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Cyclic voltammetry of Vacac at three different concentrations was performed with the IL in 

order to determine how its electrochemical activity changes with increasing or decreasing 

concentrations (Figure S1).  The best electrochemistry is obtained for the lowest concentration 

of 0.01 M, which is not suitable for practical battery applications.  However, this result could 

be of benefit for other electrochemical studies with this IL (e.g., bio-electrochemical 

investigations), especially when using 10 mM or lower concentrations of active species (not 

necessarily restricted to Vacac).  Hence this result is included in this investigation. 

 

 

Figure S1.  CVs (second scan) at GC electrode of V(acac)3 in the IL at several different concentrations.  

At ten times less concentration, the CV improved significantly but this concentration was not deemed 

suitable for our investigation in terms of a practical battery application. 
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Figure S2.  Relative costs (CAPEX) of electrolytes for application as solvents for a non-aqueous vanadium 

redox flow battery.  Assumptions for this calculation are: 8 h of storage, 100 mW cm-2 power density, 2 V 

average operational voltage, 50 mA cm-2 current density and 0.5 M concentrated V active ions.  Source of 

data for each solvent (along with prices from Table 1 and their respective suppliers): ACN [1], Ethaline 

[2], Reline [3] and IL [4]. 
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