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Abstract: Internal resistance is one of the important parameters in the Li-Ion battery. This paper
identifies it using two different methods: electrochemical impedance spectroscopy (EIS) and
parameter estimation based on equivalent circuit model (ECM). Comparing internal resistance,
the conventional parameter estimation method yields a different value than EIS. Therefore,
a hysteresis-free parameter identification method based on ECM is proposed. The proposed technique
separates hysteresis resistance from the effective resistance. It precisely estimated actual internal
resistance, which matches the internal resistance obtained from EIS. In addition, state of charge, open
circuit voltage, and different internal equivalent circuit components were identified. The least square
method was used to identify the parameters based on ECM. A parameter extraction algorithm to
interpret impedance spectrum obtained from the EIS. The algorithm is based on the properties of
Nyquist plot, phasor algebra, and resonances. Experiments were conducted using a cellphone pouch
battery and a cylindrical 18650 battery.

Keywords: internal resistance; battery parameters; equivalent circuit model; electrochemical
impedance spectroscopy

1. Introduction

It is essential to know the different parameters of a battery to track, control, and forecast its
dynamics [1–3]. Efficiency, charging control, safety, and the lifespan of a battery can be enhanced
by utilizing these parameters. Terminal voltage, current, and temperature are useful parameters
to operate a battery within safety limits [4]. Cycle life and calendar life are useful parameters to
determine the aging and health condition of a battery [5]. State of charge (SOC), depth of discharge,
capacity, and open circuit voltage (OCV) are useful for fuel gauging a battery [6]. State of health (SOH)
and remaining useful life (RUL) are good indicators of performance degradation [7,8]. The internal
resistance is one of the battery parameters which is relevant to determine the aging mechanism,
SOH, and RUL [9,10]. Internal equivalent impedance of a battery is useful for improving charging
efficiency [11]. Internal resistance and other equivalent circuit parameters can be correlated to the
conduction loss, ions loss, and active material loss in a Li-Ion battery [12].

Different methods have been developed to identify specific battery parameters. Some parameters
(Voltage, Current, and Temperature) are identified using direct measurements. Other parameters are
calculated, estimated, and predicted based on the initial measurements [1–3,13–19]. Hybrid pulse
power characterization (HPPC), Galvanostatic intermittent titration technique (GITT), Equivalent
circuit model (ECM) estimation and electrochemical impedance spectroscopy (EIS) are renowned
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methods for parameter identification. ECM estimation and the EIS based method are used. It is
expected that the same battery parameter obtained using different identification methods should be
equal. However, experimental results show that internal resistance obtained using the conventional
estimation method for ECM does not match with the results obtained using EIS. This paper proposes
a solution by introducing a hysteresis-free parameter identification method based on ECM to reduce
the mismatch.

The relationship between SOC and OCV is obtained from experiments considering an equivalent
circuit model (ECM). For parameter estimation based on ECM, a battery is charged and discharged
fully by a very small amount of current (C/26-rate). Terminal voltage and current are measured
and analyzed [2]. Recent studies show that the ECM based parameter estimation method can also
determine the internal DC resistance, RUL, and SOH [15,20,21]. Parameter estimation based on ECM
is easy to implement and reliable for SOC determination. However, the test for parameter estimation
based on ECM is prone to hysteresis [22]. Hysteresis affects the internal resistance estimation. Different
models have been used to characterize hysteresis [23–25]. Hysteresis voltage in a battery depends on
the SOC level, temperature, charging/discharging current rate, and aging [22,26,27]. Based on the
recent literature, there is no universally defined model for hysteresis in a battery [25]. Considering the
effects of hysteresis, a hysteresis-free parameter estimation method is developed in this paper.

