values. To create the same conditions, the start point of CCCT is the time value
when the voltage value exceeded 3.8 V for the first time. The end point is the time value
when the voltage value of 4.2 V was exceeded for the first time. The respective value for
CCCT was calculated by the difference between the end time value and the start time value.
Figure 3 shows an example of the CC-CV procedure for the 10th cycle of Bat. 5, and CCCT
is also shown. All extracted CCCT values of the 4 batteries are shown in Figure 4.
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3.3. Correlation Analysis

The correlation analysis between CCCT and capacity can be used to show the degree
to which the two variables are related. The correlation coefficient indicates the strength of
the correlation in a value range between 0 and 1. A value of 1 indicates a strong correlation
and a value of 0 indicates a low correlation.

Table 1 shows correlation coefficients close to 1 for both the Spearman and the Pearson
analyses for all batteries. This proves that there is a significant linear correlation between
CCCT and capacity. Accordingly, the indirect HI is able to represent the battery performance
degradation instead of the capacity.

Table 1. The Spearman and Pearson correlation analysis.

Correlation between CCCT
and Capacity Bat. 5 Bat. 6 Bat. 7 Bat. 18

Spearman: 0.993 0.996 0.992 0.975
Pearson: 0.997 0.993 0.990 0.986

4. Algorithm and Approach
4.1. General Algorithm

Figure 5 shows the schematic structure of the RUL prediction model. This process has
three different phases. In the preparation phase, data are imported, data are cleaned, the
indirect HI is extracted, and the linear relationship between HI and capacity is tested using
correlation analysis. In the state-of-health (SOH) estimation phase, the GRU NN is built and
trained using the extracted HI. In this work, the SOH describes the expected performance
capability of the battery to a next cycle. The last phase describes the RUL prediction process.
Here, it is checked whether the initially determined threshold value is reached. If the last
prediction value is higher than this, then the predicted value is fed back into the neural
network. A prediction is then made based on this value. This process is then iteratively
repeated until the system falls below the EOL threshold. The RUL describes the expected
cycles during which the battery is still capable of performing under the current conditions.
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4.2. SOH Estimation Framework

The SOH estimation can be shown in more detail. Figure 6 shows a flowchart of the
SOH estimation process. After HI extraction, data sets were selected that were later used
for training, validation or testing (cf. Section 4.3.1). These data were normalized between
0 and 1 using the min-max scaler to obtain the same scaling for the different data sets.
Subsequently, the selected data sets were split into the train, test, and validation sets and
prepared for the recurrent neural network. The next step is to transform the different data
sets into the appropriate format for Recurrent Neural Networks. For this purpose, the
sliding window method with a constant window size is used in order to create a temporal
reference. Hyperparameters and network architecture were determined to create the GRU
NN. The detailed approach is explained in Section 4.3.2. Then, the model was trained and
evaluated for SOH prediction. Based on this trained model, the SOH and RUL prediction
was subsequently created.
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4.3. Approach
4.3.1. Data Set Selection

The training of two data sets is a challenging task. Since we were dealing here with
cyclically ordered data sets and the sequence was accordingly decisive, two data sets were
not simply combined into one large data set because this would not correspond to the actual
sequence of this data structure. Therefore, the training was split. The first training data set
was used to build a base model. Since recursive neural networks have the possibility to
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store and pass weights and settings, this opportunity was used to train the second data set
based on the pretrained model and to update the model with additional data.

The data sets were divided according to the following principle: One battery data
set was used for the test in each case. Two batteries were used for training and the fourth
battery was used as a validation set. This procedure was repeated three times so that each
battery had been used twice as a training set and once as a validation set. The combination
with the best result was used for the final model. Table 2 shows an overview of the
final combinations.

Table 2. Overview of the test, training and validation set combination.

Test Train Val

Bat. 5 Bat. 7 and 18 Bat. 6
Bat. 6 Bat. 5 and 18 Bat. 7
Bat. 7 Bat. 6 and 18 Bat. 5
Bat. 18 Bat. 6 and 7 Bat. 5

4.3.2. Hyperparameter Optimization

The hyperparameters were determined and optimized using the following procedure.
First, the sequence length and batch size were selected. The number of epochs was also
defined, but the training of the epochs was stopped early by the early stopping method.
For the optimizer, the superior Adam optimizer was used. The common Mean Square Error
(MSE) was used to determine the loss function. In addition, the architecture of the neural
network was defined using various tests and experiments. Subsequently, with the help of
the learning rate, the training data set was adjusted so that the evaluation metrics produced
values as good as possible. In addition, a visual comparison of the generated regression
with the real curves of the training and validation set was made. In this context, this means
that the difference between predicted graphs and expected graphs was examined. In the
process of different experiments, it was shown that especially here a small difference is
an essential factor for the quality of the later test results. As soon as suitable values were
shown and the trend was correct, the trained model was used to make predictions for the
SOH and RUL of the test set. Table 3 shows the overview of the hyperparameters used.

Table 3. Hyperparameters for RUL prediction model.

