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Abstract: The thermal behavior of a commercial lithium-ion cell with the cathode material
LiNi0.6Mn0.2Co0.2O2 (NMC622) was investigated during the cycling process using a Tian-Calvet
calorimeter (C80, SETARAM Instrumentation, France). Various current flows of 42.5, 85, and 170 mA
corresponding to charging rates of 0.5, 1, and 2 C, respectively, were applied in the measurements.
The corresponding heat flow rates were measured by the C80 calorimeter at 30 ◦C. The reversible
heat effect due to the reversible electrochemical reaction was quantified by the entropy change
measurement. The irreversible heat effect due to internal resistances was determined by the
electrochemical impedance spectroscopy (EIS) and the galvanostatic intermittent titration technique
(GITT). The results were compared with the direct measurement of the heat effect by calorimetry
during electrochemical cycling.
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1. Introduction

For the end of the current decade, the total lithium-ion batteries (LIBs) market is predicted to
be as large as 390 GWh/y, in which the road-transport market consumes 245 GWh/y [1]. Advanced
positive electrode materials are crucial for best electrochemical performance and thermal stability of
LIB. Layered structure LiNi1-x-yMnxCoyO2 (NMC) and LiNi1-x-yCoxAlyO2 (NCA), spinel structure
LiMn2O4 (LMO), and olivine structure LiFePO4 (LFP) are presently mainly used as cathode material for
commercial LIBs [2–8]. Currently, NCA- and NMC-based batteries dominate the market of electrical
vehicles (EVs). Ni-rich NMC cathode materials are especially attractive in large-scale automotive
applications. Despite its outstanding electrochemical performance, the thermal stability and safety
remains to be an important issue for the use of Ni-rich NMC materials. These key properties can be
addressed at the materials level [9,10], on the cell level with regard to a safe cell design, and on the
level of a pack or module for the development of advanced thermal management systems.

Although thermodynamic properties like the entropy change, which is responsible for the
reversible heat generation during the intercalation or deintercalation processes in Li-ion cells, can be
determined by temperature-dependent measurements of the open circuit voltage [11], the application
of calorimetric methods can give additional insights for the thermal characterization [8,9]. Furthermore,
since the calorimetry measures the integral heat generated of the cell, the combination of calorimetry,
impedance, and potentiometric or galvanostatic methods [8,12,13] can provide further information
about the details of the heat generation processes. With this combination, the individual contributions
to total overpotential, which is composed of the ohmic loss; the charge transfer resistance; and the mass
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transport limitation due to diffusion can determined and the corresponding fractions of the irreversible
heat generation rate can be estimated [14].

The objective of this work is an approach to a better understand the heat generation in Ni-rich
NMC materials. By a combination of different analytical methods like calorimetry, electrochemical
impedance spectroscopy (EIS), and galvanostatic intermittent titration technique (GITT), the thermal
properties can be determined as valid input data for the development of thermal management systems.
Especially, in the case of fast charging or discharging processes, the thermal behavior and the heat
generation need to be investigated in details. The term “fast” has been used here according to the data
sheet of the commercial coin cell, which allows a continuous maximum charge or discharge current of
120 mA. This corresponds to a charging of 1.4 C. Under charging and discharging different transport
mechanisms contribute to the generated heat effects, which consists of a reversible and an irreversible
part, respectively.

The total heat generation rate during cycling can be described by the following equation [11]:

.
Qtot =

.
Qirr +

.
Qr. (1)

The irreversible part
.

Qirr is generated due to the internal resistance Ri (the sum of ohmic, activation,
and diffusion polarization resistances), which is proportional to the voltage drop under a load condition.
Since this effect represents always a heat loss from the system, the value is conventionally defined with
a negative sign:

.
Qirr = −(OCV−Ui)·i, (2)

where OCV (open circuit voltage) is the open circuit voltage, Ui the voltage under load, and i the
current density.

The reversible heat is related to just a reaction, which can be generated or consumed during the
reversible intercalation or deintercalation of lithium during charging or discharging.

The reversible heat rate
.