Impedance spectrum ( impedances corresponding to specific frequencies) of a battery is measured
with the EIS method. It can accurately explain the internal electrochemical characteristics of a battery.
A change of SOH is due to the aging and can be determined using the impedance spectrum [12].
The chemistry of aging, frequency sweep, and EIS have been discussed in [28–31]. EIS uses either
voltage or current perturbation to get the battery response. The voltage and current measurements are
used to obtain the impedance spectrum by frequency domain analysis [32]. Despite the expensive
equipment, EIS provides the opportunity to obtain highly accurate values for internal equivalent
circuit parameters. Unlike ECM estimation by charging–discharging test, a battery is not affected by
hysteresis during the EIS test [25]. Conventionally, the curve fitting method is used to characterize and
track the SOC with internal equivalent circuit parameters from EIS test data [17]. The curve fitting
method uses regression analysis and iterative processes. A curve fitting based parameter extraction
algorithm is introduced in [10], which can be implemented offline and require high computing power.
Therefore, the curve fitting method is inconvenient for fast interpretation of the impedance spectrum.
Fast interpretation of impedance spectrum is necessary for online EIS application. To resolve this issue,
an internal equivalent circuit parameter extraction algorithm is proposed in [1]. The algorithm looks
through the properties of the impedance spectrum and do not have iterative processes for regression
analysis. Therefore, it provided the scope to interpret impedance spectrum with less computing power
and can be implemented online. In addition to [1], impedance spectrum for different SOC has been
interpreted using the proposed algorithm for two different types of Li-Ion batteries in this paper.

Although parameter identification based on ECM and EIS methods uses voltage and current
measurements, their intended objectives, procedures, and analyses are different. As a result,
each method identifies internal resistances with different values. This happens because of the
role of hysteresis in a conventional parameter estimation method based on ECM. The conventional
method determines effective resistance as internal resistance. On the other hand, the aforementioned
parameter extraction algorithm gives Ohmic resistance as internal resistance which was introduced [1].
The algorithm is applied to the results obtained using EIS tests in this paper. To unify the internal
resistance from both methods, the following contributions are made in this paper:

• The tests for ECM and EIS are conducted on two different types of Li-Ion batteries.
• Parameter extraction algorithm is proposed and validated theoretically and experimentally.
• The identified parameters from two methods are compared.
• Difference is found for internal resistance obtained from two methods.
• To unify the values of internal resistance, a hysteresis-free ECM based parameter estimation

method is proposed.
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• The values from EIS tests matched with the results obtained from the tests for ECM using the
proposed hysteresis-free method.

To unify the identification methods, tests have been conducted on a Samsung-B600BC pouch
cellphone battery (Seoul, South Korea) and a Samsung-18650 cylindrical Li-Ion battery. Theoretical
explanation of ECM based parameter estimation, EIS, and the parameter extraction algorithm are
discussed in Sections 2–4. The ECM based parameter estimation method is explained by using
optimization theories and equivalent circuit models. EIS and the parameter extraction algorithm
are explained by Nyquist theory, resonance, and phasor algebra. In addition to the development of
theories and experimentation, analyses have been performed for validity in Section 5. Analytical results
obtained from the tests for ECM and EIS are compared to justify the proposed method. The analysis
shows how hysteresis affects resistance identification for the conventional ECM based parameter
estimation. Results finally show that the estimated internal resistance obtained from the proposed
ECM based parameter estimation matches with that obtained from EIS.

2. ECM Based Parameter Estimation

The ECM based parameter identification method can be implemented using steady state response
of a battery. The details of conventional ECM based parameter estimation techniques are discussed
in [2]. The basic structure of the ECM, battery response and test set up, conventional, and proposed
parameter estimation technique are discussed as follows.

2.1. Equivalent Circuit Model

The response of a battery in a steady state condition can be explained by an equivalent circuit
model as shown in Figure 1. The circuit consists of a DC OCV source, Vo, DC equivalent resistance,
R0, and hysteresis voltage source, h. The open circuit voltage is considered as a function of SOC, s.
The terminal voltage can be expressed by Equation (1):

V[k] = Vo(s[k]) + h[k] + i[k]R0 + nν[k] (1)

where terminal voltage of kth measurement is V[k], current through the battery is i[k], and measurement
noise is nν.

+
-

+- <

𝑉𝑜 𝑠[𝑘]

ℎ 𝑘 𝑅0 𝑖 𝑘

𝑉 𝑘

+

-

Figure 1. Equivalent circuit model of a battery for estimation.

