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Abstract: Novel intelligent battery systems are gaining importance with functional hardware on the
cell level. Cell-level hardware allows for advanced battery state monitoring and thermal management,
but also leads to additional thermal interactions. In this work, an electro-thermal framework for
the modeling of these novel intelligent battery cells is provided. Thereby, a lumped thermal model,
as well as a novel neural network, are implemented in the framework as thermal submodels. For
the first time, a direct comparison of a physics-based and a data-driven thermal battery model is
performed in the same framework. The models are compared in terms of temperature estimation
with regard to accuracy. Both models are very well suited to represent the thermal behavior in novel
intelligent battery cells. In terms of accuracy and computation time, however, the data-driven neural
network approach with a Nonlinear AutoregRessive network with eXogeneous input (NARX) shows
slight advantages. Finally, novel applications of temperature prediction in battery electric vehicles
are presented and the applicability of the models is illustrated. Thereby, the conventional prediction
of the state of power is extended by simultaneous temperature prediction. Additionally, temperature
forecasting is used for pre-conditioning by advanced cooling system regulation to enable energy
efficiency and fast charging.

Keywords: lithium-ion battery; electro-thermal model; smart cell; intelligent battery; neural network;
temperature prediction

1. Introduction

In the past few decades, the transport mobility sector, and especially the automotive
industry, has experienced considerable changes. In order to address the climate change
problems and particularly, to reduce CO2 emissions, among other technologies, Electric
Vehicles (EVs) are becoming increasingly important [1]. Due to their high energy and
power density, lithium-ion (li-ion) batteries are the most preferred battery type for EV
applications [2]. Nevertheless, the challenges and limitations related to costs, safety and
aging need to be addressed and are part of current research [3]. One important factor
influencing performance, safety and life time of the battery pack, is temperature [2,4,5].
Low temperatures lead to less available power and capacity and can result in irreversible
battery degradation when reaching subzero values. High temperatures outside the optimal
range of 15–35 °C [4] lead to accelerated aging and may result in a thermal runaway when
exceeding the safety limit of 60 °C [4,5]. Monitoring battery cell temperatures is, therefore,
necessary, which is a task of the Battery Thermal Management System (BTMS) as part of
the Battery Management System (BMS) [4]. The basic approach in commercial vehicles is
to measure the temperature at a few discrete points at the surface or tab of li-ion cells in
the system [6]. In large format battery cells this temperature may greatly differ from the
temperature reached in the battery cell core [7–9], which is the critical temperature in terms
of performance and safety. Therefore, the temperature estimation by using thermal models
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is a first step and a necessary part to enable precise thermal state monitoring. In addition,
predictive thermal management with several advantages, such as the core temperature
information, can be utilized [10–13].

The development of next generation intelligent battery systems takes this into account
by advanced monitoring of the individual cell states [14,15]. Sensors are integrated in
cell-level electronics and intelligent algorithms determine the cell state, detect faults or
perform bad-block management [16–18]. In our previous work [19], a prismatic cell was
equipped with electronics for single cell data acquisition and system reconfiguration.
The use of sensors integrated in mass-produced electronics in combination with thermal
models enables the core temperature of the battery cells to be monitored. This avoids the
need to integrate additional temperature sensors into the cell, as proposed by [5,7], which
would lead to increased production costs and safety issues [8]. However, for thermal state
monitoring, the internal cell behavior needs to be modeled and the developed models
have to be integrated in the vehicle architecture. Cell-level modeling is necessary, since
cooling system gradients and cell-to-cell variations lead to different thermal conditions
for cells in a system [20]. A substantial thermal gradient also arises due to the thermal
coupling between cells. Therefore, the thermal states of multiple cells differ and need to be
monitored individually.

Many different approaches for thermal models for conventional battery cells can be
found in the literature. The modeling approaches can generally be separated into physics-
based and data-driven models. Another common designation is white-box and black-box
modeling depending on the way the results are derived from the inputs. In general, the
prediction of a white-box model is physically and geometrically motivated and can be
understood more intuitively compared to black-box models which are solely data-driven.
There are detailed physical-based electrochemical-thermal models that are coupled, e.g.,
with geometries modeled by Computational Fluid Dynamics (CFD) or Finite Element
Method (FEM) approaches [21,22] or even in combination with mechanical models [23].
Those models are useful for battery design but their main drawback is their low compu-
tational speed, which does not allow using them for online temperature estimation in a
BTMS [24,25]. Lumped thermal models consider the relevant physical phenomena and
simplify the differential equation system by concentrating the important cell characteristics
on a few points [24,25]. The model parameters can be derived analytically for known
material parameters [24,26,27] or fitted to experimental measurements [25,28]. The latter
are a first step towards data-driven models and, therefore, one representative of the so
called gray-box approaches. Completely data-driven models do not represent the cell
internal physical and geometrical properties and model the output behavior implicitly.
Thereby, mostly with the help of machine learning methods mathematical relations be-
tween inputs and outputs are trained [29]. Examples are models using Support Vector
Machines [30] and Artificial Neural Networks (ANNs) [9,29,31]. The latter are a novel topic
of research in the field of thermal battery modeling and have proven to have advantages in
modeling non-linear dynamic relations as they can be found in batteries [9]. Nevertheless,
the ANN approaches found in the literature are mainly simple network architectures,
such as Feedforward (FF) [29,31], and none of them considers integrating the ANN as
thermal model in a total model system. Data-driven time-series prediction, implemented,
for example, as Nonlinear AutoregRessive with eXogeneous input (NARX) architecture, is
particularly reported in the literature to be adequate as thermal parameter forecasting in
energy systems [32,33] or surface temperature predictions of cylindrical cells [34]. However,
there are currently no models that use NARX networks for core temperature modeling of
large format cells, neither for conventional, nor for intelligent batteries.