Qr at the temperature T is proportional to the entropy change ∆S of the
reaction and the operating current i, given by [11,12]:

.
Qr = T·∆S·

i
n·F

, (3)

with F = 96 485.3329 C/mol, the Faraday constant, and n equals the number of electrons per reaction.
The entropy change of the reversible reaction in LIBs can be determined by the following

equation [11,12]:

∆S(x, T) = F·
(
∂OCV(x, T)

∂T

∣∣∣∣∣∣
x

)
, (4)

where x is the molar fraction, and with these definitions, the total volumetric heat generation rate can
be written in terms of the overpotential η under current load [13]:

.
Q =

i
V

(
η−

T·∆S
n·F

)
. (5)

Since the total overpotential η is caused by ohmic losses, charge transfer resistance and limitations
in the mass transport due to limited diffusion, Equation (5) can be also expressed with the individual
contributions:

.
Q =

i
V

(
ηΩ + ηct + ηD −

T·∆S
n·F

)
, (6)

where ηΩ, ηct, and ηD are the ohmic potential drop, the activation overpotential due to the charge
transfer, and the diffusion overpotential, respectively.

In this work, a calorimetric study combined with measurements of the different individual
contributions from the overpotentials to the internal resistance is conducted as an effective approach
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for the characterization of the thermal behavior of coin cells with LiNi0.6Mn0.2Co0.2O2 as the cathode
material. The heat generation under different charging/discharging rates of 0.5, 1, and 2 C, respectively,
was investigated. The total heat generation during cycling was measured by a C80 (Setaram, Caluire,
France) calorimeter, and the different contributions from reversible and irreversible heat to the total
heat generation were separated by the measurement of the entropy change and the internal resistance,
respectively. The OCV was measured as a function of the state of charge (SOC) at 30 ◦C for the
determination of the entropy change according to Equation (4). The contributions from the ohmic
potential drop, the charge transfer resistance, and the diffusional resistance to the internal resistances,
respectively, were determined from the electrochemical impedance spectrum (EIS) and from the results
of the galvanostatic intermittent titration technique (GITT). Using the results from the entropy change
and the internal resistance measurements, the total heat flow rates could be computed. The calculated
values computed from the individual contributions of the overpotentials were compared with the
experimental results from the calorimetric measurements.

2. Results

2.1. Internal Resistances Definition and the Corresponding Irreversible Heat Effects

The discharge behavior of the coin cells for the three discharge rates is shown in Figure 1.
The nominal capacity is 85 mAh and the discharge capacity for 0.5, 1, and 2 C are reduced to 98%, 93%,
and 85% compared to the nominal capacity, respectively.
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Figure 1. Voltage as a function of the discharge capacity QDischarge for three different discharging rates.

The impedance spectra (Figure 2) show that the pure ohmic resistance RΩ, which is defined
by the intersection of the experimental curve with the real Z’-axis at Z” = 0 Ω, remained the same,
independently from changes of the SOC, with SOC = 1 − DOD (depth of discharge). The average value
is 402 ± 2 mΩ for all SOC levels with increasing values from SOC0 = 0.4016 Ω to SOC100 = 0.4037 Ω.
However, this variation corresponds to a change of 0.5%, which is close to the resolution limit of the
measurement system. Figure 3 shows a typical result of the GITT measurements, which are used to
separate contributions of different overpotentials under a charge pulse. The IR-drop represents the
sum of the overpotentials ηΩ and ηCT, respectively, due to the effects of the ohmic resistance and charge
transfer impedance. Since the ohmic overpotential is ηΩ = I·RΩ, the charge transfer overpotential ηCT
can be calculated using Equation (7). The diffusional part ηD of the overpotential was extracted at
longer relaxation times using a procedure described by Heubner et al. [14].