2.2. Response of a Battery in a Charging–Discharging Test

The block diagram and actual experimental set up for ECM based parameter estimation are shown
in Figure 2. The test set up consists of a bench power supply, power resistor, programmable load, data
logging system, etc. To estimate ECM parameters, a Samsung-B600BC cellphone’s 2600 mAh 3.8 V
9.88 Wh Li-Ion battery (LCO) was used. To validate the idea further, the test was also conducted on
a Samsung-18650 Li-Ion battery (NCA) which has 2550 mAh nominal capacity. The batteries were
charged and discharged slowly with constant 100 mA current, considering the effect of hysteresis,
rated capacity, and safety limits.The maximum discharging/charging voltage limits used for the
tests for B600BC and 18,650 batteries are 3.3 V/4.4 V and 3.0 V/4.2 V, respectively. As time passes,
the terminal voltage and SOC level of the battery change. The values of terminal voltage and current
have been measured and recorded using a scopecorder (DLP750P) for analysis. The responses for the
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charging–discharging test for batteries are shown in Figure 3. Up and down arrows denote charging
voltage, Vch, and discharging voltage, Vdch, respectively. SOC has been calculated by the Coulomb
counting method using current integration (trapezoidal). The actual OCV for a specific SOC level has
been calculated by averaging the charging and discharging voltages. The measured voltage and actual
OCV with respect to SOC are shown in Figure 4. The actual OCV is calculated by Equation (2):

Vo(s) =
Vch(s) + Vdch(s)

2
(2)

where Vch and Vdch denote the measured voltage at specific SOC level s, during charging and
discharging. The effective voltage drop V0h which is combined with hysteresis voltage and Ohmic
drop is determined by the following equations:

V0h(s) = Vch(s)−Vo(s) = Vo(s)−Vdch(s) (3)

V0h(s) =
Vch(s)−Vdch(s)

2
(4)

Scopecorder

Probes

Programmable 

load
Battery

15V
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Programmable
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Switches
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0.1A

15V

(a)

(b)

h[k]

Vo(s[k])

R0

Figure 2. Equivalent circuit model (ECM) experiment: (a) test bench; (b) block diagram.
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Figure 3. Response of batteries for the charging–discharging test.
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Figure 4. Battery voltage profiles for charging–discharging tests.

2.3. Theory of Conventional Parameter Estimation

The SOC-OCV relationship is estimated from the voltage and current measurements, V[k] and
i[k]. Battery current, i[k], is integrated to get the present capacity, total capacity, and SOC levels for
every data logging instant from the measurements. By considering equal voltage drop during charging
and discharging for the same SOC levels, the average OCV is calculated from the measured terminal
voltage as in Figure 4. Estimation (1) can be re-written as in Equation (5), which is adopted from [2].

V[k] = Vo(s[k]) + i[k]Rh + i[k]R0 + nν[k] (5)

Due to a small value of i[k] and dependency on hysteresis resistance, Rh, hysteresis voltage h[k] is
replaced by i[k]Rh in Equation (5). By combining Rh and R0 to the effective resistance, R0h, Equation (5)
is simplified in Equation (6).

V[k] = Vo(s[k]) + i[k]R0h + nν[k] (6)

where

R0h = R0 + Rh (7)

The ECM parameters are estimated from V[k], i[k] and s. Thus, Equation (6) is rearranged to
matrix form, as shown in Equation (8).

V[k] =
[

po(s[k])
T i[k]

] [ ko

R0h

]
(8)

The first portion of Equation (8) forms the matrix p[k] as shown in Equation (9).

p[k] =
[

po(s[k])
T i[k]

]
(9)

The function p0(s[k]) provides the estimation equation for the battery. po can be expressed using
various models. The combined model [2] for po is shown in Equation (10).

po(s)
T =

[
1 s 1

s ln(s) ln(1− s)
]

(10)
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For the Combined+3 model [2], po is expressed by Equation (11).

po(s)
T =

[
1 s 1

s
1
s2

1
s3

1
s4 ln(s) ln(1− s)

]
(11)

The second portion of Equation (8) has coefficient vector, ko, and the effective resistance, R0h.
The size of vector ko depends on the model po. If po has M number of terms in its model, then
ko = [k0, k1, k2, ......, KM]T .

