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Abstract: Equivalent circuit models (ECMs) are a widely used modeling approach for lithium-ion
batteries in engineering applications. The RC elements, which display the dynamic loss processes of
the cell, are usually parameterized by fitting the ECM to experimental data in either the time-domain
or the frequency-domain. However, both types of data have limitations with regard to the observable
time constants of electrochemical processes. This work proposes a method to combine time-domain
and frequency-domain measurement data for parameterization of RC elements by exploiting the
full potential of the distribution of relaxation times (DRT). Instead of using only partial information
from the DRT to supplement a conventional fitting algorithm, we determine the parameters of an
arbitrary number of RC elements directly from the DRT. The difficulties of automated deconvolution
of the DRT, including regularization and the choice of an optimal regularization factor, is tackled
by using the L-curve criterion for optimized calculation of the DRT via Tikhonov regularization.
Three different approaches to merge time- and frequency-domain data are presented, including
a novel approach where the DRT is simultaneously calculated from electrochemical impedance
spectoscropy (EIS) and pulse relaxation measurements. The parameterized model for a commercial
18650 NCA cell was validated during a validation cycle consisting of constant current and real-world
automotive cycling and yields a relative improvement of over 40 % compared to a conventional
EIS-fitting algorithm.

Keywords: lithium-ion batteries; equivalent circuit model; electrochemical impedance spectroscopy;
distribution of relaxation times; Tikhonov regularization

1. Introduction
1.1. Motivation

In recent years, lithium-ion batteries (LIBs) have become ubiquitous in many ap-
plications. Their advantages in terms of power and energy density over other storage
mediums make them the most promising candidate for electric mobility and stationary
energy storage. To optimize the operation of lithium-ion batteries, the estimation of battery
states such as the state of charge (SOC), state of health (SOH), and state of available power
(SOAP) is required.

To estimate the different states of lithium-ion batteries, battery management systems
(BMSs) typically employ battery models, which are parameterized in order to best re-
produce the electrochemical behavior of the battery. The battery states are then either
estimated directly from model parameters, such as from the impedance parameters for the
SOAP, or by comparing the measured voltage and model voltage to estimate the SOC and
SOH with subsequent algorithms, such as a Kalman filter [1].

To keep the computational effort low to ensure real-time capability and to ensure
convergence of estimation algorithms, the complexity of such models and algorithms has
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to be limited. A widespread type of model used for this purpose is the equivalent circuit
model (ECM), the complexity of which can easily be adjusted by the number of its circuit
elements and the parameterization of which does not require destructive analysis of the
cell’s geometry and material properties. The idea behind ECMs is to model the lithium-ion
battery (LIB) with standard circuit elements such as an ideal voltage source modeling the
open-circuit behavior, and resistors and capacitors, modeling the kinetics of the LIB. The
key challenge lies in parameterization of these circuit elements to ensure high accuracy of
BMS algorithms. Thereby, the characterization of the kinetics especially, expressed by the
lithium-ion batteries impedance, is of great importance, since a limited set of parameters
must cover a broad range of different dynamics in the load profile.

Furthermore, lithium-ion batteries degrade over their lifetime, which, besides capacity
fade, also leads to an increase of the impedance [2]. However, the aging trajectory of
an individual LIB is highly dependent on the operating conditions such as temperature,
voltage window, and current [3,4]. This demands on-line algorithms, which are able to
continuously track the battery impedance parameters to keep the ECM up to date [5]. The
accuracy of such on-line optimization algorithms often depends on suitable initial values [6].
Hence, accurate estimation of impedance parameters under laboratory conditions, before
deployment of the LIB, is needed.

1.2. State of the Art

Many different approaches for estimating the parameters of the circuit elements in
ECMs can be found in the literature [7–9]. There are two types of measurements which are
usually employed for impedance characterization of LIB: electrochemical impedance spec-
toscropy (EIS) in the frequency-domain and measurements in the time-domain, e.g., current
pulses. The most crucial difference between both methods is the frequency range of electro-
chemical processes that can be reliably investigated with them. EIS, on the one hand, is very
reliable in the high-frequency region up to a few MHz [10]. However, due to the long
charging and discharging phases in the sinusoidal excitation at low frequencies, significant
SOC-changes occur, which at some point violate the prerequisite of a linear, time-invariant
and causal system [11]. This limits EIS to frequencies above approximately 1 mHz [12].
Time-domain measurements (TDMs), on the other hand, are better suited to investigate
the low-frequency behavior, while being limited by the sampling rate and measurement
accuracy in the high-frequency region [6].

The impedance spectrum of lithium-ion batteries is usually presented in a Nyquist
plot, where, to some extent, the loss processes of the measured system can be made visible.
However, the time constants of the different electrochemical processes are often close
to each other and cannot be fully separated in the Nyquist plot [13,14]. To isolate the
individual processes, the distribution of relaxation times (DRT) of an impedance spectrum
can be evaluated, since it provides a higher frequency resolution of the dynamic processes.
It shows the distribution of the total polarization resistance in the continuous space of
relaxation times. The DRT can be used to identify and separate dynamic processes and to
investigate how those processes are affected by operating conditions like temperature or
battery states such as SOC and SOH [7,13,15–18].

A combination use of EIS and TDM is advisable if the electrochemical behavior of
a cell is to be investigated in a wide frequency range. For this, the useful insights into
the cell’s loss processes provided by the DRT can be used during the parameterization
process. Previous efforts, combining both measurement methods with varying extent,
are summarized in the following.

Illig et al. [13] used EIS measurements for their ECM parameterization. They first
modeled the low-frequency behavior, as well as the purely capacitive behavior, with a
capacitance and a Warburg-element, the overvoltage of which they then subtracted from
the measurement data. From the remaining impedance spectrum they calculateed the DRT
and used it to identify the occurring processes and to determine the starting values of
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the following fitting algorithm. The model was completed by fitting a series of three RC
elements, an ohmic resistance and an inductance to the preprocessed impedance spectrum.

Gantenbein et al. [7] have introduced a physically motivated ECM consisting of an
ohmic resistance, two RC elements, one Warburg element, an inductance, and a capacitance
in series. These circuit elements model the ohmic and contact loss, interface loss of the
anode, interface loss of the cathode and diffusion loss and capacitive behavior, which they
have identified by investigating the DRT of the full cell and its indivual electrodes. The high
and medium frequency parts of the model were parameterized by conventional EIS-fitting
of the resistance and the RC elements. Diffusion and capacitive behavior were then included
in the model by a time-domain fitting of the remaining model parameters.

Withenhausen directly determined certain RC parameters from the DRT [12]. He cov-
ered some RC elements by frequency-domain measurements; therefore he used an iterative
algorithm, in which several single process peaks were fitted to the DRT. The remaining
elements were parameterized by a time-domain fit to the measured voltage relaxation after
bringing the cell to a defined SOC.