Since both approaches, physical-based and data-driven modeling, seem to be adequate
as thermal battery models, it is important to compare the modeling approaches related
to the application in Battery Electric Vehicles (BEVs). Thereby, the latest developments in
terms of hardware and structure of intelligent cells are taken into account in this work.
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Currently, there are neither physical-based nor data-driven models that consider the
hardware influences within intelligent cells on the battery’s temperature.

The application of cell individual temperature monitoring by using a thermal model
in a real BEV system creates an additional opportunity to estimate the core temperature,
and also the new possibility to predict the temperature for future events and to utilize
corresponding operation strategies. Only a few approaches exist for using battery temper-
ature prediction in BEV scenarios [10,12,35,36]. The results are promising with thermal
models that can be used to improve the prediction of the driving range [35], control the
regulation of an air- and liquid-dual cooling system [10], or predict the future available
battery power [36]. However, there are certainly more applications in which real-time
thermal modeling can lead to advances in the specific prediction scenario. In this work,
the cases of State-Of-Power (SOP) prediction and advanced cooling system regulation
are proposed.

Prediction functionalities, such as SOP prediction, are important for the BEV appli-
cation as a means of knowing the available power in situations such as user acceleration
requirement or long-term performance availability without fear of overcharging or over-
discharging [37]. Current publications focus on the calculation of the available SOP based
on current, voltage and State-Of-Charge (SOC) limitations of the cells [37–43]. For low
SOCs, the discharge current is the limiting factor, while for high SOCs, the charging current
is taken accordingly. At the same time, the maximum permissible load and the voltage
limits of the cell restrict the maximum power output. However, in reality, the SOP is
also limited by the rising temperatures during maximum performance. For that purpose,
temperature estimation for an adequate SOP prediction is necessary, as performed in
this work.

Another investigated use case of temperature prediction is related to the cooling
system regulation. Amini et al. [44] argue that temperature prediction achieves a planning
horizon to activate or deactivate the cooling system which is necessary as the cooling
system contains high thermal masses. By reducing the initial phase for a battery thermal
management system, the power necessary for cooling can be reduced in general [45].
Additionally, the goal of the cooling system is always to keep all cells in the optimal
thermal range. However, there are applications discussed in the literature that prefer
increased temperatures. For example, heating the battery to 40 °C instead of cooling it
to 25 °C is known to reduce the stress and degradation caused by the intercalation and
deintercalation processes and, therefore, aging [46]. Another application is the thermally
challenging fast charging of EVs. Yang et al. [47–49] reveal slow preheating as favorable
for fast charging procedures, leading to much less heat generation during the fast charging
and, therefore, to less energy demand for the cooling. Collin et al. [50] mention, in their
work on advanced fast charging technologies, the first approaches in commercial BEVs
that perform defined pre-conditioning to improve fast charging.

In this work, the focus is on developing a thermal model for an intelligent prismatic
25 Ah cell prototype, including electronics for a BEV application. The aim is to represent the
thermal interactions within the large format cell and the actual influence of the electronics.
For the first time, the existing approaches for conventional battery cells, e.g., a physics-
based and a data-driven model using the example of a Thermal Equivalent Circuit Model
(TECM) and an ANN respectively, are implemented and compared. The two thermal
modeling methods are parametrized and implemented for an existing intelligent cell
hardware published in our former work [19] and integrated in a total framework for
a BEV application. The models are used for the cell-level temperature estimation of
different local temperatures and are compared in terms of parametrization, accuracy and
computation time. Using intelligent cells and the thermal models for advanced thermal
management, novel temperature prediction applications in a realistic BEV scenario are
presented. Improvements for SOP prediction are then presented by considering the thermal
cell state. In a second application, an predictive cooling system regulation is presented that
enables pre-conditioning for fast charging.
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2. General Modeling Approach

The general electro-thermal model framework is shown in Figure 1. It consist of
three submodels: an electrical model, a heat generation model and a thermal model. The
goal of the total model is to estimate the core temperature of the battery cell. Therefore,
a commonly used electro-thermal co-simulation is performed to capture the temperature
dependency of several model parameters [21,24,25,27]. The core temperature as and output
of the thermal submodel is fed back to the other two submodels, which are described in
the following sections. For the integration of the model in BEV applications, an observer is
implemented that is described in detail in Section 3.4. The current I, which is determined
via measurement in a realistic BEV system, is the input to the total model structure, as well
as the observer. For the investigation in this work, two thermal models are implemented
and compared that both fit in the same framework. The thermal models are described in
detail in Section 3.

Electrical Model

Thermal Model
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Figure 1. Schematic representation of the modeling framework of an electro-thermal battery cell
model, consisting of an electrical, a heat generation, a thermal submodel, and an observer. Two
different thermal models are implemented for comparison.