Now, for N number of measurements, the equation for voltage can be written as

v = Pk + n (12)

where
V[k] =

[
V[1] V[2] · · · V[N]

]T
(13)

P =
[

p[1] p[2] · · · p[N]
]T

(14)

n =
[

n[1] n[2] · · · n[N]
]T

(15)

k =

[
ko

R0h

]
(16)

The parameter vector, k, is determined by using a parameter estimation technique. For the least
square estimation technique, the estimated parameter vector, k̂, is calculated by Equation (17).

k̂ = (PT P)
−1

PTV (17)

Coefficient vector, k̂o, and the effective resistance, R̂0h, are obtained from the estimated parameter
vector, k̂. From the estimated coefficient vector, k̂o, the SOC-OCV relationship is determined by
Equation (18):

V̂o[k] = po(s[k])
Tk̂o (18)

The actual and estimated SOC-OCV curves are shown in the result section. The estimated values
for k̂o, and R̂0h are also presented in the results section.

2.4. Proposed Hysteresis-Free Estimation

The effective resistance, R̂0h, of a battery was considered to be constant for different SOC levels in
conventional ECM based parameter estimation technique [2]. The consideration is usable for SOC-OCV
relation identification but not valid for resistance identification. h[k] changes with SOC [22–24,33–35].
It indicates that the hysteresis resistance Rh also changes with SOC. Recent study shows that hysteresis
voltage depends on SOC levels, temperature, charging/discharging current, and aging [23,27,36].
Our test was conducted at room temperature with a new battery. Hysteresis voltage is represented by
the only multiplication of current and constant hysteresis resistance in Equation (5). In the proposed
method, terminal voltage will be expressed by Equation (19) instead of by Equation (1).

V[k] = Vo(s[k]) + h(s[k]) + i[k]R0 + nν[k] (19)

Hysteresis voltage of battery can be represented by Equation (20).

h(s[k]) = i[k]Rh(s[k]) (20)



Batteries 2020, 6, 32 7 of 20

As a result, the effective resistance, R̂0h, model will also be changed, and is expressed in
Equation (21).

R0h(s[k]) = R0 + Rh(s[k]) (21)

Hysteresis voltage has been modeled using differential equations, four states model, variable
dependent model and Tackas model, and so on [23,36–40]. Authors of [2,25,36] claim that hysteresis
in a battery is not a one to one relation, impractical to model perfectly and has no absolute model.
A simplified computationally effective quadratic model for hysteresis resistance is proposed in this
paper for simplicity. SOC dependency on hysteresis resistance, Rh, is modeled in quadratic form in the
following equations:

Rh(s[k]) =
[

1 s s2
]

kh (22)

kh =
[

kh1 kh2 kh3

]T
(23)

where kh is the coefficient vector for the hysteresis resistance model. Considering the proposed model,
the effective resistance can be expressed by Equation (24).

R0h(s[k]) = R0 +
[

1 s s2
]

kh (24)

Since the first term of hysteresis resistance is constant, Equation (24) could be reduced to
Equation (25).

R0h(s[k]) =
[

1 s s2
]

k0h (25)

where k0h is the coefficient vector for the effective resistance model:

k0h =
[

R0 + kh1 kh2 kh3

]T
(26)

By using this hysteresis model, measured voltage can be expressed by Equation (27) instead of by
Equation (8):

V[k] =
[

po(s[k])
T i(s[k])T

] [ ko

k0h

]
(27)

where
i(s[k])T =

[
i[k] i[k]s[k] i[k](s[k])2

]
(28)

To estimate the SOC-OCV parameters, the p is formed by Equation (29) instead of by Equation (9):

p[k] =
[

po(s[k])
T i(s[k])T

]
(29)

The matrix P is formed considering Equations (29) and (14). The modified version of k is
expressed by

k =

[
ko

k0h

]
(30)

Once k̂ is estimated from Equation (17), R0h(s[k]) can be calculated from Equation (25). At 100%
SOC level, current should not be injected into the battery. Experimental observation shows that, at
100% SOC, the battery has minimum hysteresis resistance. The hysteresis resistance is very small
compared to effective resistance. Therefore, only the internal resistance mainly exists in the effective
resistance in this case. This special case can be expressed by Equation (31):

R0 ≈ R0h(1) (31)
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At 100% SOC level, effective resistance can be expressed from Equation (25) and written as in
Equation (32):

R0h(1) =
[

1 1 1
]

k0h (32)

From Equations (31) and (32), internal resistance could be calculated from the obtained parameter
using Equation (33).