Schmidt et al. [14] identified ECM parameters purely from the DRT. They used EIS
measurements and Fourier-transformed time-domain measurements, which were merged
into one impedance spectrum. From this spectrum the DRT was calculated. Together with
an added ohmic resistance, the discrete DRT then served directly as an ECM, which led
to the relaxation times of its RC elements being evenly spaced on a logarithmic scale like
the data points of the DRT. They evaluated the impact of the chosen model order on their
parameterization procedure by comparing model configurations with 100, 20, 10, and 4 RC
elements. Due to the a priori fixed time constants without physical meaning they needed a
comparatively high number of RC elements to obtain an adequate model accuracy.

It can be concluded that in the previous literature, the DRT is often only used to gain
a priori knowledge on the investigated cell to enhance conventional fitting algorithms,
e.g., by a non-linear least squares algorithm, in either the frequency-domain or time-
domain. Such fitting algorithms have the disadvantage that they are highly dependent
on boundary conditions and initial starting values, which leads to a time-consuming and
iterative parameterization process. The DRT, however, contains the full information of
the cell’s impedance, which is why we propose an approach to determine RC parameters
directly from the DRT.

1.3. Contributions

This work aims to exploit the potential of the DRT during an automated identification
of RC parameters of an ECM. The main contributions of our proposed method can be
summarized as follows:

• Evaluation of frequency- and time-domain measurements:
To capture the full dynamic behavior of a cell, both EIS and TDM measurements
have been considered in the ECM parameterization process and their DRT computed.
Respective measurements in the frequency-domain as well as in the time-domain
were performed (Section 2).

• Optimized calculation of the DRT via Tikhonov regularization:
Since an accurate DRT is essential for the proposed parameterization process, the
L-curve criterion was employed to optimize the calculation of the DRT via Tikhonov
regularization. Moreover, the impact of different regularization terms on the calculated
DRT was investigated (Section 3).

• Process for direct parameterization of RC elements from the DRT:
Instead of using only partial information from the DRT to supplement a conventional
fitting algorithm, the full potential of the DRT was exploited by a parameterization
process which determines RC parameters directly from the DRT (Section 4).

• Analysis of various data merging approaches:
Different methods of combining EIS and TDM data in the parameterization process
are presented in this work. One of those methods includes a new way of calculating
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the DRT using TDM and EIS simultaneously, uniting the steps of DRT calculation and
merging frequency- and time-domain data (Section 5).

A conclusion is given in Section 6.

2. Experimental

In this work, all experiments were performed with a commercial 18,650 cell of type
US18650VTC5A by Sony/Murata with a nominal capacity of CN = 2.5 A h. The anode
active material consists of graphite with a small share of silicon, while the cathode active
material is nickel cobalt aluminium oxide (NCA) [19]. All measurements were performed
at 20 °C inside a Memmert IPP 110 climate chamber.

2.1. EIS

To capture the high-frequency behavior of the cell, EIS measurements were performed
in a frequency range from 5 kHz to 10 mHz with 10 points per decade. Starting at a fully
charged state, impedance spectra were recorded in 10% SOC steps with a relaxation period
of 3 h after discharging to the respective SOC. EIS measurements were carried out using
a Gamry Interface 5000 test device applying a hybrid EIS mode. This modified form of
galvanostatic EIS continuously adjusts the current such that the desired potential of 10 mV
is maintained. In this way, a linear operation range is ensured.

2.2. Time-Domain Measurements (TDMs)

To determine the low-frequency behavior of the cell we performed TDMs. In particular,
we applied pulse-relaxation measurements with a discharge pulse current of Ip = −1 C,
a pulse duration of Tp = 10 s, and a relaxation period of Trelax = 60 h. To match the EIS,
pulse-relaxation measurements were also performed at 11 SOC steps between 100% SOC
and 0% SOC. Results are shown in Figure 1.
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Figure 1. Results of time-domain measurements for all SOC steps between 100% SOC and 0% SOC.
(a) −1 C discharge pulse for 10 s. The voltage is normalized on the starting voltage for every SOC.
(b) Relaxation period of Trelax = 60 h. The voltage is normalized on the last data point of the
relaxation period for every SOC. Note that the voltage was not totally relaxed after 60 h for low SOCs.

After bringing a cell to its respective SOC, it is crucial to ensure a fully relaxed state
before applying the current pulse. Otherwise, the voltage measurement of the relaxation
phase is superimposed by a second relaxation, resulting from the previous SOC change.
If this second relaxation results from a previous discharge, it can lead to an overesti-
mated duration of the relaxation process. If this second relaxation results from a previous
charge, it can lead to an underestimated duration of the relaxation process or even voltage
relaxation in the opposite direction.

Previous researchers observed this behavior and assumed it to be originating from
a self-discharge process [20,21]. To isolate the pulse-relaxation behavior, they proposed a
preprocessing procedure to remove the self-discharge voltage from the relaxation voltage.
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We observed that, for the investigated cell, at some SOC relaxation processes were still
visible even after two weeks after bringing the cell to its respective SOC. After 3 weeks,
however, a constant voltage (within the voltage resolution of the measurement equipment)
for longer than Trelax was observed at every tested SOC and pulse measurements could
be performed.

In order to reduce the measurement time, a separate pristine cell from the same
production batch was used for the pulse-relaxation measurements for each tested SOC
step. For all time-domain measurements, the cell test system by the BaSyTec GmbH was
used, which records the cell voltage with a resolution of 0.3 mV and an accuracy of 1 mV.
The first half hour of the measurement was sampled with the maximum sample rate of
0.02 s. In the further course of the measurement, we reduced the sampling rate to limit
the amount of data. The raw measurement data were then logarithmically subsampled to
further reduce the number of data points and hence lower computational effort and time,
as proposed by Schmidt [20].

2.3. Open-Circuit Voltage

Besides the dynamic behavior of the cell over a broad frequency range, the cell’s static
behavior at thermodynamic equilibrium needs to be characterized to supplement the ECM.
This is typically done by the measurement of a pseudo open-circuit voltage (pOCV) with a
low current rate or with a galvanostatic intermittent titration technique (GITT), where the
open-circuit voltage is measured after bringing the cell to a respective SOC. In Figure 2,
the pOCV curve with C/50 is compared to the measured voltage after 3 weeks of relaxation
before the pulse-relaxation measurement was performed. Additionally, the differential
voltage was analyzed.
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Figure 2. (a) Measured pseudo-OCV curve during discharging and subsequent charging with C/50
at 20 °C and the corresponding mean curve. Additionally, the relaxed voltage UOCV, TDM, which was
measured right before the discharge pulse IP after three weeks of relaxation, are plotted. (b) Difference
between the charge and discharge pseudo-OCV and difference between mean pseudo-OCV and
UOCV, TDM (c) Differential voltage of the pseudo-OCV curves. (d) Difference between the differential
voltage of the discharge and the mean pseudo-OCV curve.
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It can be seen that the values for UOCV, TDM match well with Umean, C/50 for some
SOCs. For other SOCs, especially for which the differential voltage analysis (DVA) reveals
a greater slope in the voltage curve and also the difference between dU/dQdischarge and
dU/dQmean increases, UOCV, TDM shows smaller values compared to Umean, C/50 (except
for 0% SOC, which is mainly due to the measurement procedure of the pOCV). In our
study, we validated both OCV determination methods and ultimately chose UOCV, TDM,
since it is consistent with the pulse-relaxation measurements for the dynamic behavior.

