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Abstract: Monitoring cycle life can provide a prediction of the remaining battery life. To improve the
prediction accuracy of lithium-ion battery capacity degradation, we propose a hybrid long short-term
memory recurrent neural network model with an attention mechanism. The hyper-parameters of
the proposed model are also optimized by a differential evolution algorithm. Using public battery
datasets, the proposed model is compared to some published models, and it gives better prediction
performance in terms of mean absolute percentage error and root mean square error. In addition, the
proposed model can achieve higher prediction accuracy of battery end of life.

Keywords: lithium-ion battery; capacity degradation; long short-term memory; attention mechanism

1. Introduction

Lithium-ion (Li-ion) batteries are widely used in backup power supplies, portable
communication equipment, consumer electronics, electric vehicles, and energy storage
systems [1]. As the number of charge/discharge cycles increases, the battery capacity
will gradually decrease. The main problem is to diagnose their state-of-health (SOH) and
predict the remaining useful life (RUL) [1–4]. The RUL of a Li-ion battery is the length of
time from the current time to the end of life (EOL), where EOL is approximately 70–80% of
its nominal capacity [3]. In other words, the capacity drops to a specific value called the
threshold limit, and it will reach a pre-defined aging metric. Therefore, RUL prediction is
one of the main tasks of a battery management system.

There are three types of RUL prediction methods: model-based method, data-driven
method, and hybrid method [1–4]. The model-based method, including physical model and
mathematical model, is to build a model for analysis with observable values and other key
indicators during battery circuits or electrochemical degradation. The data-driven method
is to build regression models for analysis with large amounts of data. It can be summarized
as artificial intelligence (AI) or machine learning, filtering processes, statistical methods,
and stochastic processes. Hybrid models combine two or more model-based methods or
data-driven methods to improve the accuracy of RUL predictions. Kim et al. [5] proposed a
SOH classification method based on multilayer perceptron (MLP). Zhang et al. [6] proposed
long short-term memory (LSTM) recurrent neural network for the remaining useful life
prediction of lithium-ion batteries. However, Li et al. [7] combined the LSTM model with
empirical mode decomposition algorithm and Elman neural network for battery RUL
prediction. Ren et al. [8] implemented another deep learning approach for lithium-ion
battery remaining useful life prediction. Similarly, Yang et al. [9] implemented an improved
extreme learning machine algorithm for RUL prediction. Support vector machine also
applied for battery state-of-health and RUL prediction using different approaches. For
instance, Wei et al. [10] used the hybrid model based on particle filter and support vector
regression for prediction of battery SOH and RUL. Wang et al. [11] applied support vector
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regression with differential evolution algorithm to predict battery RUL using cycle, current
and voltage as input function. Yang et al. [12] proposed support vector regression for battery
state-of-health prediction. Zhao et al. [13] presented a data-driven method that combines
feature vector selection (FVS) with SVR model for battery SOH and RUL prediction using
the time interval of an equal charging voltage difference as health indicator. Wang et al. [14]
used constant voltage charging profile as a health indicator for lithium-ion battery RUL
prediction. Moreover, different researchers applied other machine learning models, such
as relevance vector machines (RVM) [15–17], Gaussian process regression (GPR) [18–21],
Gaussian process models [22], random forest regression (RFR) [23], and gradient boosted
regression (GBR) [24,25], using different approaches for battery SOH estimation. This
study focused on the hybrid model of LSTM with attention mechanism, as it gives better
prediction accuracy.