The irreversible heat flow rates due to ohmic losses, charge transfer, and ionic diffusion during
charge and discharge process at 30 ◦C are shown in Figure 4 for different charging and discharging
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rates. The values of SOC and DOD (depth of discharge) are defined with respect to the nominal
capacity of 85 mAh at equilibrium conditions. The reachable capacities for 0.5, 1, and 2 C are reduced
to 98%, 93%, and 85%, respectively.Batteries 2020, 6, x FOR PEER REVIEW 4 of 13 
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Figure 4. Irreversible heat flow rates due to ohmic, charge transfer, and diffusion impedances during
charge and discharge versus SOC (left) and depth of discharge (DOD) (right).
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The maximum values over all SOCs of the heat flow rates due to the charge transfer and diffusion
impedance are listed in Table 1 with an expanded uncertainty of k = 2, i.e., with a confidence of 95%
according to GUM (Guide to the expression of uncertainty in measurement) [15].

Table 1. Maximum heat flow rates due to diffusion and charge transfer impedance for the charge and
discharge process at different C rates.

Heat Flow Rate
Contribution

Maximum Heat Flow Rate during
Charge Process (Mw)

Maximum Heat Flow Rate during
Discharge Process (Mw)

Current at 1 C = 85 mA 0.5 C 1 C 2 C 0.5 C 1 C 2 C
.

QD 1.8 ± 0.3 5.8 ± 0.4 22.4 ± 2.7 5.5 ± 0.2 15.7 ± 1.2 25.4 ± 3.5
.

QCT 1.0 ± 0.1 5.3 ± 0.2 22.7 ± 3.5 2.4 ± 0.03 9.3 ± 1.6 34.4 ± 6.0

The total irreversible heat flow rates are shown in Figure 5. The values are calculated as the sum
of heat generation rates due to ohmic, charge transfer, and mass diffusion contributions, respectively.
Although there are only small effects as a function of SOC during charging, the heat generation rates
exhibit maximum values at discharge levels higher than 80%. The maximum values of the heat flow
rates calculated from the overpotentials due to diffusion and charge transfer among all SOCs and
DODs, respectively, are listed in Table 1.
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2.2. Entropy

The results of the entropy measurements are shown in Figure 6 together with the entropy change
data of Yazami [16] and Zhang et al. [17], respectively. The three data sets agree very well with each
other at SOC values larger than 60%. Below this value small deviations can be observed, but below
20% SOC, the entropy changes the sign to negative values, which would imply a cooling effect at low
charging states.

2.3. Total Heat Effect Measured by C80

In order to compensate for the perturbing effects of the cables, which are introduced into the
calorimeter for the cell cycling, a so-called Joule-effect calibration was performed using a defined heat
input by a current flow through an internal resistance device. This is an important step for every
calorimetric measurement [18] since it allows the computation of a conversion factor or calibration
coefficient, respectively, and the estimation of the uncertainty of the measurement. The current values
have been chosen in order to cover the typical heat flow rates (Figure 7) in a calorimetric measurement
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in the C80. The heat dissipated by the resistance device is calculated by integration over time and the
comparison with the measured values of the C80 gives the calibration coefficient as a result. As can be
seen in Table 2 the calibration coefficient shows a constant value of 1.03 and no variation with the heat
flow rate. The calibration was repeated three times, in order to confirm sufficient reproducibility.
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Table 2. Calibration coefficients for different heat flow rates.

Current (A) Power Range (Mw) Heat Effect (J) Measured Heat Effect (J) Calibration Coefficient
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0.05 24.62 129.17 125.28 1.03
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The heat flow rates measured in the C80 calorimeter during cycling at different
charging/discharging rates are shown in Figure 8. At the beginning of charging at the lowest rate of
0.5 C, a small cooling effect is visible. This cooling effect was also reported in earlier studies [19,20] and
can be explained by the entropy change in early stages of the Li+ deintercalation of the cathode and
the following intercalation of the anode. The beginning and the end of the charging and discharging
period, respectively, are as expected generating discriminable peaks in the heat flow rate. Furthermore,
the difference between the heat flow characteristics on charging and discharging is caused by the fact
that the values of the entropy change, and consequently, the reversible heat flow rate changes the sign.
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The heat generation during the charge/discharge process was calculated by integration of the
measured heat flow rate over time using the individual contribution from the measured overpotential
and the entropy change (Equation (5)). The results are shown in Table 3 in comparison with
corresponding integrated heat data from measurement in the calorimeter.

Table 3. Calculated and measured total heat generation during cycling with various C-rates.