As discussed in [6], the strong divergence between charging and discharging curves
in the low SOC area, which is assumed to be caused by the (de-)lithiation competition of
graphite and silicon [22], will have a major impact on the validation results, if an averaged
pOCV curve or the values for UOCV, TDM are chosen to parameterize the OCV of the ECM.
This has to be kept in mind when analyzing the validation results of different configurations
of the proposed DRT-fitting (Section 5) and attributing high residuals to either the cell’s
thermodynamic or kinetic behavior.

3. Calculation of the DRT
3.1. DRT Calculated from EIS (EIS-DRT)

The DRT is based on the assumption that the impedance of a capacitive electrochemical
system can be represented by an infinite number of RC elements with continuous relax-
ation times [14,23,24]. Based on this assumption, the impedance spectrum of a capacitive
electrochemical system can be represented by

ZDRT( f ) =
∫ ∞

−∞

γ(ln τ)

1 + j2π f τ
d ln τ. (1)

γ(ln τ) can be understood as the distribution of the total polarization resistance along
the logarithmic scale of continuous relaxation times τ. Therefore, its integral over the entire
space of relaxation times is ∫ ∞

−∞
γ(ln τ) d ln τ = RPol, (2)

To obtain the DRT from EIS, the difference between ZDRT( f ) and the experimental
data Zexp( f ) must be minimized by optimization of γ(ln τ). Using matrix notation and a
discretized DRT, the optimization goal can be expressed as

min
R0,R

∥∥∥∥∥
[√

w′A′EIS

√
w′1√

w′′A′′EIS 0

][
R
R0

]
−
[√

w′Z′exp√
w′′Z′′exp

]∥∥∥∥∥
2

2

(3)

or short

min
x
‖ BEIS x − Zexp ‖2

2. (4)

R is a column vector of the resistances Rn = γn∆τlog. Since a negative resistance
is physically impossible, the additional constraint xn ≥ 0 ∀n has to be considered in
the problem.

The real part Z′ and the imaginary part Z′′ of the impedance can be taken into account
with different weights w′ and w′′ [25]. Due to the Kramers–Kronig relation [26] either one
of the two would be adequate for DRT calculation [12,24,27]. However, using both can help
to compensate measurement noise. Within this work, both w′ and w′′ are set to 0.5 for an
equal weighting. The derivation of Equation (3) as well as the matrices A′EIS and A′′EIS can
be found in Appendix A. The DRT calculated from EIS is referred to as EIS-DRT further on
in this paper.



Batteries 2021, 7, 52 7 of 23

3.2. DRT Calculated from Time-Domain Measurements (TDM-DRT)

Schmidt [20,21] proposes an approach which uses TDM to calculate the DRT. The mea-
surements he uses are conducted in the form of current pulses. To a pulse of magnitude Ip
applied at t0 for a duration of Tp, a single RC element yields a voltage response of

un(t) = Rn Ip[σ(t− t0)(1− exp (− t− t0

τn
))

− σ(t− (t0 + Tp))(1− exp (− t− (t0 + Tp)

τn
))], (5)

with σ(x) being the Heaviside step function. Applying an infinite number of RC elements,
i.e., the DRT, yields

uDRT(t) =
∫ ∞

−∞
γ(ln τ)Ip[σ(t− t0)(1− exp (− t− t0

τ
))

− σ(t− (t0 + Tp))(1− exp (− t− (t0 + Tp)

τ
))]d ln τ. (6)

Analogous to the EIS-DRT, the difference between uDRT(t) and the experimental data
uexp(t) must be minimized by optimization of γ(ln τ). Evaluating the relaxation phase of
the pulse measurement, the matrix equation

min
UOCV,R

∥∥∥[ATDM 1
][ R

UOCV

]
− uexp

∥∥∥2

2
(7)

or short

min
x
‖ BTDM x − uexp ‖2

2, (8)

can be formed. Again the equation must be minimized while obeying the non-negative con-
straint xn ≥ 0 ∀n. As in Equation (3), R is a column vector of the resistances
Rn = γn∆τlog. The derivation of Equation (7) and the matrix ATDM can be found in
Appendix B. The DRT calculated from time-domain data is henceforth referred to as
TDM-DRT.

3.3. Tikhonov Regularization

Since the experimental data Zexp and uexp are subject to measurement noise and
the number of unknowns does not necessarily fit the number of equations, there is no
unique solution to the system of linear equations Bx = Dexp, which makes Equation (3)
and Equation (7) ill-posed problems [20,25]. Hence, a mathematical tool for stabilizing
the problem and generating a unique solution is required. For this purpose we employ
Tikhonov regularization [28]. By adding a regularization term, an additional condition is
introduced to the minimization problem, which stabilizes the solution:

min
x

(
‖Bx− Dexp‖2

2 + λ‖Lx‖2
2
)
. (9)

The regularization factor λ determines how strong the influence of the regularization
term is on the solution. The value of λ has to be chosen carefully to achieve accurate results.
The matrix L of the regularization term is arbitrary in theory. However, choosing L in a
meaningful way allows to penalize specific features of the solution:

• The standard form of the Tikhonov regularization is the regularization with a squared
norm of the solution itself. Hence, it penalizes high magnitudes of the solution and
therefore favors solutions with smaller peaks. L has to be set to be the identity matrix
I such that Lx = x [29].
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• The regularization with the squared norm of the solution’s first derivative penalizes
high gradients in the solution and therefore favors solutions with moderate slopes.
For this, L has to be chosen such that Lx = dx

d ln τ , as shown in Appendix C [27,29].
• The regularization with the squared norm of the solution’s second derivative penalizes

high curvatures in the solution and therefore favors flat and smooth solutions. For this,
L has to be chosen such that Lx = d2x

d(ln τ)2 , as shown in Appendix C [20,21,25,29].

The suitability of different regularization terms depends on the shape of the actual
DRT, which, however, is not known in most cases. As shown in Figure 3, the choice of the
regularization term has a major impact on the solution. Still, the revealed processes are
consistent for EIS-DRT (four identified processes P1–P4) and TDM-DRT (four identified
processes P2–P5).
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Figure 3. DRT calculated from EIS and TDM at 50% SOC for different regularization terms, respec-
tively. The EIS-DRT reveals the four processes P1–P4 and the TDM-DRT reveals the four processes
P2–P5.