2.1. Electrical Model

An Equivalent Circuit Model (ECM) is used as an electrical model, as frequently seen
in thermal modeling of battery cells [27,51]. In this work, the model consists of a voltage
source, representing the Open Circuit Voltage (OCV) of the cell, a series resistance R0
corresponding to the cell’s ohmic resistance and two RC-elements, which stand, for the
voltage drop due to overvoltages, e.g., charge transfer, diffusion, phase change overvoltages
and other losses. The cell terminal voltage U can be calculated from Equation (1) below.

U = OCV + R0 · I + URC1 + URC2 (1)
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All the components of the ECM, e.g., resistances, capacitances and the OCV are
dependent on the cell core temperature and the SOC. The temperature is fed back from the
thermal submodel and the SOC is calculated inside the electrical submodel using coulomb
counting. The resistances and capacitances used for the model parametrization were
determined analytically for the 25 Ah cell and published in a previous publication [52].

2.2. Heat Generation Model

The heat generation model comprises two parts. It separately calculates the heat
generation in the cell and the electronics components. For the heat generation in the jelly
roll, Equation (2) is used based on the simplified energy balance in electrochemical systems
by Bernardi et al. [53]:

Q̇gen = Q̇irr + Q̇rev = I2 · R0 +
U2

RC1

R1
+

U2
RC2

R2
+ I · T · dOCV

dT
(2)

In Equation (2), the first three terms stand for the irreversible heat generation resulting
from the voltage drop at the electrical resistances shown in the electrical submodel. It is
always positive and therefore, leads to the heating of the cell. The last term in Equation (2)
is reversible heat generation, which results from the entropy change during intercalation
and the deintercalation of the lithium ions. It may be positive or negative, depending on the
SOC and the direction of the current and, therefore, may heat or cool the cell, respectively.
The entropy coefficient dOCV/dT is dependent on the temperature and was also determined
experimentally in [52].

The second part of the heat generation model calculates the heat generation in the
electronics based on joule heating by

Q̇elec =
n

∑
i=1

I2
i · Relec,i (3)

Relec,i is the ohmic resistance of the electronics’ pieces, respectively, and is strongly
dependent on each components’ temperature. Thereby, n is the number of all different
electronics segments. A detailed description of the electronics and the corresponding
model is given in Section 3.1 .

3. Thermal Models of an Intelligent Cell

The purpose of the thermal models is to estimate the jelly roll temperature for the
given heat input by the heat generation model. In order to compare a physics-based
to a data-driven model, a TECM and an ANN are implemented for the example of a
prismatic cell prototype for intelligent batteries published in [19]. Thereby, the geometrical
as well as boundary conditions for this prototype are defined by the reference system and
taken into account for the modeling. Since the focus of this work is on the differences
of the two approaches, they are implemented in the same electro-thermal framework to
compare accuracy, computational effort and time and applicability to an in-use temperature
estimation in a BTMS.

3.1. Reference System

The cell under investigation is a prismatic 25 Ah cell from SANYO/Panasonic with a
Nickel-Mangan-Cobalt-Oxide (NMC) cathode and graphite anode material. The dimen-
sions of the cell are 14.8 cm, 2.65 cm and 9.1 cm.

In our previous work [19], the cell was combined with electronics to form an intelli-
gent cell prototype. A schematic representation of this setup is shown in Figure 2a. For
the prismatic cell equipped with electronics, a detailed electro-thermal 3D CFD model
was implemented to investigate the specific influences of the electronics to the cell. The
shown cell with electronics is utilized for parametrization of the models of the cell and the
electronics in this work. The dataset of the previous investigation is used as target data for
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both simplified real-time modeling approaches. Considering that no measurement data of
the jelly roll core temperature are available, the neural network is trained using the highly
resolved and already experimentally validated CFD model. This teacher approach, using a
detailed model for the training of a simplified real-time model, is similarly done for other
applications, e.g., by Fang et al. [54]. In addition, the neural network uses independent
datasets for training and validation. For this purpose, datasets for the temperature range
of 15–45 °C are available, which contain many different static and dynamic load profiles, as
well as the information about local heat generation and temperatures. Figure 2b shows, as
an example, a part of the data for a reference temperature of 25 °C.

Actuator

Prismatic li-ion cell

Measurement

Temperature

sensorCell

terminal +

Control
Electronics 

terminal 

T

O

P

S

I

D

E

(a) Cell prototype and schematic geometry for detailed 3D CFD model in [19].

(b) Example investigation results used as training or target data.

Figure 2. Reference system based on our previous investigation [19]: (a) Cell prototype with electron-
ics and corresponding schematic geometry for the detailed 3D spatially dependent electro-thermal
CFD model. (b) Example results for the temperature and heat generation behavior of the prototype
cell for 25 °C starting temperature. Various comparable datasets in the range of 15–45 °C are used as
a training or target profile.