Current Flow
1 C = 85 Ma

Heat Determined Via C80
Calorimeter (J)

Calculated Total Heat
Generation (J)

Deviation of Calculated
from Measured Heat %

Charge Discharge Charge Discharge Charge Discharge

0.5 C 23.59 ± 1.64 22.18 ± 2.00 22.35 ± 1.69 23.22 ± 2.4 −5.24 4.70
1 C 41.60 ± 0.42 38.98 ± 0.78 39.33 ± 2.67 40.81 ± 2.47 −5.46 4.70
2 C 65.62 ± 1.54 66.34 ± 0.30 64.40 ± 5.16 68.20 ± 6.43 −1.87 2.80
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The results of the measurements of the heat flow rate as a function of the SOC or DOD are shown in
Figure 9 at different charging and discharging rates. The values along the straight line were measured
during the cycling process in the C80 calorimeter, while the data points were calculated based on
the results of the electrochemical impedance spectroscopy (EIS), the GITT, and the entropy change
measurement, which allowed the determination of the irreversible and reversible part of the heat flow.
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The total amount of the generated heat measured in the calorimeter (C80) compared to the
contribution of the irreversible Qirr and the reversible part Qr is shown in Figure 10. At the highest C
rate, the deviations of the calculated from the measured results for charging and discharging process,
respectively, are both reaching minimum values. The deviation for all C-rates falls into the range of
+/− 5%.
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3. Discussion

3.1. Internal Resistances Definition and the Corresponding Irreversible Heat Effect

The diffusion impedance and charge transfer impedance are increasing with decreasing SOC,
which can be associated with a shift of the local minimum in the EIS spectra (Figure 2) to higher
resistance values.

Since the ohmic resistance is determined by EIS measurement, which almost does not vary with
the SOC, the charge transfer overpotential can be separated from the IR-drop (Figure 3) using the
following equation:

ηCT = ηIR − ηΩ = ηIR − I·RΩ. (7)

Furthermore, also the diffusional part ηD of the overpotential can be extracted from GITT data at
longer relaxation times. According to Equation (6), the three parts of irreversible heat, i.e.,

.
Qct,

.
QΩ and

.
QD, can be calculated by multiplying the applied currents for charging and discharging process [13].
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In Figure 4, the values of the generated heat due to diffusion impedance and charge transfer
are increasing strongly at higher current densities in a nonlinear way. The heat flow rate due to
diffusion is the dominating contribution at 0.5 C. At the higher C-rates of 1 and 2 C, respectively,
this effect levels out to nearly equal contributions from diffusion and charge transfer with an exception
of the highest discharge rate 2 C where the heat effect by the charge transfer tends to be the strongest.
The values of the heat generation due to diffusion and charge transfer are different for charging and
discharging. For the diffusional heat flow rates during the charge process, respectively, there seems
to be a local maximum at around 50% SOC on charging and between 60% and 70% DOD during
discharging. Similar effects were observed by other authors [21,22] and were explained by kinetic and
thermodynamic arguments. However, the diffusion and charge transfer parts of the heat during the
discharge process show a trend to maximum values at deep discharge. The corresponding maximum
heat flow rates for 0.5, 1, and 2 C are all higher on discharging than on charging.

3.2. Total Heat Effect Measured by C80

Towards higher C-rates, the relative contribution of the reversible heat to the total heat effect
decreases due to the increasing contribution of the irreversible heat flow rate leading to a stronger
deviation from equilibrium.

The heat generated during charging is close to the corresponding value on discharging and
increases approximately linear with increasing current flow. The difference in the generated heat
between charging and discharging processes is not that pronounced as it could be anticipated from the
measurements of the heat flow rates but tends to get smaller from the lowest to the highest C-rates.

In Figure 9, the calculated data points are in qualitative agreement with the heat flow rate measured
in the calorimeter, but they tend to deviate from the lowest C-rate to the higher ones. Therefore, it can
be assumed that the heat generation amount can be represented by individual contributions from the
internal resistance calculated from the measured overvoltage. The deviation can be explained by the
complex dependence of ηCT and ηD on the SOC/DOD and the charging/discharging current density,
respectively. Furthermore, since the deviations seem to increase with increasing charging/discharging
rates, there might be also a growing influence of chemical side reactions, which are not considered in
the calculation using the overpotentials.