The regularization with the solution’s second derivative yields wide peaks, especially
in the low-frequency range. The penalty on high values in the standard form Tikhonov
regularization leads to noticeably smaller peaks of the diffusion process. We assume
that the low resistance resulting from this is compensated by shifting the peak to lower
relaxation times. This compensation is possible because of the limited excitation time of
the current pulse, during which the cell is not completely polarized.

The EIS-DRT only covers the higher frequency range. In the EIS-DRT, the magnitude of
all peaks is at a similar level, except P4, which lies beyond the minimal measured frequency.
Hence, the standard form Thikhonov regularization provides an equal regularization of
the solution. When using only EIS-DRT, the ECMs parameterized with applying standard
form Tikhonov regularization yields the lowest voltage error in the validation cycle.

In contrast, ECMs parameterized only by TDM-DRT yields the lowest voltage error
when applying regularization with the solution’s second derivative. It is assumed that the
constraint of a low curvature better characterizes the actual DRT at low relaxation times.
This is not consistent with the findings of Hahn et al. [29], who recommend standard
form Thikonov regularization for most cases. However, their contrary results can be
attributed to the synthetic data used for their investigations. They tested the different
regularization terms by reconstructing the DRT of one RC element in series with one
ZARC element. Since the accurate DRT of a single ideal RC element forms a Dirac delta
function, favoring smooth and wide peaks strongly opposes the correct solution and
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therefore a regularization with the solution’s second derivative leads to unsatisfactory
solutions. In our case, the standard form Tikhonov regularization faces another problem:
Due to the high difference of the DRT’s magnitude between low relaxation times and
high relaxation times, penalizing high function values results in an uneven regularization.
The high relaxation time range, where the diffusion behavior forms a large peak in the DRT,
is affected significantly stronger by this kind of regularization than the low relaxation time
range. This applies especially at low SOC, where the difference in magnitude is the highest.

3.4. L-Curve Method for Optimized Determination of the Regularization Factor λ

The regularization factor λ has a crucial impact on the solution xλ of the fitting
problem. If λ is chosen too high, the regularization term dominates the fitting residual
in Equation (9) and the solution does not fit the data. This results in a flattening and
over-smoothing of relevant peaks. If λ is chosen too low, measurement uncertainties are
included in the solution, which leads to the formation of oscillation without any physical
meaning (over-fitting). Thus, finding the optimal regularization factor λopt is a critical
task and a balance between the quality of the fit and the smoothness of the solution must
be found.

Different criteria for the optimization of the regularization factor, specifically devel-
oped for the DRT calculation, can be found in the literature. These criteria are, e.g., re-im-
cross-validation [25,27,29] or re-im-discrepancy [27,29]. Since these methods are based on
the idea of optimally matching real and imaginary part of the impedance, they do not apply
to the TDM-DRT. Therefore, a more general approach to determine the best regularization
factor, the so-called L-curve method, which was proposed by Hansen et al. [30,31], is used
in this work.

The L-curve method provides a criterion which is universally applicable for Tikhonov reg-
ularization and which does not require a priori knowledge of the measurement noise [29,32].
The L-curve visualizes the compromise between the residual norm ‖Bxλ − Dexp‖2 and
the norm of the regularized solution ‖Lxλ‖2 by plotting the tupels of both values for
different regularization factors, which results in a continuous curve for λ ∈ [0, ∞]. On a
logarithmic scale, this curve typically resembles an L-shape, which is the reason for the
name of this method. The optimal compromise between a low residual and an adequate
regularization can be identified as the corner-point of the L-shape. Starting from this point,
increasing λ results in a rapid rise of the residual norm and therefore a worsening of the
fitting quality. Decreasing λ, in contrast, strongly affects the regularization of the solution
without considerably improving the fitting quality any further [30,31].

3.5. Defining the Vector of Relaxation Times

To calculate the DRT, the vector of relaxation times τ must be chosen a priori. The num-
ber and range of relaxation times τn heavily influence the calculated DRT [29]. The appro-
priate limits for the relaxation times can be derived from the measured frequency range.
While the frequency limits of EIS are defined in the measurement routine, they must be
determined from the sampling rate and the measurement time for TDM. On the one hand,
the maximum frequency in a TDM is limited by the Nyquist–Shannon sampling theorem,
which states that frequencies higher than half the sampling frequency fsample cannot be
detected in the measurement data [20,33]. Since the data are logarithmically sampled and
the Nyquist–Shannon theorem refers to evenly sampled data, the theoretical minimum
relaxation time for the TDM-DRT is raised by a factor of ten, which yields

τmin =
10

2π 1
2 fsample

. (10)

On the other hand, the minimum frequency that can be measured from a current pulse
and subsequent relaxation is limited by the recorded duration of the relaxation phase Trelax.

By definition, the DRT can only portray impedance spectra converging to the real axis
at the boundaries of the chosen interval of relaxation times. Because of this, Hahn et al. [29]
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propose extending the predefined vector of relaxation times τn beyond the measured
frequencies for high relaxation times. This allows the fitted impedance spectrum ZDRT
to adequately approximate the diffusion branch of the measured impedance spectrum.
With this motivation, we extend the relaxation times of the TDM-DRT beyond Trelax

2π to
allow for a more accurate fit if the voltage has not relaxed entirely towards the open circuit
potential after Trelax. Based on these assumptions, the limits of the relaxation times vector
in the DRT calculation listed in Table 1 are chosen.

The discrete values of τ are equally spaced on a log scale with 30 points per decade,
following the recommendation of Hahn et al. [29]. Furthermore, the squared residual
norm of the EIS-DRT in Equation (3) is multiplied by 1

Q to make the minimization problem
independent of the number of measurement points Q. Analogously, the squared residual
norm of the TDM-DRT in Equation (7) is multiplied by 1

M .

Table 1. Limits of predefined relaxation times.

EIS-Data TDM-Data
τmin τmax τmin τmax

1
2π fmax

104

2π fmin

10
π fsample

Trelax · 105

4. ECM Parameterization
4.1. Employed ECM

ECMs with an integer number of RC elements connected in series are one of the most
widely used electrical models for lithium-ion batteries, because of their small number of
parameters. They are an ideal choice for parameterization from the DRT, since the DRT is
described by an infinite number of RC elements connected in series. Hence, parameteri-
zation of RC parameters from the DRT can be interpreted as a model order reduction of
the DRT.