For a meaningful scenario, BEV boundary conditions are considered [21]. The cell is
assumed to be adiabatic in all directions with the exception of the connection to the cooling
system at the bottom with the temperature Tcool. For the investigation on a system level,
cells are additionally thermally coupled via the casing and the busbars, which are described
in Section 3.4. For a realistic cooling system behavior, a simplified model is introduced that
is comparable to [55–57]. Thereby, the cooling system is regulated stepwise and rule-based
which is an extension of the thermostat controller [58,59]. The maximum heat flow per cell
Q̇max, that can be dissipated by the cooling system, is controlled in three steps as shown
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in Figure 3. Starting with a deactivated cooling system for an optimal cell temperature
below 30 °C in step 0, the cooling system performance rises stepwise to a maximum of 9 W
at 38 °C for step 3. A hysteresis of 0.3 K , visualized by the marked line, is used for the
regulation of the cooling power [60]. Excessive heat production of the cell, exceeding the
cooling power limit, leads to an increase in the cooling system temperature.

Figure 3. Overview of stepwise cooling system regulation with a hysteresis of 0.3 K for decreasing
and increasing temperatures.

3.2. Physics-Based Thermal Equivalent Circuit Model

A commonly used physics-based modeling approach for conventional cells is a
lumped thermal model, also called TECM. The basic structure of TECMs is symbolized
in the left-hand section of the thermal submodel in Figure 1. In general, in a TECM, the
component to be observed is discretized by small volumes. Each volume is represented
by a thermal node, which contains the thermal capacity and parameters of the volume
respectively. The thermal capacity of one volume i is calculated using Equation (4).

Cth,i = ρi ·Vi · cp,i (4)

where ρi and cp,i are the averaged density and specific heat capacity of the volume i, and
Vi is its geometric volume. Thermal capacities, therefore, describe the heat accumulation
analogously to electrical capacitances [24]. In each thermal node, the volumetric fraction of
the total heat generation is used as a heat source, which is analogous to a current source
in electrical models. The thermal nodes are connected by thermal resistances defining the
heat transfer between them [24]:

Rth,cond =
L

λ · A (5)

L is the distance between two thermal nodes, λ is the heat conduction coefficient of
the respective material and A is the cross-sectional area of the heat transfer path between
two nodes.

The total TECM for the cell and the detailed electronics model is shown in the left-hand
section of Figure 4. Significant temperature gradients can result in large format prismatic
battery cells [21]. Therefore, the cell-internal structure is included in the TECM to model
a more realistic temperature distribution through a physics-based model in comparison
to other implemented lumped thermal models [28]. For that purpose, 3× 3× 3 nodes
standing for volumes of the same size are arranged in the mid of the jelly roll. In order
to model the complex curved geometry of the jelly roll, three nodes are added below and
above the 3× 3× 3 cuboid, respectively, resulting to a total number of 33 nodes inside
the jelly roll. In the same manner, the case is discretized by each of the nine nodes on the
x-y-side, three nodes on the y-z-side and two nodes for cell top and one for the bottom.
Additional nodes are added for the current collectors and the cell terminals. Computer
tomography scans have shown that electrolyte is remaining at the bottom of the case [21].



Batteries 2021, 7, 31 8 of 20

Therefore, the connection between the jelly roll and the bottom case is considered via heat
conduction through the electrolyte.
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(a) Extensive overview of cell-level thermal models (b) TECM details

Figure 4. Real-time thermal models for a intelligent cell in a BEV battery system: (a) Overview of the
TECM and the ANN modeling details. (b) Bottom view of the electronics hardware geometry and
the related TECM model.

The electronics can have significant influence on the jelly roll temperature [19]. There-
fore, the thermal influences of the specific electronics are considered by a lumped electronics
model of the real hardware. In Figure 4a the general positioning and thermal connection of
the electronics is revealed. Additionally, Figure 4b depicts a detailed view of the electronics
components and the modeling scheme. An one-dimensional heat conduction and tempera-
ture distribution along the current path in x-direction is considered. Three thermal nodes
are integrated representing the thermal masses of the current conducting copper inlays.
Temperature and current dependent heat generation is located in all current carrying parts.
The information of the current and the SOC are provided by the framework emulating a
BMS, but they are not further used in the present implementation. The TECM calculates
the temperature at the thermal nodes and also at the positions where thermistors are
integrated on the hardware prototype. Using this presented structure of the TECM makes
it possible to estimate the temperature in multiple positions and dimensions of the cell
which is advantageous for the later system level implementation described in Section 3.4.
The TECM is implemented in MATLAB/Simulink Version 2020a using Simscape.

Thermal masses and thermal resistances are determined analytically on the basis of
material parameters, dimensions and manufacturers data of the investigated prismatic cell
and electronics. The initial material parameters used are listed in Table 1.

Table 1. General physical and thermal parameters of the used components for the TECM model.

Component Material ρ cp λ

[kgm−3] [Jkg−1K−1] [Wm−1K−1]

Case 1 aluminum 2700 900 220
Pos. Term./Col. 1 aluminum 2700 900 220
Neg. Term./Col. 1 copper 8700 385 400
Jelly Roll 2 mixed 2043 1371 33(‖)/0.7(⊥)
Insulation 1 plastic foil 1190 1470 0.18
PCB inlay 1 copper 8700 385 400
Electrolyte 3 solvent 1130 2055 0.6
Therm. Interface Material (TIM) 4 silicone 2300 1000 3.5

1 [61], 2 Cell manufacturer data sheet (25 °C), 3 [21], 4 manufacturer data sheet.