Deep learning models such as LSTM and gated recurrent unit (GRU) have been paid
superior attention in several research fields, due to vanishing problems of the traditional
recurrent neural network. The long-term memory unit of these models stores long-term
information in the state of other units. The outputs of the traditional RNN model have
been limited until the development of these deep learning models. LSTM or GRU models
have often replaced traditional RNNs and use gates to control input-output information.
They can solve the problem of gradient vanishing of traditional RNN model. Thus, LSTM
is one of the recent prediction techniques for time-series problems, and it has three gates,
such as input gate, output gate, and forget gate. Therefore, the network of the LSTM model
can memorize longer sequences and manage longer dependencies in order to converge on
specific problems. However, the network cannot fully memorize long-term information
or state and transfer to the next LSTM unit, which makes it difficult to avoid the defect
of long-term forgetting in the LSTM model. Therefore, implementing LSTM model alone
cannot give better and adequate accuracy in the process of continuing prediction. Currently,
some researchers have familiarized the LSTM model with the attention mechanism, in
order to improve the information-processing capabilities of the model. They can obtain
better prediction accuracy when the models are incorporated. Attention mechanism allows
the network to focus on specific more valuable information selectively. As a result, attention
mechanisms soon expanded to various fields, including time series prediction. Therefore,
we develop a long short-term memory recurrent neural network model with attention
mechanism to analyze the capacity degradation of lithium-ion batteries. The proposed
model has two parts: the LSTM model and attention model. The attention mechanism
is located on the output layer of LSTM, and it is used to model long-term dependencies.
At the same time, we used a differential evolution (DE) algorithm to obtain the optimal
hyper-parameters of the model. The performance of the proposed method for capacity
degradation and battery end-of-life prediction was studied using the four public battery
datasets. The rest of this article is organized as follows. Section 2 introduces the feature
extraction of Li-ion batteries. The proposed model will be discussed in Section 3. Section 4
describes the analysis of capacity degradation estimates and RUL predictions. Finally, we
make conclusions and further research directions.

2. Lithium-Ion Battery Datasets

A total of sixteen batteries come from four different types of Li-ion batteries, and are
used to compare the predictive capabilities of different models. Four 18650-size recharge-
able batteries are from the NASA battery data [26], and three LiCoO2 cathode cells are
from the CALCE battery data [7,27]. Besides, four pouch-shaped cells are from the Oxford
battery degradation dataset [28], and five commercial Li-ion phosphate/graphite cells are
from Toyota data [29]. Table 1 shows some battery specifications, and detailed experimental
settings can be found in the literature [25–29]. When the capacity drops to approximately
70%~80% of the rated capacity, the experiment is stopped. The cycle life of the battery
capacity is normalized as

Cnormalzied =
Ccurrent

Cnominal
(1)
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where Cnormalzied represents the SOH, Ccurrent is the capacity of the current battery, and
Cnominal is the rated capacity of the battery (see the last column of Table 1). The capacity
of the battery is affected by the loss of available lithium ions and the loss of anode and
cathode materials. Two variables, such as cycle number and temperature, are used as input
to model except for CALCE data. Since temperature data cannot be obtained from CALCE
data, the number of cycles is used only as an input variable.

Table 1. Some specifications of the batteries.

Data Batteries Ambient
Temperature (◦C)

Discharge
Current (A)

Rated
Capacity (Ah)

NASA #5, #6, #7, and #18 24 2 2
CALCE CS2_35, CS2_37, and CS2_38 25 1 1.1
Oxford Cell-1, Cell-2, Cell-3, and Cell-7 40 1 0.74
Toyota #16, #31, #33, #36, and #43 30 1 1.1

3. Long Short-Term Memory with Attention Mechanism

Attention-based LSTM model has two parts: LSTM layer and attention layer. The
network of LSTM model can learn and manage longer sequences and dependencies in
order to converge on specific solutions. The three nonlinear gating units of long short-
term memory recurrent neural network are forget gate, input gate, and output gate [30].
The purpose of the storage unit in LSTM network is to identify when to acquire new
information and when to forget old information. In order to allow the networks to focus
on valuable selected information, the attention layer was combined with the LSTM model
in this study. The clue of an attention-based LSTM model is to add an attention layer to
the output layer of LSTM unit for modeling long-term dependencies in the network. It
can also control importance-based sampling. Therefore, this study considered an LSTM
model with an attention mechanism for the prediction of capacity degradation trends.
Equation (2) provides the input gate of the network, which controls the level of the new
memory added. Equation (3) regulates the amount of forgotten memory in the forget gate.
Finally, Equation (6) moderates the level of the output memory in the output gate, and
finally, LSTM calculates the control state hi and the cell state ci.