As derived in Section 3.3, five processes are revealed from the DRT. However, when the
DRT-fitting is performed on a merged EIS and TDM (Section 5), we employ an ECM
comprising four RC elements connected in series to model the charge-transfer resistance
(P1 + P2), the transition process (P3), and the diffusion processes (P4 and P5). P1 and P2
both display different subprocesses of the charge-transfer resistance, which become visible
to a greater or lesser extent at different temperatures and SOCs. The implementation of
only one RC element for these high-frequency processes P1 and P2 is chosen because the
models are validated with time-domain measurements with a sampling rate of 100 ms
and thus they do not contribute individually to the validation results. Consequently,
when performing the proposed DRT-fitting on EIS measurements only, three RC elements
(P1 + P2, P3, P4) are used. In addition to the RC elements, there is one additional resistance
in series, which models all ohmic resistances occuring within the cell. The open-circuit
voltage (OCV) is modeled by an ideal voltage source and the OCV-SOC look-up is gathered
from UOCV, TDM, measured right before the pulse-relaxation measurement after three weeks
of relaxation (Section 2.3).

4.2. DRT-Fitting: Direct RC Parameterization from the DRT

We propose to estimate the RC parameters for an ECM directly from the DRT, making
any additional fitting algorithms in the time or frequency-domain superfluous. This ap-
proach circumvents the manual specification of starting values and/or boundary conditions
for these fitting algorithms and promotes physically meaningful parameter sets. Although
our approach is not a fitting algorithm per se, and the RC parameters are determined
analytically from the DRT, we call it DRT-fitting in analogy to conventional EIS-fitting
(fitting RC parameters to impedance spectra) or pulse-fitting (fitting RC parameters to the
time-domain current/voltage data). Since dynamic processes of the investigated system
become visible as peaks in the DRT, the relaxation times τn of n RC elements can be chosen
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at the local maxima of γ. As stated in Equation (2), γ is normalized to the total polarization
resistance Rpol. Therefore, the polarization resistance Rn of a single relaxation process
can be approximated by integrating between the adjacent minima of γ, labeled τa and τb.
Consequently, the parameters Rn and Cn of an RC element can be calculated as

Rn =
∫ τb

−τa
γ(ln τ) d ln τ, (11)

Cn =
τn

Rn
. (12)

In engineering applications, the number of RC elements must often be defined a
priori, notwithstanding the number of occurring processes in the DRT. This can corrupt the
interpretability of RC parameters, when RC elements are not unambiguously correlated to
the same electrochemical processes at all SOCs. On this account, Figure 4 proposes a flow
chart of a decision logic for parameterizing RC elements directly from the DRT and takes
into account the predefined number of RC elements. This process is henceforth denoted as
DRT-fitting and is explained in the following.

P1

P2

ln τ in s

γ
(l

n
τ
)

in
Ω

Find Peaks
P1 and P2

Select all P1

Compare #
P1 with # N

Eq. (11) & Eq. (12)
for each process P

Impedance
Parameters

Pnew = P1low
+ P1close

Remove P1low

Choose Number
of RC-elements N

Include P2high

Split P1wide

Number of P2

Legend
N = Number of RC-elements
P1 = Dominant process
P2 = Secondary process
Plow = Process with lowest peak
Phigh = Process with highest peak
Pwide = Process with widest peak
Pclose = Process with closest peak

P1

P2

P = N

P > N

Pnew

P < N

P2 > 0 P2 = 0

Pnew

Figure 4. Flow chart of the proposed DRT-fitting for automated parameterization of RC elements from the DRT.

Initially, all local maxima in the DRT are identified and labeled P1, while all inflec-
tion points are labeled P2. To identify the inflection points, the second derivative of γ
is consulted and τn is determined at the location of its maxima. The idea is that both
geometric points indicate an underlying electrochemical process. We propose to associate
one RC element to each primary process P1. If the predefined number of RC elements N
matches the number of primary process P1, RC elements can be parameterized according
to Equations (11) and (12) and the parameterization process has finished. If the DRT reveals
more primary processes P1 than the predefined number of RC elements, the polarization
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resistance of the lowest peak is added to the process with the closest relaxation time. If the
predefined number of RC elements exceeds the number of peaks in the DRT, the secondary
processes P2 are associated to an additional RC element in descending order of the polar-
ization resistance. In order to divide the polarization resistance between a secondary and a
primary process, the integration limit is set to the point were the slope of γ is lowest.

For our tested cell, the number of processes and their corresponding time constants
was different at different SOCs. Hence, we ran the algorithm for the DRT of each tested
SOC, in order to assure the consistent allocation of the same processes to the same RC
elements over the entire SOC range.

4.3. Comparison to Conventional EIS-Fitting

To validate the proposed parameterization procedure (DRT-fitting), it is compared
to a reference EIS-fitting algorithm. Conventional EIS-fitting was performed using a
MULTISTART algorithm [34] with 100 starting points to fit three RC elements to the measured
impedance spectra in the frequency-domain. To ensure comparability of the results, we also
only used EIS measurements to calculate the DRT and perform the DRT-fitting. Figure 5
shows the resulting parameters for R and τ and the corresponding impedance spectra
compared to the measured ones.
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Figure 5. Left: Impedance spectra from EIS measurements and impedance spectra estimated by the proposed DRT-fitting
and benchmark EIS-fitting for different SOC at 20 °C. Impedance spectra are shifted in the y-direction according to the SOC
for the sake of better visibility. Right: Resulting ECM parameters over SOC for DRT-fitting and EIS-fitting.
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The Nyquist plots indicate that both ECMs approximate the measured impedance
spectra with similar accuracy. Between 10% SOC and 90% SOC both EIS-fitting and DRT-
fitting identify one process at the first semi-circle displaying the charge-transfer resistance,
one process at the transition frequency and one process at the diffusion branch. While this
is expected for the DRT-fitting, it is noticeable that the EIS-fitting algorithm allocates the
three RC elements in the same manner. Besides minor offsets and shifts between individual
RC elements, parameters of both methods coincide well with each other. At 0% SOC and
100% SOC the assignment of RC elements remains consistent for the DRT-fitting. This leads
to the typical bathtub shape of the charge-transfer resistance [7]. The EIS-fitting algorithm,
however, allocates the second RC elements to the second emerging charge-transfer process
(P2). This leads to inconsistent RC parameters at the edges of the SOC area.

It needs to be noted that the boundaries of the EIS-fitting were set free, which could
be changed in a way to force the algorithm to assign individual RC elements to certain
frequency ranges. While both approaches lead to similar parameters in most cases, the ad-
vantage of the DRT-fitting is that it automatically determines physically reasonable and
consistent parameters without a priori knowledge and the need for a manual, iterative,
and time-consuming fixing of starting values and boundary conditions.

Since both approaches identify similar RC parameters, they also lead to a comparable
accuracy in the validation cycle (Table 2), whereby the error of the DRT-fitting is slightly
higher (in the range of few mV) for all validation regimes. It can be concluded that when
using EIS data alone, the proposed DRT-fitting does not gain any improvements in accuracy
compared to the conventional EIS-fitting algorithm. However, it allows for a convenient
combination of EIS and TDM.