Batteries 2021, 7, 31 9 of 20

3.3. Data-Driven ANN-Based Thermal Model

In comparison to the physics-based approach, a data-driven model is implemented
by means of an ANN shown in the right part of the thermal model in Figures 1 and 4a.
ANNs mimic the information processing in human brains by modeling of the nonlinear
input-output-relations, which explicitly occur in battery cells [29,62]. Their main advantage
is that complex correlations do not have to be physically modeled as networks can be
trained to represent the correlations. It is, therefore, necessary to provide the data basis
that includes the data correlations to be trained.

Regarding the model architecture and implementation, a network consists of a number
of neurons that are arranged in layers. The neurons are connected via edges that contain
weights that indicate the strength of the connection. In every neuron, its weighted inputs
and a bias are summed, and the sum is mapped, in a nonlinear manner, to the output by
the activation function [29,54,62] in Equation (6).

yj = f

(
n

∑
i

wi · xi + bj

)
(6)

In Equation (6), xi are the inputs to one neuron, wi are the respective edge weights of
the inputs, bj is the bias in the neuron, f is the activation function and yj is the neuron’s
output. In the training process the weights and biases are updated using known output
results. The goal is to minimize the difference between the network output and the target
data. The difference is mostly described by the Mean Squared Error (MSE) and is termed the
loss function. Several optimizations exist in the literature for minimizing the loss function.

The total ANN thermal model developed in this work is depicted in detail in the right-
hand section of Figure 4a. As already mentioned, the implementation of an ANN a dataset
containing the input–output correlations to be learned is necessary. The present network is
trained based on a dataset generated by the reference system described in Section 3.1. The
underlying load profile contains different static (constant charge/discharge) and dynamic
load profiles (e.g., the ECE, EUDC, US06, RTS95, FTP72, Artemis Motorway cycles), as
well as fast charging and cooling sections without load. In order to simulate varying
ambient and cooling conditions, the dataset is generated for different starting temperatures
of 15–45 °C in steps of 5 °C leading to a total of over 273 k timesteps. A dataset provides
information of current, SOC, heat generation in cell and electronics, the local temperature
of electronics, terminal and core as well as the removed heatflux by cooling for every
second. The network inputs are scaled in a range between 0 and 1 using the minimum
and maximum values of each feature in the training dataset. This makes the later training
more robust and efficient [9,33] and prevents it from putting more emphasis on signals
with higher absolute value [45].

The network architecture consists of one input layer, one hidden layer and one output
layer. The NARX architecture is implemented for the situation of an cell equipped with
electronics. As characteristic of the NARX as recurrent network, the outputs are fed back to
the input layer. In contrast to conventional FF networks, this enables the representation of
temporal dynamics, which improves the modeling of the thermal cell behavior. Thus, the
outputs of different timesteps y(t− 1), y(t− 2) . . . , y(t− dOutput) are stored in a Tapped
Delay Line (TDL) and used as inputs for the current timestep y(t). In the same manner, the
inputs form different timesteps x(t), x(t− 1), x(t− 2), . . . , x(t− dInput), which are stored
in a TDL and used as inputs to calculate the output y(t) at the current timestep. dInput and
dOutput are the maximum backward timesteps stored in the TDL of the inputs and outputs,
respectively [33]. The activation function used for the hidden layer is the Rectified Linear
Unit (ReLU) function (Equation (7)):

f (x) = ReLU(x) = max(0, x) =
{

x if x ≥ 0
0 if x < 0

(7)
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The ReLU function is advantageous because of its lower computing time requirements,
compared to other activation functions, such as logsig or tansig [62], which makes it more
suitable for the current application in a vehicle BMS.

The main advantage of the NARX approach compared to other data-driven regression
networks is the network architecture. A NARX network is implemented with neurons and
a structure as simple as a FF network. Therefore, it can be trained with the fast and accurate
FF training procedures and algorithms with good convergence. The training algorithm used
in this work is the Levenberg-Marquardt (LM) algorithm, which offers a fast convergence
for small networks [29]. The network is trained open-loop and independent of the other
two submodels, meaning that the loop from the outputs to the inputs is opened by utilizing
the known target temperatures. The open-loop configuration allows to efficiently train
the NARX net, analogous to FF nets and stable inputs are available [33]. This is the main
advantage compared to other recurrent network approaches.

Important features influencing the training time and especially the accuracy of the
results are the NARX hyperparameters, such as number of hidden neurons or input delays.
In order to determine a suitable architecture for the network, the authors applied the grid-
search method [63], meaning that the number of input and output delays and the number of
neurons on the hidden layer are varied between 0 to 10, 1 to 10 and 3 to 10 respectively. The
span of the parameters was found with prior investigations on testing many parameters
on a large scale. For measuring the quality of the current network topology, another
independent validation dataset containing different profiles to the training dataset is
used. The network with the lowest MSE on the validation set is used as the current best
configuration at the initialization by chance. For this application, a net is chosen, which
consists of seven neurons on the hidden layer, and TDLs lengths of 7 and 3 for the inputs
and outputs respectively. The net and training parameters are summed up in Table 2. In
order to avoid extrapolation scenarios, the training profiles are chosen and combined in a
way that the physically possible limits of SOC, cell voltage and load are reached. The total
dataset generated is split into 70%, 15% and 15% for the training, validation and testing,
respectively. In order to avoid overfitting, the early-stopping method is used by means
of stopping the training if the MSE on the validation dataset increases in six consecutive
epochs [33]. The maximum number of epochs is limited to 150, whereby an epoch is one
representation of the total training dataset with adaptation of the weights afterwards [45].
The whole setup and training of the network is performed utilizing the MATLAB Deep
Learning Toolbox.