ii = σ(Wi ∗ [hi−1, xi] + bi) (2)

fi = σ(W f ∗ [hi−1, xi] + b f ) (3)

c̃i = tanh(Wc ∗ [hi−1, xi] + bc) (4)

ci = fi ⊗ ci−1 + ii ⊗ c̃i (5)

oi = σ(Wo ∗ [hi−1, xi] + bo) (6)

hi = oi ⊗ tanh(ci) (7)

where σ and tanh are the sigmoid and activation function, respectively; ⊗ indicates multi-
plication of the elements; [hi, xi] is hi−1 and xi concatenation; Wi, Wf, Wc, and Wo are the
learning weight parameters; bi, bf, bc, and bo are the learning bias parameters. Moreover, an
attention mechanism is used to improve the accuracy of the LSTM model [31]. The atten-
tion layer aids the selection of the critical output of the earlier layers for each subsequent
phase in the model. It assists the networks to focus on specific important information. The
functions of the attention model are indicated as

M = tanh(
[

WhH
Wuua ⊗ en

]
(8)

α = so f tmax(wT M) (9)

r = HαT (10)
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where H is the matrix of extracted features [lt1, lt2, . . . , ltn], enεRn is a vector, ua is embedded
attention mechanism, α is the vector form of extracted feature H attention weights, and
r is the final output of the attention model that is the weighted sum of extracted features
H. The embedding is learned during model training. Figure 1 shows the summary of the
proposed model, which is attention-based LSTM model for capacity degradation trend
prediction of lithium-ion batteries.

Figure 1. Attention-based LSTM model [32].

Support vector machine is a common machine learning model for prediction, classifica-
tion, clustering, and other learning tasks. In this study, support vector regression is used for
the prediction of the capacity degradation trend. Let the training set {(x1, y1), . . . , (xn, yn)},
where xi ∈ Rn is a feature vector, and yi ∈ R is the target output. The SVR function is given
by yi = f (xi) = wTφ(xi) + b and

f (x) =
l

∑
i=1

(β∗i − βi)K(xi, xj) + b

where φ(x) is a nonlinear mapping function, w ∈ Rn and b ∈ R are adjustable coefficients,
and K(xi, xj) = exp(−γ

∣∣∣∣xi − xj
∣∣∣∣2) is the Gaussian radial basis function. The SVR hyper

parameters such as gamma (γ), Cost (C) and Epsilon (ε) are optimized by DE algorithm in
this study.

The MLP model consists of a feed-forward artificial neural network model for classifi-
cation or regression problems. A seven-layer MLP network, such as an input layer, five
hidden layers, and an output layer were considered in this study. The number of neurons,
dropout, epochs, and batch size of the MLP model are optimized by DE algorithm.

The parameters of the proposed model are optimized by the DE algorithm. DE
algorithm is the search heuristic which was innovated by Storn and Price in 1996 [33]. In
this study, DEoptim R library is used, which has different parameters such as NP, F, and
CR. The number of parameter vectors in the population is represented by NP in the DE
algorithm, and it guesses the optimal parameter value at generation zero. It finds the
optimal parameters from the random values between the lower and upper bounds. The
variable F is a positive factor between zero and one. The mutation of the algorithm can be
continued until either the length of the mutation has been made or random number greater
than a crossover probability (CR), which is between zero and one. The choices of NP, F, and
CR depend on the specific problem. The following procedures are carried out to obtain
optimal parameters of the proposed model, SVR and MLP models using the DE algorithm.
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Step 1. Normalize all features, such as capacity, cycle, and temperature.
Step 2. Choose the fitness function, which is mean absolute error (MAE) in this study.

It can be obtained by

MAE =
∑n

i=1
∣∣(Ci − Ĉi)

∣∣
n

(11)

where Ci is the actual SOH at cycle i, Ĉi is the predicted SOH at cycle i, and n is the number
of cycles used in the calculation.

Step 3. Select the ranges for the model parameters.
Step 4. Decide the values of DE parameters. NP = 40, CR = 0.9, and F = 0.8 are used in

this study.
Step 5. Obtain the optimal values for each parameter.