5. Combination of EIS and TDM
5.1. Merging Approaches

As reviewed in Section 1.2, there are already some approaches to combine both
measurement domains. However, most of these use the the DRT only to gain a priori
knowledge and subsequently perform conventional fitting.

In this work, we present and compare three different merging approaches, which oc-
cur at various stages during the parameterization process using either a subset of RC
parameters (Separate DRT-fitting), intermediate results (Interconnected DRT-fitting) or raw
measurement data (Combined DRT-fitting). All three employ the proposed DRT-fitting
for direct RC parameterization from the DRT and without the need for any conventional
fitting algorithm. The three approaches are illustrated in Figure 6, and are explained in
the following:

1. Separate DRT-fitting (blue):
In our first approach, EIS and TDM are used individually to parameterize different
RC elements, the allocation of which is defined a priori. With this assumption,
EIS and TDM are processed independent from each other. The ohmic resistance
and the first RC elements (two in our case) are parameterized purely based on the
EIS-DRT, whereas the remaining RC elements (two in our case) are determined
from TDM-DRT only. Therefore, relaxation times higher than τ̂, with τ̂ being the
highest relaxation time with a local minimum in the EIS-DRT, are ignored in the
EIS-DRT. Likewise, the TDM-DRT is only evaluated at τ > τ̂. Depending on the
sampling frequency, it is difficult to capture high-frequent loss processes during TDM,
where meaningless oscillations can occur at low relaxation times close to τ̂ of the
TDM-DRT. This motivates an interconnected approach.

2. Interconnected DRT-fitting (orange):
The goal of our second approach is to use information of EIS measurements in a
more intertwined calculation of the TDM-DRT to avoid the described problems of
meaningless oscillations at low relaxation times. Since the DRT equals a series of
an infinite number of RC elements, the voltage relaxation which is caused by the
high-frequency processes of the cell can be calculated from the EIS-DRT:
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uEIS(t > (t0 + Tp)) =
∫ ∞

−∞
γEIS(ln τ) Ip [exp (

t0 + Tp − t
τ

)− exp (− t0 − t
τ

)] d ln τ. (13)

This virtual voltage response is subtracted from the measured voltage of TDM.
Since the EIS-DRT is only used to subtract the high-frequency behavior of the cell,
the diffusive branch is removed from the impedance spectrum before evaluating
Equation (13). Afterwards, the remaining voltage response is used to calculate the
TDM-DRT according to Equation (7). Adding EIS-DRT and TDM-DRT finally yields
a DRT of the complete system, which is used for the parameterization of all three
RC elements. A disadvantage of this rather complex approach is that errors within
calculation of the EIS-DRT propagate into the next step and will influence the voltage
signal and thus also the TDM-DRT.

3. Combined DRT-fitting (green):
Based on the disadvantages of the first two approaches, we developed a combined
DRT-fitting, where the calculation of EIS-DRT and TDM-DRT is performed simultane-
ously in one single step. This makes decision of a border time constant τ̂ superfluous
and avoids complex interconnected fitting. Defining one system of equations in order
to find γ(ln τ), such that it best fits both measurements, directly results in a DRT
that displays the complete dynamic behavior of the measured cell from high to low
frequencies. This can be implemented by merging Equations (3) and (7) to

min
UOCV,R0,R

∥∥∥∥∥∥√w

A′Z 0 1
A′′Z 0 0
Au 1 0

 R
UOCV

R0

 − √w

Z′exp
Z′′exp
uexp

∥∥∥∥∥∥
2

2

(14)

min
x
‖ Bcomb x − Dexp ‖2

2 (15)

This equals a summation of the residuals of EIS-DRT and TDM-DRT. The diagonal
Matrix w applies a weighting between EIS and TDM data to achieve an equal influ-
ence of both measurements, the derivation of which can be found in Appendix D.
Minimizing Equation (15) yields the DRT of the whole system as well as R0 and UOCV
and can thus be used to parameterize all ECM parameters at once.

The presented approaches are validated against a validation cycle in the time-domain
in the following.

5.2. Validation Results

We validated our method by comparing the measured voltage with the simulated
voltage during a validation cycle with a defined current profile (Figure 7a). The validation
cycle started with a CCCV discharge (A) and charge (C) at 1 C with 4 h relaxation (B) after
the discharge and 3 h relaxation (D) after the charge phase. This was followed by a dynamic
stress test (DST) (E), in which the cell was discharged by a sequence of short charge and
discharge pulses between −2 C and 1 C. Finally, after charging the cell back to 100% SOC,
a real driving cycle, recorded with a Volkswagen eGolf (F), was repeated until the lower
cut-off voltage was reached.
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EIS-DRT TDM-DRT Combined DRT

DRT-fitting
(Figure 4)
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Figure 6. Flow chart of different approaches for combining EIS and TDM before the DRT-fitting is performed to parameterize
the RC elements of an ECM. Blue: Separate DRT-fitting. Orange: Interconnected DRT-fitting. Green: Combined DRT-fitting.
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In Table 2, the root mean square error (RMSE) of the different configurations of
the proposed DRT-fitting as well as the conventional EIS-fitting is listed for the whole
validation cycle and for the different segments A–F separately. Exemplary, Figure 7b)
shows the measured and simulated voltage of the combined DRT-fitting, where the DRT is
calculated from EIS and TDM simultaneously during the validation cycle. In Figure 7c),
the corresponding residual voltage Uerror = Usim − Uexp is plotted.

Table 2. Comparison of the RMSE in mV during the validation cycle of different RC parameter sets.

EIS-Fitting DRT-Fitting DRT-Fitting

Measurement EIS EIS EIS and TDM
Merging Approach n.a. n.a. Separate Interconnected Combined

Regularization Term n.a. x x/ d2x
dln(τ)2 x/ d2x

dln(τ)2
d2x

dln(τ)2

Whole Validation Cycle 72.56 73.14 45.18 41.52 43.38

A: 1 C Discharge 42.88 46.76 28.78 26.41 26.71

B: Relaxation at 0% SOC 148.12 148.17 38.86 52.44 56.87

C: 1 C Charge 49.61 56.85 95.08 60.87 59.63

D: Relaxation at 100% SOC 37.35 37.35 36.33 36.47 36.74

E: DST 24.14 25.63 22.65 20.59 22.16

F: Driving Profile 31.56 32.05 23.69 25.12 27.39

It can be seen that adding TDMs to the parameterization process by using our pro-
posed merging approaches significantly improved the results compared to the conven-
tional EIS-fitting. The lowest overall RMSE (41.52 mV) was reached by the interconnected
DRT-fitting with a relative improvement of 42% compared to the conventional EIS-fitting.
Thereby, the differences of the three merging approaches were comparably low (in the
range of a few mVs for most regimes). The only big difference occurred at 0% SOC and at
the beginning of the charging phase, when using the separate DRT-fitting. In this configu-
ration, apparently, different loss processes were assigned to the RC elements in this region.
The RMSE was lower compared to the interconnected and combined DRT-fitting during the
relaxation phase and higher at the beginning of the charging phase. The magnitude of the
voltage error at 0% SOC and 100% SOC was influenced by the OCV-SOC relationship in this
region anyway, as revealed by the strong hysteresis until approx. 20% SOC (Section 2.3).