Table 2. Parameters for the neural network applied as thermal model.

Parameter Variation Result

Training dataset 39 k timesteps per
temperature

Starting temperatures 15–45 °C in 5 °C steps
Training, validation, test ratio 70 %, 15 %, 15 %
Training algorithm LM
Activation function ReLU (hidden layer)

identity (output layer)
Max. number of epochs 150
Max. input delays 0 to 10 7
Max. output delays 1 to 10 3
Number of hidden neurons 3 to 10 7

3.4. BEV Integration and System Level Simulation

In order to compare the two modeling approaches, the two thermal submodels are
integrated into the presented model framework, including electrical and heat generation
submodels. There is a need to avoid drifting of the total model, as the three submodels are
strongly intercoupled. An observer is, therefore, included, as shown by the components in
gray color in Figure 1. Generally, the observer compares estimated and measured values
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and the difference is fed back to adopt the estimation [64]. A few approaches can be
found in the literature which make use of an observer to estimate the battery cell core
temperature by measuring the surface temperature of a battery cell [64–66]. In this work,
a different observer structure is implemented that compares the temperatures measured
and estimated at the electronics Telec and a terminal Tterm. The difference in the electronics’
temperatures Telec,Sim − Telec,Meas is used to update the heat generation at the electronics
Q̇elec and the difference in the terminal temperatures Tterm,Sim − Tterm,Meas for adaption of
heat generation in the jelly roll Q̇gen.

Obviously, there are multiple cells in a battery system that require multiple single cell
models. The cells in the system thermally interact with each other [67], and this needs to be
considered in system-level modeling. To achieve a fast computing system level simulation,
a possible coupling scheme is presented in Figure 5. Temperatures at the boundary of the
cell model are used as a boundary condition between the individual cell models connected
in series. The coupling can be performed by temperature signal routing instead of full
physical coupling to reduce the computational effort. In the system simulation approach,
based on single cell models, either the TECM, or the ANN, or another compatible cell-level
model, can be used at any time. Possible system representations are that every cell within
a module receives data from the case and terminal temperatures of its neighboring cells
in order to represent the thermal interactions within a module. The cells at the border of
the modules can be assumed to be adiabatic or are also coupled. The modeled boundary
conditions depend on the specific application. Overall, the approach is able to represent the
thermal coupling or cooling conditions in state-of-the-art battery systems. Nevertheless,
system simulation is an ongoing field of research and part of future work.

Cell Model
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Figure 5. System simulation approach based on thermal coupling of multiple cell models via busbar
and casing connections.

4. Results and Discussion
4.1. Spatial Temperature Estimation of TECM and ANN

In order to compare the temperature estimation of the real-time thermal models to
the target results of the reference system in Section 3.1, an independent dataset of the
reference system based on the ADAC electric vehicle cycle is chosen. The corresponding
2000 s current profile is repeated until the lower cut-off voltage of 3 V is reached. For
adequate comparison, a homogeneous constant temperature of 25 °C is defined for the
starting and cooling condition. To emulate realistic application conditions, the target data
for the observer contain a normally distributed noise with a mean value of 0 K and a
standard deviation of 0.2 K. Figure 6 displays the estimated transient temperatures of
the core, the electronics and a terminal, as well as the related temperature deviation ∆T
of the real-time models. The need for spatial resolution modeling is clearly illustrated
by the differences between the local measurement points. At the point of the maximum
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temperature, differences of up to 4 K are detected. However, there are differences for
the modeling approaches and the positions. At high thermal loads, the TECM slightly
overestimates the core temperature and underestimates the terminal temperature. For
the temperature estimation at the electronics, the dynamic changes in the electronics
heat generation in combination with the three representative thermal masses lead to a
maximum deviation of 2.7 K for the TECM. The deviation of the electronics results from the
lumped representation. Thereby, thermal masses and resistances are based on the initial
geometries and material properties. Thus, parameter deviations and contact resistances
lead to differences. Corresponding model deviations can be reduced by simple optimization
procedures, which is a step towards data-driven models. Overall, the TECM model reveals
a good temperature estimation with the highest mean deviation of 0.15 K at the electronics.

The ANN shows in total very small deviations with a maximum difference of −0.67 K
at the electronics temperature. The low noise on the deviation also shows that the dynamics
of the specific location is represented accordingly. The advantage of the ANN compared
to the TECM is due to the training with comparable datasets, which contain the dynamic
behavior. For all locations, the mean deviation is below 0.05 K without any static offset
or time-dependent drift of the estimation results. Other comparison differences are sum-
marized in Table 3. The overall estimation accuracy of both models is very good within
a RMSE of 0.23 K for the TECM and 0.08 K for the ANN. Regarding the computation of
the results, the total solving time with the same commercial laptop is 30 s for the ANN
model and 60 s for a maximum timestep of 1 s. Thus, both approaches are adequate for
real-time estimation with calculation times of 20 ms and 10 ms per timestep. However, the
computation time will differ for realistic BEV hardware, which needs to be the focus of
future work.