Description Parameter

Sequence length 10
Learning rate 9 × 10−4

Number of Epochs 100
Batch size 16
Optimizer Adam

Loss Mean Square Error

The network architecture has 2 GRU layers with 50 neurons. The tanh function was
used for the activation function. Each GRU layer is followed by a dropout layer with a
dropout rate of 0.2 to prevent overfitting. The output layer has a dense layer with a single
output neuron.

5. Results and Discussion
5.1. Evaluation Parameters

In this paper, the quality measures for evaluating the predictions are root mean square
error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and Actual
Error (AE).

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (5)
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MAE =
1
n ∑n

i=1|yi − ŷi| (6)

R2 = 1− ∑n
i=1(y− ŷ)2

∑n
i=1(y− y)2 (7)

AE = R− R̂ (8)

where ŷ describes the predicted value and y represents the mean value of y. R and R̂ denote
the real and predicted number of cycles until the EOL threshold is reached.

5.2. SOH Results Analysis

Figure 7 shows the predictions of the four batteries created by the GRU NN. The blue
graph indicates the real values of the extracted health indicator. The prediction is shown in
magenta. In addition, the EOL threshold is shown by a horizontal red line and the starting
point is shown by a black vertical line, from which the training is completed and the test
area begins. The prediction is shown as an example for the starting position from 30% of
the test data set.

For Bat. 5, Bat. 6, and Bat. 7, the results show that the SOH estimations approximate
the real trends. The power regeneration peaks can be partially mapped. The recorded
performance curve of Bat. 18 was significantly different relative to the other three batteries.
The curve also shows several local variations. Therefore, multiple and larger differences
can be seen for the SOH estimation, since the model takes longer to represent the real
values. This can be illustrated using the evaluation parameters. This is shown in Table 4 for
start position 0.3. The denormalized values of RMSE, MAE and R2 refer to the SOH scale.

Table 4. The evaluation metrics for the SOH estimations at starting points 0.3.

Battery RMSE MAE R2

Bat. 5 0.0060 0.0041 0.993

Bat. 6 0.0103 0.0065 0.984

Bat. 7 0.0056 0.0037 0.991

Bat. 18 0.0121 0.0089 0.925
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(d) Bat. 18.

Bat. 5, Bat. 6, and Bat. 7 show comparable results for an R2 score close to 1, which
means that the estimated values are close to the actual values. Bat. 6 shows higher
deviations for RMSE and MAE in relation to the other two batteries. This is due to the
stronger characteristics of the power regeneration peaks. The parameters also show the
outliers of Bat. 18. Overall, the results demonstrate that training for the test data set for a
step forward is successful and the GRU NN produces an accurate state-of-health estimation.
This is significant because the subsequent RUL prediction is based on the trained model.

5.3. RUL Results Analysis

Figure 8 shows the RUL prediction based on two pre-trained battery data sets. The
start position of 0.3 of the total data set is shown in green, in magenta, the start position is
0.5 and in orange, the start position is 0.7. In addition, the EOL threshold is also shown
in red.

The predictions show the descending trend of the individual batteries. Bat. 5 to 7 show
a decent curve progression, which becomes flatter as the number of cycles increases. The
predictions of Bat. 18 each follow an almost linear course. The individual predictions in each
battery data set start at the designated position and each shows a similar curve thereafter.
From this can be derived that the focus of the model is on the wide and longer-term
evolution of performance degradation. Table 5 shows an overview of the RUL prediction
for the four batteries at the three different starting positions.

The table shows precise prediction values for Bat. 5–7. For example, at 75 steps into
the future, Bat. 5 is exactly the real value. With 42 steps ahead, the prediction is off by
only 2 cycles. For Bat. 6, the AE RUL is 4 cycles for start point 0.3. For start point 0.5,
the prediction is short by 5 cycles. The prediction value for battery 7 is also accurate. For
example, at 115 steps into the future, the prediction is 5 cycles off the real value and at
82 steps, it is only 3 steps off. Due to the nature of the data, the experiments of Bat. 18 show
ambivalent results. Since the predicted values are close to the actual values, the proposed
model can produce an accurate and long-term RUL prediction.
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Table 5. The RUL prediction results with different starting points.

Battery Starting Point Real RUL Pred. RUL AE RUL

Bat. 5
0.3 75 75 0
0.5 42 40 −2
0.7 8 6 −2

Bat. 6
0.3 50 54 4
0.5
0.7

17
-

12
-

−5
-

Bat. 7
0.3 115 120 5
0.5 82 85 3
0.7 48 56 8

Bat.18
0.3 47 - -
0.5
0.7

14
-

25
-

11
-

6. Conclusions

In this paper, an RUL prediction method for Li-ion batteries based on the combination
of deep learning and soft-sensing is presented and described in detail. For this purpose, an
indirect HI is extracted from the monitoring data of the charging area, which can reflect
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the performance degradation instead of capacity. At the same time, the GRU NN was
trained on the basis of various historical data sets to learn the long-term dependencies. For
verification and validation, several experiments were created and presented using the real
NASA Li-ion battery data set. This leads to precise results for SOH estimation and accurate
results for long-term RUL prediction trends. In reality, the variable loads of actual user
charging on the battery are one of the main challenges. In the future, the presented method
will be validated with more practical measured data and compared with further time-series
methods. In addition, the prediction accuracy will be improved by incorporating more of
the existing historical data from the current battery.
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