R0 =
3

∑
m=1

k0h(m) (33)

where m is the element number of vector k0h. The estimated internal resistance, R0, is free from
the hysteresis.

3. Electrochemical Impedance Spectroscopy

EIS measures perturbation response in a battery. Voltage and current measurements are converted
from the time domain to the frequency domain to get the internal impedance spectrum. From the
impedance spectrum, internal resistance can be obtained. The impedance spectrum represents internal
circuit parameters of a battery, which give a good insight into electrochemical behavior. EIS is inherently
hysteresis free because of its AC perturbation signal [25]. To understand EIS, it is necessary to explain
the Adaptive Randles Equivalent Circuit Model (AR-ECM) [12].

3.1. Adaptive Randles Equivalent Circuit Model

The AR-ECM for a battery as shown in Figure 5 consists of a voltage source, Ecell , stray inductance,
L, Ohmic resistance, RΩ, solid electrolytic interface impedance, ZSEI , Faradaic impedance (double
layer capacitance, CDL and charge transfer resistance, RCT), and Warburg impedance, ZW .

ZW

+

-
Ecell

L RΩ CSEI

RSEI

CDL

RCT

Z

v

Figure 5. AR-ECM for a Li-ion battery.

3.1.1. Output Voltage Model

The cell potential is analogous to OCV, and can be determined by the Nernst Equation (34):

Ecell = E0 − RT
nF

lnQ (34)

where Ecell is the cell potential, E0 is the standard cell potential, R is the gas constant, T is the absolute
temperature, n is the number of electron transfers in the reaction, F is the Faraday constant, and Q is
the reaction quotient.

3.1.2. Impedance Model

Li-Ion battery battery impedance, Z, is comprised of different contributing factors as shown in
Figure 5. Those factors are discussed below.
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Inductance

A negligible amount of inductance, L, occurs due to parasitics in the wire and metal. Inductive
impedance, ZL, is a frequency-dependent component and expressed by Equation (35).

ZL(jω) = jωL (35)

where j =
√
−1, and ω is the angular frequency, ω = 2π f .

Ohmic Resistance

Ohmic resistance, RΩ, is the resistance of bulk material in a battery. RΩ is comprised of electrolyte
resistance, current collector resistance, electrode resistance, and binder resistance. Electrolyte resistance
is dominant here and depends on ionic concentration, geometry of the cell, temperature and SOC. RΩ
is independent of frequency, which is shown in Equation (36).

RΩ(jω) = RΩ (36)

Solid Electrolyte Interface impedance

Solid Electrolyte Interface impedance, ZSEI , occurs because of mass transfer and polarization.
Frequency response of ZSEI is expressed using resitance and capacitance in Equation (37).

ZSEI(jω) =
1

1
RSEI

+ 1
1

jωCSEI

(37)

Faradaic impedance

Faradaic impedance is comprised of double layer capacitance, CDL, and charge transfer resistance,
RCT . CDL depends on the porosity and tortuosity of the electrodes.

Warburg Impedance

Warburg impedance, ZW , is related to the diffusion of particles [41]. Resistive and capacitive
elements are equal for ZW . The value of this impedance is significant at low frequencies. ZW is
expressed by Equations (38) and (39).

Zw(jω) = (1− j)
σ√
ω

= σ

√
2

jω
(38)

σ =
RT

n2F2 A
√

2

(
1

Cb
O
√

DO
+

1
Cb

R
√

DR

)
(39)

where σ is the Warburg Coefficient, A is the surface area of the electrode, C is the concentration, D
is the diffusion coefficient, O is the oxidant, R is the reductant, and b represents the bulk material.
The models of Faradaic and Warburg impedance are combined in Equation (40).