(a) Core (b) Electronics (c) Terminal

Figure 6. Transient temperature profiles of the TECM and the ANN and the related estimation
deviation in comparison to the target data of the reference system. The locations of (a) the cell core,
(b) the electronics and (c) the terminal.

Table 3. Comparison of the TECM and the ANN model for the estimation scenario of Figure 6.

TECM ANN

Parameter Core Elec. Term Core Elec. Term

Max. local deviation 0.6 K 2.7 K 0.06 K 0.15 K −0.67 K 0.3 K
Mean local deviation 0.06 K 0.15 K −0.04 K 0.01 K 0.04 K 0.03 K
Overall RMSE 0.23 K 0.08 K
Computation effort
per timestep 1

20 ms 10 ms

Modeling approach physical-based data-driven
1 On a commercial laptop with Intel i5 CPU.
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In general, physics-based or data-driven approaches can be used for estimation and
prediction applications, as outlined in the introduction. Both have proven high accuracy
for the challenging task of a large format prismatic cell with electronics. Nevertheless, the
general concept of the models offers certain advantages and disadvantages for use. The
present ANN is more accurate and provides at least small benefits related to the computa-
tion time. However, adequate training datasets must exist for training and parametrization.
Additionally, changes in the hardware and materials that have not been part of the training
data would generate discrepancies in the estimated results. With the physics-based TECM
model hardware changes can be implemented easier or the area of application can be
extended. The parametrization does not need multiple datasets for different behavior, but a
detailed analysis of corresponding geometries and materials. For example, using the model
for thermal runaway investigations can be provided by implementing the corresponding
Arrhenius-based heat generation equations above the normal temperature range of 60 °C,
as proposed, e.g., in [68]. Since the lumped approach does not represent all physical
phenomena, estimation deviations arise with the present model. However, these can be
reduced by suitable optimization processes. The use of both models is discussed in the
second part of this paper, which describes the implementation of new BTMS functionalities.

4.2. Prediction Applications

One important task of the BMS is to estimate different battery states [3,8]. A statement
about the current state, e.g., the SOP, often requires a prediction of future situations.
More information about the present and future behavior can improve the state prediction
and regulation procedures. In the current work, precise thermal models are available and,
based on their temperature prediction capability novel BTMS, functionalities are developed.
Thereby, an optimization of existing SOP prediction approaches is demonstrated by taking
into account the thermal cell state. On the other hand, a novel battery pre-conditioning
approach for fast charging optimization is presented.

4.2.1. Improvement of the SOP Prediction

Present SOP prediction strategies are based primarily on current, voltage, and SOC
limits [37,40]. The thermal battery state is largely neglected [69]. Taking the example of a
common scenario of highway driving followed by fast charging, the importance of taking
the temperature into account is presented. Figure 7 depicts the current profile and the
related temperature increase in the target data of the reference system. While driving,
both thermal models are used to estimate the core temperature of a cell. Both models
conform very well to the target data with a small deviation of less than 0.1 K for the ANN
and a maximum of 0.8 K for the TECM. The maximum deviation appears in both cases
during fast charging at the highest thermal stress of the cell. Subsequently, a conventional
power prediction is performed without the observer for the upcoming continuation of the
driving and the expected thermal behavior is predicted for different permissible current
scenarios. A detailed view of the mid-term prediction scenario is displayed on the right
side of Figure 7. As revealed by the results of both models, the only electrical-based
conventional calculation of the SOP will exceed the safety temperature limit of 60 °C. In
addition, predicting the point in time for reaching the voltage or SOC limit is not performed
correctly without taking into account the temperature dependency of the corresponding
electrical parameters. Bearing in mind the temperature limit, one may reduce the total
permissible output current so that the maximum allowable temperature is not reached
during the total discharging (see dashed lines in both cases). This, in turn, restricts the
available power in the early stage.
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Figure 7. Highway driving and fast charging scenario with in-use SOP prediction in various ways:
ANN/TECM approaches are used for the temperature estimation while driving, as well as the
prediction of the temperature during SOP determination.

An optimized SOP prediction by an individual output current limitation based on
temperature prediction is, therefore, desirable. Multiple output current scenarios can be
calculated in advance and the resulting temperature is predicted, which enables maximized
performance, while staying within the battery safety limits. Both modeling approaches
reveal comparable predicted temperature results. The differences arise from the model’s
specific absolute temperature predictions.

On the basis of the detailed models, multiple different reference temperatures can
be combined with adaptive and intelligent algorithms for safe prediction optimization.
Nevertheless, concrete algorithms are beyond the scope of this work and form part of
future investigations. In the present investigation, a simple optimization of the point in
time for limiting the output current and the current value after limitation is performed
(Figure 7). Once a thermally safe scenario has been found, the associated current profile
can be used to calculate the available power. Thus, the investigation clearly shows that
considering the temperature development is necessary for an accurate, safe and maximized
performance SOP prediction.

4.2.2. Predictive Thermal Management

In addition to advanced state monitoring and prediction, detailed thermal models also
enable the specific control of the cooling system. Conventional cooling system approaches
for BEVs normally react to measured temperatures, e.g., at the cell terminals, and do not act
predictively to achieve target temperatures. There are already approaches in the literature
for novel BTMS that use model-based temperature prediction in order to react to varying
conditions [10,11]. At this point, we add another approach to the existing ones, which
relates to the thermal pre-conditioning of batteries. In their work, Collin et al. [50] propose
to elevate the battery system temperature in order to enable an optimized fast charging. To
meet this goal, the future cooling regulation does not only depend on static temperature
rules but also needs to be adjusted.