4. Analysis Results
4.1. Model Performance for Prediction of Capacity Degradation Trend

Four Li-ion batteries, such as #5, #6, #7, and #18, are used to illustrate the effectiveness
of the proposed model for SOH estimation. We compare the prediction accuracy of the
proposed model with the other two models, as indicated in Table 2. The first 80 cycles
of the battery are used as training data, and the remaining cycles are used as test data.
Mean absolute percentage error (MAPE) and root mean square error (RMSE) are chosen
for evaluating the prediction accuracy of the models, which are obtained as

MAPE =

n
∑

i=1

∣∣(Ci − Ĉi)/Ci
∣∣

n
× 100 (12)

RMSE =

√
1
n

n

∑
i=1

(Ci−Ĉi)2) (13)

Table 2. Prediction results of different models from the NASA data (training data: cycles #1–#80).

Models
#5 #6 #7 #18

MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE

SVR 1.4125 0.0123 2.1036 0.0190 0.6628 0.0074 1.2730 0.0112
MLP 2.1388 0.0174 1.6934 0.0155 0.6953 0.0081 1.7221 0.0145

LSTM with attention 0.5462 0.0078 1.1559 0.0123 0.6348 0.0074 1.1267 0.0112

In Table 2, the results show that the proposed model performs better than SVR and
MLP models in terms of MAPE and RMSE for test data. For battery #5, the RMSEs of SVR,
MLP, and LSTM with attention were 0.0123, 0.0174, and 0.0078, respectively. The results
show that the proposed model is the best model, followed by the SVR model. Moreover,
the performance of the models trained with training data #1–#80 for batteries #5 and #6
is shown in Figure 2a,b. It shows that the proposed model has better prediction accuracy
than SVR and MLP models.

We investigate the effects of regeneration by using three different ranges of training
data, which are cycle numbers #1–#80, #1–#100, and #1–#120. Table 3 shows the RMSE
values of batteries #5, #6, #7 and #18 under three different test data. For instance, the RMSE
values of the proposed model on battery #5 under three different test data are 0.0078, 0.0047,
and 0.0058, respectively. The results show that the proposed model is not significantly
affected by a different training dataset. Therefore, we can conclude that the proposed
model is a robust approach.
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Figure 2. Prediction performance of three models: (a) battery #5 and (b) battery #6.

Table 3. RMSE of the prediction results under different training data from the NASA data.

Battery Training Data
Models

SVR MLP LSTM with Attention

#5 1–80 0.0123 0.0174 0.0078
1–100 0.0111 0.0101 0.0047
1–120 0.0060 0.0087 0.0058

#6 1–80 0.0190 0.0155 0.0123
1–100 0.0119 0.0205 0.0072
1–120 0.0137 0.0131 0.0073

#7 1–80 0.0074 0.0081 0.0074
1–100 0.0049 0.0076 0.0047
1–120 0.0089 0.0068 0.0046

#18 1–80 0.0112 0.0145 0.0112
1–100 0.0156 0.0138 0.0129
1–120 0.0103 0.0144 0.0094
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Pouch-shaped batteries were used to study the performance of a fusion method based
on wavelet de-noise (WD) and hybrid Gaussian process function regression (HGPFR)
model under different training data [20]. Here, three different training data for Cell-1
and Cell-7, including 100–3000, 100–3500, and 100–4000, are considered. Table 4 shows
the predicted RMSE values for different testing dataset in order to compare the proposed
model with published methods. For example, the RMSEs of GPR, HGPFR, WD-HGPFR,
SVR, MLP, and LSTM with attention for Cell-1 under training data (cycles 100–3000) are
obtained as 0.0600, 0.0408, 0.0108, 0.0085, 0.0101, and 0.0030, respectively. The results show
that LSTM with attention model can provide higher prediction accuracy than the three
models in [20], SVR, and MLP models.

Table 4. RMSE of the prediction results under different training data from the Oxford data.

Battery Training Data
Models

GPR 1 HGPFR 1 WD-HGPFR 1 SVR MLP LSTM with Attention

Cell-1
100–3000 0.0600 0.0408 0.0108 0.0085 0.0101 0.0030
100–3500 0.0525 0.0181 0.0072 0.0079 0.0119 0.0043
100–4000 0.0598 0.0163 0.0108 0.0058 0.0102 0.0032

Cell-7
100–3000 0.1026 0.0147 0.0061 0.0079 0.0041 0.0034
100–3500 0.0833 0.0444 0.0056 0.0034 0.0071 0.0023
100–4000 0.0681 0.0231 0.0145 0.0069 0.0110 0.0037

Note: 1 Results are obtained from Ref. [20].