The voltage error in Figure 7c lay within the 50 mV error margin for most of the time.
Only at low SOC, at the end of discharging and at the beginning of charging, the error
increased strongly. As discussed before, the high error in the low SOC range could mainly
be attributed to the strong hysteresis, which was not modeled in our ECM. Therefore, in
the future, more detailed investigations on the modeling of hysteresis are needed to further
improve the simulation results, especially for modern LIB with silicon added to anode
active material. It needs to be noted that we completely discharged the cell with a CCCV
profile applying a low cut-off current of C/50. For most applications, however, such as
battery electric vehicles, this low SOC area is of minor importance, since the SOC range is
limited for various reasons such as safety or degradation [35].

6. Conclusions

In this study, we presented and validated a novel parameterization process for RC
elements of ECMs. The main advantages of this approach can be summarized as follows:
(1) merging of frequency- and time-domain measurement data to cover a broad frequency
range, (2) automated DRT calculation using Tikhonov regularization and the L-curve
criterion, and (3) RC parameterization directly from the DRT (DRT-fitting). Furthermore,
we can conclude the following from our investigations.

To cover a broad frequency range of the cell’s dynamic behavior we utilize both
measurements in the frequency-domain (EIS) and measurements in the time-domain
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(pulse-relaxation measurements). The TDMs, which in general are necessary to capture the
low-frequency loss processes of the LIB, have shown that a long relaxation period of more
than two weeks was necessary prior to the pulse-relaxation measurement itself. This was
to eliminate all effects of bringing the cell to its respective SOC. Only when a fully relaxed
state has been reached prior to the pulse-relaxation measurement does the procedure solely
capture the cell’s kinetics and is not biased by any former excitation of the cell.

We investigated different regularization terms in the Tikhonov regularization to sta-
bilize the DRT problem. Besides standard regularization with the solution norm itself,
regularization with the norm of the solution’s first and second derivative were applied in
the calculation of the DRT. The results have shown that in contrast to the EIS-DRT, where the
standard regularization showed the best results, using the solution’s second derivative
leads to an improved deconvolution of the TDM-DRT. During all DRT calculations, the L-
curve criterion has successfully been used to find the optimum regularization factor.

We showed that it is possible to determine RC parameters directly from the DRT
without the use of any conventional optimization algorithm. The parameters resulting
from the DRT-fitting are, with minor differences, comparable to a benchmark EIS-fitting.
However, our approach avoids time-consuming work of setting boundary conditions and
initial guesses for the fitting algorithm to achieve reasonable and consistent parameters
over broad operating conditions.

Additionally, direct DRT-fitting allows for convenient merging of frequency and time-
domain data. Therefore, we ultimately compared three methods of combining EIS and
TDM data to be used in the proposed DRT-fitting. During a comprehensive validation
cycle, all three methods achieved comparable results in most regions. However, they show
a strong improvement compared to the conventional EIS-fitting—the RMSE was reduced
by over 40%. Modeling of the cell at a low SOC proved to be most difficult for all methods,
therefore detailed investigations of the hysteresis behavior are suggested for future work.

Furthermore, it should be kept in mind that the DRT calculation and the ECM pa-
rameterization in general is subject to several other influencing factors, which were not
further investigated in this work. These include, for example, the range and number of
relaxation times in the DRT, the definition of the minimization problem itself (like includ-
ing an inductance or fixing the UOCV or the R0 value in the cost function), or applying a
different measurement routine. For the TDMs especially, the impact of different measure-
ment protocols should be further investigated. In the introduced ECM parameterization
process, the allocation of the total polarization process to the RC elements as well as the
number of RC elements have an important influence. Last but not least, validation of
models is always dependent on the validation cycle, as shown by the separate evaluation
of the different cycle regimes. In this work, we performed parameterization and validation
only at 20 ◦C. In the future, this must be extended to account for the mutual dependency
between dynamic loss process and heat generation inside the cell.
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Abbreviations

BMS battery management system
DRT distribution of relaxation times
DST dynamic stress test
DVA differential voltage analysis
ECM equivalent circuit model
EIS electrochemical impedance spectoscropy
GITT galvanostatic intermittent titration technique
LIB lithium-ion battery
NCA nickel cobalt aluminium oxide
OCV open-circuit voltage
pOCV pseudo open-circuit voltage
RMSE root mean square error
SOAP state of available power
SOC state of charge
SOH state of health
TDM time-domain measurement

Appendix A. EIS-DRT

As an infinite number of RC elements with continuous relaxation times, the DRT
yields an impedance spectrum of

ZDRT( f ) =
∫ ∞

0

g(τ)
1 + j2π f τ

dτ, (A1)

where f stands for the frequencies at which the spectrum ZDRT is evaluated and g(τ) is the
distribution function of resistances at the continuous relaxation times τ. g(τ) is normalized
to the total polarization resistance Rpol :∫ ∞

0
g(τ)dτ = RPol. (A2)

Substituting γ(ln τ) = τg(τ) in Equations (A1) and (A2) simplifies the use of a
logarithmic frequency scale and yields Equations (1) and (2) given in Section 3.1:

ZDRT( f ) =
∫ ∞

−∞

γ(ln τ)

1 + j2π f τ
d ln τ (A3)

∫ ∞

−∞
γ(ln τ) d ln τ = RPol. (A4)

DRT calculations based on the equations above can be found in various publications
in one form or another [12–14,16,17,25,27,29,32,36–40]. When dealing with discrete data,
the integrals in Equations (1) and (2) can be expressed as sums

ZDRT( fq) =
N

∑
n=1

γn

1 + j2π fqτn
∆τlog =

N

∑
n=1

Rn

1 + j2π fqτn
(A5)

and
N

∑
n=1

γn ∆τlog =
N

∑
n=1

Rn = RPol, (A6)

which is equal to a series of N RC elements. The values γn of the discrete distribution func-
tion equal the function values of γ(ln τ) at the N discrete relaxation times τn, which have
the equal logarithmic difference ∆τlog. The impedance is approximated at Q discrete
logarithmic equidistant frequencies fq.
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To obtain the minimization problem in Equation (3), real and imaginary part of the
impedance are separated and the sum of their squared residuals is used as an error measure
to evaluate the approximation of γ(ln τ):

min
R0,Rn

( Q

∑
q=1

[
w′(R0 + Z′DRT( fq)− Z′exp( fq))