For the same BEV driving scenario as for the SOP prediction, the step-wise cooling
system behavior (see Figure 3) and the resulting terminal temperature are shown in Figure 8.
The current profile, the related temperature increase and the cooling system behavior of
the target data are depicted in black until the end of fast charging at 3200 s.
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Figure 8. Temperature estimation and predictive cooling system regulation based on ANN/TECM
thermal model integrated with an observer in a BEV environment.

The models show comparable estimation behavior with good representation of the
transient temperature development. In both cases, the largest deviation arises at the
beginning of fast charging. The terminal temperature is underestimated for the initial
fast charging section with a maximum deviation of 0.7 K for the TECM and 0.5 K for the
NARX. Afterwards, the NARX converges to the target temperature more quickly, while the
TECM requires the period towards the end of charging. The increased deviation for the
terminal temperature estimation compared to the core temperature estimation in Figure 7
corresponds with the findings from the validation. Subsequent to the fast charging, the
models are used to predict the temperature for the basic cooling system behavior of Figure 3
for continued highway driving after fast charging stops.

Here, it should be mentioned that a key aspect of thermal prediction is load prediction.
However, the prediction of the future current is a stand-alone field of current research
and, for example, performed based on navigation profiles and geographical data [70].
In this work, we assume that the future vehicle velocity profile on a motorway contains
comparable elements in the same order of magnitude as the previous highway driving.
Based on this velocity profile and a simplified vehicle model, a load profile is calculated.
In a real BEV application, this simple prediction can be optimized, e.g., by navigation
information or driver behavior models.

It can be seen in the case of both models, that the present terminal temperatures
lead to the activation of the cooling system and a transient temperature decrease towards
30 °C. However, if the destination is the next fast charging stop, raising the temperature
towards the end could be more suitable [48]. Using the thermal models, in a simple
optimization procedure, temperature development during dynamic driving towards the
next charging stop can be predicted while testing different pre-conditioning timelines. The
resulting differences in the transient temperature development of the core temperature
are visualized in gray color. Using the simple battery cooling model in combination with
model-based temperature prediction, the resulting temperature at the next charging station
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can be increased. In such a case, the range of the variation depends on concrete application,
including the thermal mass of the battery, the ambient temperature and the distance to
the next charging stop. It is shown that, depending on the respective cooling step and the
switching time, the resulting cell temperature can be varied. Using thermal models for
predictive thermal management in applications of this type has several advantages. The
favored target temperatures can be reached precisely. In addition, unnecessary cooling
power to temporarily reduce the cell temperature is available as electrical energy [44]
and, therefore, extends, e.g., the vehicle’s range. Furthermore, the thermal conditions for
fast charging procedures can be optimized to improve the performance and extend the
lifetime [50].

A possible enhanced BTMS needs to evaluate and weight the different influencing
factors, e.g., battery temperature, future driving state and effect on driving range, to
choose an optimal strategy for cooling system power regulation. In contrast to the already
described approaches in the introduction, monitoring the cells’ individual temperatures
also enables a new degree of freedom for reacting to maximum temperatures inside the
battery system and specific cooling regulation.

5. Conclusions

In this work, a physics-based TECM and a data-driven ANN model have been im-
plemented as thermal models for a prismatic li-ion cell equipped with electronics for the
application of intelligent battery systems. For the TECM, a lumped thermal model of
the cell has been combined with a lumped electronics model. The novel ANN approach
with a NARX network is implemented with the same model interfaces as the TECM to
fit into an electro-thermal model framework for a BEV application. Both models are
parametrized/trained with datasets based on a reference hardware setup of our previous
work [19]. Subsequently, the model behavior is validated and several applications of
temperature estimation and prediction are investigated. The following conclusions can
be made:

• The temperature estimation of both modeling approaches is in good accordance with
the reference temperatures for multiple locations. Thereby, the RMSE is 0.23 K for
the TECM and only 0.08 K for the ANN for a dynamic BEV driving cycle. Thus, for
the first time, thermal models are presented, that are able to represent the thermal
interactions in novel cell assemblies for intelligent batteries. The detected cell internal
temperature differences of 4 K confirm the need of cell level thermal modeling.

• Comparing physical-based and data-driven modeling, the advantages of the data-
driven ANN lie in its high accuracy and fast computation time. The TECM offers
advantages in parametrization and the flexibility of the configuration, since it does
not need to be trained with target data. Since both models reveal adequate estimation
results, the selection depends on the application of intelligent batteries.

• In addition to thermal state estimation, thermal models in combination with the
present model framework enable prediction functionalities for a BTMS. The informa-
tion base for SOP prediction can be enlarged through the consideration of the thermal
state. As a result, the thermal safety limits are respected and the available short-term
power is maximized.

• In a second prediction application, predictive cooling system regulation is presented.
Thereby, pre-conditioning for special BEV applications, e.g., fast charging, for maxi-
mizing the BEV energy efficiency and aging conditions is possible.

The focus of future work is on the development and optimization of the corresponding
algorithms for SOP prediction and advanced thermal management functionalities and
related verification on an intelligent battery system hardware.
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