In addition, the performance of the proposed model for unseen datasets is validated
by other cells in the same experiment. For example, batteries #5 and #6 are used as training
data to predict the SOH of battery #7 and #18. Table 5 shows the prediction accuracy of
the models on the test data. The proposed model also outperforms individual models
for invisible data. Therefore, we can conclude that the proposed model provides better
performance for unseen data.

Table 5. RMSE of the prediction results for unseen datasets.

Data Training Set Testing Set SVR MLP LSTM with
Attention

NASA #5 and #6
#7 0.0446 0.0431 0.0310

#18 0.0322 0.0298 0.0232

CALCE CS2_35
CS2_37 0.0339 0.0341 0.0315
CS2_38 0.0246 0.0243 0.0223

Oxford Cell-1, Cell-2, and Cell-3 Cell-7 0.0212 0.0211 0.0204

Toyota #16, #31, and #33
#36 0.0030 0.0045 0.0027
#43 0.0053 0.0044 0.0034

4.2. Battery EOL Prediction

When the capacity drops to 70% or 80% of the rated capacity, the battery is regarded as
EOL. In this study, 70% of the rated capacity is considered as EOL for battery #18, CS2_37,
and CS2_38. For battery #7, 75% of the rated capacity is used as the EOL of the battery.
Note that the capacity value of battery #6 is greater than 2.0 Ah in cycles 1–7, and the
training data start after cycle #8. For Cell-7 from Oxford battery, 80% of the rated capacity
is considered as battery EOL. Moreover, 85% of the rated capacity is regarded as EOL
for batteries from Toyota data, because if 80% is used as the battery EOL, the predicted
EOL of all models will be similar (i.e., the test end). Table 6 shows the performance of the
models in the battery EOL prediction for unseen dataset. The first cycle number is used
as the starting point for all test data, and EOL is expressed in cycle number. To evaluate
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the prediction performance of the models, we used relative error (RE) as a performance
measure, which is obtained as

RE(%) =

∣∣R− R̂
∣∣

R
× 100 (14)

where R represents the actual EOL value and R̂ represents the predicted EOL value. The
results indicate that LSTM with the attention model is better than SVR and MLP models in
most cases for the unseen dataset. Therefore, we can conclude that LSTM with attention
model provides better prediction performance for battery EOL prediction.

Table 6. Predicted EOL for unseen datasets.

Data Training Set Test Set R
SVR MLP LSTM with Attention

^
R RE (%) ^

R RE (%) ^
R RE (%)

NASA #5 and #6
#7 126 94 25.40 92 26.98 115 8.73

#18 97 95 2.06 94 3.09 98 1.03

CALCE CS2_35
CS2_37 721 745 3.33 738 2.36 721 0.00
CS2_38 780 771 1.15 763 2.18 778 0.25

Oxford Cell-1, Cell-2,
and Cell-3 Cell-7 7000 5400 22.86 5400 22.86 6000 14.29

Toyota #16, #31, and #33
#36 651 654 0.46 653 0.31 650 0.15
#43 644 653 1.40 652 1.24 645 0.16

5. Conclusions

Cycle life prediction plays a vital role in a battery management system. In this study,
we propose an LSTM model with attention mechanism to analyze the capacity degradation
of Li-ion batteries. In addition, the DE algorithm is used to obtain the optimal hyper-
parameters of the SVR, MLP, and LSTM with attention models. Using four batteries from
the NASA data and two cells from the Oxford data, the proposed model performs better
than SVR and MLP models for the prediction of capacity degradation trend in terms of
MAPE and RMSE criteria. Moreover, we found that the proposed model is not significantly
affected by different training datasets, and it can accurately predict the SOH and EOL of the
battery for unseen datasets. Therefore, we can conclude that LSTM model with attention
mechanism can produce more accurate and reliable results.

We will study on another hybrid artificial intelligence model for battery state-of-health
estimation and RUL prediction in the future.
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