2 + w′′(Z′′DRT( fq)− Z′′exp( fq))
2
])

. (A7)

The resistance R0 has to be added to the real part of the DRT’s impedance, to satisfy
the purely ohmic resistance of the measured impedance spectrum. As mentioned in
Section 3.1, w′ and w′′ are used to allow an adjusted weighting of the real and imaginary
part. By displaying the discrete values of Z in a vector, Equation (A7) can be transformed
into matrix form:

min
R0,Rn

(
w′‖((R01 + Z′DRT)− Z′exp)‖2

2 + w′′‖(Z′′DRT − Z′′exp)‖2
2

)
. (A8)

Stacking the two parts of Equation (A8), yields the minimization problem given in
Equation (3) in Section 3.1:

min
R0,R

∥∥∥∥∥
[√

w′A′EIS

√
w′1√

w′′A′′EIS 0

][
R
R0

]
−
[√

w′Z′exp√
w′′Z′′exp

]∥∥∥∥∥
2

2

. (A9)

Satisfying Equation (A5), the entries of the Q× N matrices A′EIS and A′′EIS have to be
set to

A′EIS,q,n =
1

1 + (2π fqτn)2 (A10)

and

A′′EIS,q,n =
−2π fqτn

1 + (2π fqτn)2 , (A11)

such that
ZDRT = A′EISR + jA′′EISR, (A12)

where Z is a vector containing the discrete impedance values Z( fq) and R is a vector
containing the discrete resistance values Rn = γn ∆τlog.

Appendix B. TDM-DRT

Schmidt starts the deduction of the system of equations from the voltage response of
a single RC element to a current pulse of magnitude Ip applied at t0 for a duration of Tp,
which is given in Equation (5) in Section 3.2 as

un(t) = Rn Ip[σ(t− t0)(1− exp (− t− t0

τn
))

− σ(t− (t0 + Tp))(1− exp (− t− (t0 + Tp)

τn
))], (A13)

where σ(x) is the Heaviside step function. In the relaxation phase, where (t < t0 + Tp),
this simplifies to

un(t) = Rn Ip[− exp (
t0 − t

τn
) + exp (

t0 + Tp − t
τn

)]. (A14)

A summation of N RC-elements with logarithmic evenly spaced relaxation times τn
directly yields the equation for discrete DRT data:
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uDRT(tm) =
N

∑
n=1

Rn Ip[exp (
t0 + Tp − tm

τn
)− exp (

t0 − tm

τn
)] (A15)

=
N

∑
n=1

γn∆τlog Ip[exp (
t0 + Tp − tm

τn
)− exp (

t0 − tm

τn
)] (A16)

at M discrete sampling points in the time domain tm. As before, γn ∆τlog = Rn. The equa-
tion for a continuous DRT γ(ln τ) is obtained when ∆τlog approaches 0 and N approaches ∞:

uDRT(t) =
∫ ∞

−∞
γ(ln τ)Ip[exp (

t0 + Tp − t
τ

)− exp (
t0 − t

τ
)]d ln τ. (A17)

The squared residual is used to find γ, such that uDRT best fits the measurement
data uexp:

min
UOCV,Rn

( M

∑
m=1

[
((UOCV + uDRT(tm))− uexp(tm))

2
])

. (A18)

Here, the constant value UOCV has to be added to the the DRT’s voltage response
to satisfy the offset of the measured cell voltage caused by the open circuit potential.
Analogously to the EIS approach, Equation (A18) can be transformed into matrix form by
displaying the discrete values of u in a vector:

min
UOCV,Rn

‖(UOCV1 + uDRT)− uexp‖2
2. (A19)

This is equal to Equation (7) in Section 3.2:

min
UOCV,Rn

∥∥∥[ATDM 1
][ R

UOCV

]
− uexp

∥∥∥2

2
.

Following Equation (A16), the entries of the M× N matrix ATDM have to be set to

ATDM,m,n = Ip[exp (
t0 + Tp − tm

τn
)− exp (

t0 − tm

τn
)], (A20)

such that
uDRT = ATDMR, (A21)

where u is a vector containing the discrete voltage values u(tm) and R is a vector containing
discrete resistances, analogous to Equation (A12).

Appendix C. Regularization Terms

For a regularization with the norm of the solution’s first or second derivative, the reg-
ularization matrix L is determined via numerical differentiation. Forward differentiation
of x yields the Newton’s difference quotient:

d
d(ln τ)

x(ln τ) ≈
x(ln τ + ∆τlog)− x(ln τ)

∆τlog
. (A22)

Hence the regularization term is set to be the first derivative of x, by choosing L to be
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L =
2

∆τlog



−1 1 0 · · · 0

0 −1 1
. . .

...

0 0 −1
. . . 0

...
. . . . . . . . . 1

0 · · · 0 0 −1


. (A23)

The second derivative is obtained using backward differentiation of Equations (A22)
and (A23). This leads to

d2

d(ln τ)2 x(ln τ) ≈
x(ln τ + ∆τlog)− 2x(ln τ) + x(ln τ − ∆τlog)

∆τ2
log

(A24)

and

L =
2

∆τ2
log



−1 0.5 0 · · · 0

0.5 −1 0.5
. . .

...

0 0.5 −1
. . . 0

...
. . . . . . . . . 0.5

0 · · · 0 0.5 −1


. (A25)

Since the last entries of the vector x, UOCV, and/or R0 are actually not part of the
discrete DRT γ(ln τn), the corresponding lines and columns in L are set to 0.

Appendix D. Weighting of EIS and TDM Data

To achieve an equal influence of EIS and TDM data on the solution of Equation (15)
an adequate weighting of the data has to be found.

For an EIS with Q sampling points and a TDM with M sampling points, the matrix
Equation (15) consists of 2Q + M lines. An unequal number of measurement points of
TDM and EIS is evened out by dividing all lines of the equation system corresponding to
EIS data by Q and all lines corresponding to TDM data, by M. However, EIS and TDM
data are also presented with different physical units and are subject to different noise levels.
This has to be additionally compensated by a fit weighting factor. To determine this factor,
the squared residual norms of EIS-DRT and TDM-DRT of the conducted measurements are
compared. Averaged over all SOCs, a ratio of

1
2Q‖BEISxEIS − Zexp‖2

2
1
M‖BTDMxTDM − uexp‖2

2
≈ 150

Ω

V
(A26)

has been observed. Hence the weighting in the combined DRT calculation is chosen to be

w = diag
[

1
2Q

1
Ω , . . . , 1

2Q
1
Ω , 150

M
1
V , . . . , 150

M
1
V

]
. (A27)
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