ZCT+DL+W(jω) =
1

1
RCT+Zw(jω)

+ 1
1

jωCDL

(40)

The overall impedance, Z, of a battery in the frequency domain is expressed by Equation (41).

Z(jω) = jωL + RΩ +
1

1
RSEI

+ 1
1

jωCSEI

+
1

1
RCT+Zw(jω)

+ 1
1

jωCDL

(41)



Batteries 2020, 6, 32 10 of 20

3.2. Response of a Battery in EIS Test

The EIS test has been conducted for the same batteries that were used in the ECM based
parameter estimation. The experimental set up and block diagram for the EIS test is shown in
Figure 6. The Solartron 1455 cell test system has been used to conduct this test.AC perturbation current
70 mA on top of 200 mA DC current was applied to a Samsung-B600BC battery. The frequency has
been swept from 0.1 Hz to 10 kHz using a chirp perturbation signal. For Samsung-18650 battery,
100 mA AC perturbation was applied from 0.05 Hz to 5 kHz. The celltest system can measure the few
milivolt voltage response caused by current perturbation. It also performs the analysis, and gives V, I,
Zim, Zr, f and ω. An explanatory impedance plot (inverted Nyquist plot) of the battery is shown in
Figure 7. The impedance plot is used to analyze electrochemical behavior of the battery.

Battery 
FRA 

Console 

Cell test 

interface 

(a)

Cell Test System
Battery

𝑉 + ො𝑣

<

𝐼 + Ƹ𝑖

−

+

(b)

Figure 6. EIS experimental set up: (a) test bench; (b) block diagram.

Zr(Ω)

-Z
im

(Ω
)

RΩ

RSEI
RCTXL

f(Hz) 0∞ 1

Charge 

transfer
Solid 

Electrolyte 

interface Warburg 

impedance

Peaks, |X|=R

ZW 

Series 

Resonance 

Figure 7. Properties of an impedance plot for a battery [1].
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3.3. Computation Technique in EIS

Frequency response includes perturbation and measurement of voltage and current over a range
of frequencies. The time domain voltage and current measurement is converted to frequency domain by
Fast Fourier Transformation (FFT) as expressed by Equation (42). After performing the FFT, impedance
is calculated in the complex plane. The complex impedance in frequency domain provides the Nyquist
plot and Bode plot.

V1 I1 t1

V2 I2 t2
...

...
...

Vn In tn

→


v(jω1) i(jω1) ω1

v(jω2) i(jω2) ω2
...

...
...

v(jωN) i(jωN)ωN

→


Zr(jω1) Zim(jω1) ω1

Zr(jω2) Zim(jω2) ω2
...

...
...

Zr(jωN)Zim(jωN)ωN

 (42)

4. Proposed Parameter Extraction Algorithm

Recently, EIS is implemented in conjunction with a charger, which is known as online EIS [42–44].
Online EIS provides the opportunity to track the internal condition of a battery while it is in operation.
Online EIS needs a fast interpretation method for impedance spectrum. Parameter estimation and
curve fitting methods are available to interpret impedance spectrum [10,17]. These methods are
based on iterative regression analysis and required high computing power. For fast interpretation of
impedence spectrum, an algorithm shown in Figure 8 is proposed.

The proposed algorithm interprets the properties of impedance spectrum rather than iterative
regression analysis. It is based on Nyquist plot, peak detection, resonance, and phasor algebra.
The proposed algorithm is able to get the AR-ECM parameters from an impedance spectrum.

N=2 N=1
No

Yes

Determine RΩ

Start

Load( f ,Zr , Zim)

Calculate, σ

Smooth( f ,Zr , -Zim)

Determine, R1

Find, f1

Take arbitrary f2

Find, R2

Determine, XL

XL≥0
N=?

Find peaks, (Zr , -Zim)

L=0

Calculate, L

Find,  fL

End

Calculate

Find,  fSEI

Calculate,  RSEI

Collect parameters

Calculate, CDL

Find, fCT

RCT

CSEI

Calculate

Figure 8. Parameter extraction algorithm [1].