As already discussed for the results of the EIS and GITT measurements (Figure 3), the influence
of the diffusion and charge transfer are especially pronounced at deep discharge, therefore the cells
need an extended time to reach the equilibrium state again. This is reflected in the difficulties of the
entropy change and internal resistances measurement at low SOCs as well as high DODs. The accuracy
of the thermal behavior analysis based on overpotential contributions relies strongly on achieving
an equilibrium.

4. Materials and Methods

The investigated commercial coin cells had a nominal capacity of 85 mAh with LiNi0.6Mn0.2Co0.2O2

as cathode material and graphite as anode material. The specified operation voltage window was
between 3.0 and 4.2 V. The total heat generation was investigated by a Tian-Calvet calorimeter (C80,
SETARAM Instrumentation, Caluire, France) under an isothermal condition at 30 ◦C. The temperature
was measured at the surface of the cell by an attached thermocouple (K-type) and data were recorded
as a function of time by a data logger (PicoLog, Pico Technology, St. Neots, Cambridgeshire, UK).
The cells were cycled with 0.5 C (42.5 mA), 1 C (85 mA), and 2 C (170 mA) rates using a battery cycler
(Gamry Reference 3000TM, Gamry Inc., Warminster, PA, USA). The CCCV (constant current constant
voltage) method was implemented for charging (4.2 V) and CC for discharging (3.0 V), which means
charging at constant current with the respective rate, followed by charging with the upper voltage
limit until the current decreases to C/20. Afterwards, the cells were discharged with the respective C
rate until the minimal voltage was reached.
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A joule effect calibration was performed with a standard resistance of 9.85 Ω (tolerance 5%) before
the measurements in order to calibrate the heat flow rates. The calibration coefficient was calculated by
the ratio of electrical power input and measured heat flow rates.

The principle of the entropy change measurement was described by several authors [9,10].
The entropy data can be obtained by monitoring the change of the OCV as a function of temperature.
After charging to 100% SOC, the entropy change of the cells was measured with 10% decrements of the
SOC. After reaching the selected SOC, the cells were relaxed for 3 h to establish an equilibrium at a
given temperature level starting at 15 ◦C and ending at 35 ◦C with increments of 5 ◦C. The average
voltage values within the last 30 min of the 3 h interval were used for the calculation of the entropy
change. The measurements were repeated for three cells.

Electrochemical impedance spectroscopy (EIS) measurements were carried out using the
AC-impedance measurement function of the Gamry Reference 3000TM at room temperature.
The impedance of the coin cells was determined with an AC-current of 140 µA and with frequencies
ranging from 20 kHz to 0.01 Hz. The impedance was measured at every SOC level after a relaxation
time of 3 h.

Internal resistances were determined by the galvanostatic intermittent titration technique (GITT)
using the voltage drop under load compared to the equilibrium voltage (OCV) using Gamry Reference
3000TM at room temperature. The voltage difference was measured at different current loads
corresponding to rates of 0.5, 1, and 2 C at 30 ◦C, respectively. The OCV values were taken after waiting
for 3 h following the charging step at the given SOC.

5. Conclusions

In this work, the heat generation in commercial coin cells during cycling was determined by a
combination of calorimetric measurements with electrochemical impedance spectroscopy (EIS) and
current interruption technique (GITT). Using the data of the EIS and GITT measurements, the heat flow
rates could be separated into contributions from the ohmic resistance, charge transfer, and diffusion
processes. Based on these individual parts, the total irreversible heat flow was calculated. The reversible
heat flow was evaluated from measurements of the OCV at different temperatures as a function of
the SOC and DOD, respectively, which allows the determination of the entropy change. Based on the
measured individual contributions to the heat flow and generated heat, the total amount of heat was
calculated. These values were compared with the data from the calorimetric measurements and were
found to be in a good agreement. Therefore, it can be concluded that this kind of approach can be used
to achieve a deeper insight into the heat generation processes of Li-ion batteries.
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