First, frequency and corresponding impedances are loaded to analyze. Then, the impedance plot
is smoothed. Finally, circuit parameters are extracted from the smoothed impedance plot. At very
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high frequencies, capacitive reactance is almost zero and only resistive and inductive parts exist. Thus,
the total impedance at high frequencies is expressed by Equation (43).

ZTotal, fhigh
≈ jXL + RΩ (43)

For the imaginary part, the inductive reactance XL becomes dominant. Equation (43) can therefore
be written as Equation (44).

Zim, fhigh
≈ XL (44)

Now, to get XL from the impedance plot, Equation (45) can be used.

XL = |min(−Zim)| (45)

From the value of XL, L is easily determined by Equation (46).

L =
XL

2π f
(46)

For sub-Hertz frequencies, Warburg impedance is dominant. It causes a 45-degree slope in the
impedance plot, and the resistive part Rw, f can be expressed by Equation (47).

Rw, f =
σ√
2π f

(47)

Two sub-Hertz level frequencies are chosen to determine the Warburg coefficient, σ. First,
the maximum value of resistance, R1, (R1 = max(Zr)) and the corresponding minimum frequency,
f1, are selected. Then, an arbitrary frequency f2 is chosen such that f 1 < f2 < 1Hz. R2 is the
corresponding resistance to f2, which is found from the impedance spectrum. Now, Equation (48) is
used to calculate σ.

σ =
R1 − R2√

2π f1 −
√

2π f2
(48)

For frequencies close to series resonance, battery impedance can be represented by Equation (49).

ZTotal, fclose
≈ jXL + RΩ − jXC (49)

The value of ohmic resistance, RΩ, is found at the series resonance frequency where it crosses
the x-axis. In this case, XL and XC cancel each other out. As a result, only the resistive part RΩ exists,
which is found using Equation (50) at the minimum resistance condition from the impedance plot.

ZTotal, fseries
= Zr, fseries

= min(Zr) = RΩ (50)

To find the RSEI , CSEI , RCT , and CDL, the peaks in the impedance plot are used. For the peaks,
the absolute value for specific resistance and reactance are equal, as in Equation (51).

1
2

R =
1
2
|X| = |Zim| (51)

For the first peak corresponding to the lowest frequency, RCT and CDL are calculated utilizing
Equations (52) and (53).

RCT = 2| − Zim
(
CTpeak

)
| (52)

CDL =
1

2π f(CTpeak)
RCT

(53)
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If another peak exists at a higher frequency, then from that peak RSEI and CSEI are calculated
utilizing Equations (54) and (55).

RSEI = 2| − Zim
(
SEIpeak

)
| (54)

CSEI =
1

2π f(SEIpeak)
RSEI

(55)

5. Results and Analysis

EIS and ECM based charging/discharging tests are conducted for two Li-Ion batteries. Internal
resistance and other parameters obtained from both methods are analyzed and compared as follows.

5.1. Parameter Estimation Based on ECM

The actual test voltage, current, SOC, and OCV are presented in Figures 3 and 4. The estimated
SOC-OCV relationship has been presented in Figure 9 which are obtained by a conventional method
using two models: the combined model (10) and combined+3 model (11). Figure 9 also shows
the SOC-OCV parameter estimation using a proposed hysteresis-free method. The error (∆V) of
the estimation is shown in Figure 10. The estimated parameters are shown in Tables 1 and 2.
The parameters are relevant to (8), (10), (11), (27), and (33). The estimated parameters of B600BC
battery are different than the 18650 battery.
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Figure 9. SOC vs. OCV estimation in ECM.
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Figure 10. OCV estimation error in ECM.
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The estimated DC internal resistance, R̂0, from the proposed method versus the actual value of
effective resistance, R0h, and estimated effective resistance, R̂0h, from different methods are shown
in Figure 11. R0h is considered constant with respect to SOC in the conventional estimation technique.
The proposed method considers R0h as a varying quantity.

The actual R0h has been calculated from ∆v (measured voltage-actual OCV) and current.
The pattern of calculated R0h matches earlier research of hysteresis [24]. Figure 11 shows that, in the
conventional method, R̂0h is the average of actual R0h. The proposed method fits the curve to actual
R0h in quadratic form. The estimated value of R̂0h from the proposed method gives the value of R̂0 at
100% SOC. The estimated R̂0 from the proposed method is hysteresis-free and can be compared to the
measurement from the EIS test. The proposed R̂0 differs significantly from the conventional R̂0h. ECM
experimentation and the proposed hysteresis-free method have been validated by repeated tests and
comparing results with [2,23–25].

Table 1. Estimated parameters: Samsung-B600BC.

Conventional Proposed
Methods Method

Combined Combined+3 Combined
Model (10) Model (11) Model (10)

k̂0 −0.1804 k̂0 −0.9964 k̂0 −0.1804

k̂1 −0.5298 k̂1 40.1725 k̂1 −0.5298

k̂2 5.8554 k̂2 −6.6619 k̂2 5.8555

k̂3 −3.3401 k̂3 0.6954 k̂3 −3.3401

k̂4 0.1904 k̂4 −0.0311 k̂4 0.1904

R̂0h 342.3625 mΩ k̂5 −29.7565 k̂0h(1) 0.4238

k̂6 56.6907 k̂0h(2) −0.1291

k̂7 −0.3978 k̂0h(3) −0.0582

R̂0h 342.3572 mΩ R̂0 236.5139 mΩ

Table 2. Estimated parameters: Samsung-18650.

Conventional Proposed
Methods Method

Combined Combined+3 Combined
Model (10) Model (11) Model (10)

k̂0 −0.3502 k̂0 4.2904 k̂0 −0.3502

k̂1 −0.5807 k̂1 34.7860 k̂1 −0.5807

k̂2 6.3877 k̂2 −5.3094 k̂2 6.3877

k̂3 −3.3733 k̂3 0.5128 k̂3 −3.3733

k̂4 0.4131 k̂4 −0.0215 k̂4 0.4131

R̂0h 37.7168 mΩ k̂5 −31.3209 k̂0h(1) 0.0641

k̂6 53.8363 k̂0h(2) −0.0527

k̂7 −0.4718 k̂0h(3) 0

R̂0h 37.7168 mΩ R̂0 11.4161 mΩ
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Figure 11. SOC vs. resistance estimation in ECM.

5.2. Parameter Extraction from EIS Tests

The EIS test has been conducted for the same battery used in the ECM based parameter estimation.
The test has been conducted for different SOC levels varying from 0% to 100% in a discharging cycle
as shown in Figure 12.

Impedance spectra have been obtained using Solartron 1455, and stored in Excel files. The Excel
file has been used later in the parameter extraction algorithm. The extracted parameters for different
SOC levels are shown in Table 3. RΩ is the main contributing factor of battery impedance and its value
is ≈ 230 mΩ for B600BC battery and ≈ 13 mΩ for 18,650 battery. The value of RCT is almost 1/10th of
RΩ for B600BC battery and is almost 1/3rd for 18,650 battery. The value of CDL is a few Farads for
the B600BC battery and a fraction of a Farad for a 18650 battery. RSEI and CSEI are not included in
the Table 3 because their values are negligible. There was only one peak for each impedance plots
shown in Figure 12. This indicates that the value of RSEI and CSEI are negligible compared to other
portions of the impedance. The values are negligible because a new battery is used for the EIS tests.
The extracted parameters can form the AR-ECM, as described in Section 3.

200 220 240 260 280 300

Zr (m )

-25

-20

-15

-10

-5

0

5

10

15

-Z
im

 (
m

)

SOC 94%
SOC 75%
SOC 55%
SOC 26%

(a) Samsung-B600BC

12 14 16 18 20 22 24

Zr (m )

-3

-2

-1

0

1

2

3

4

-Z
im

 (
m

)

SOC 90%
SOC 60%
SOC 30%
SOC 1%

(b) Samsung-18650

Figure 12. Impedance plots from EIS tests.
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Table 3. Extracted parameters from EIS.

SOC L RΩ RCT CDL σ × 103

(%) (µH) (mΩ) (mΩ) (F)

(a) Samsung-B600BC

100 0.329 205 22.2 1.8 3.98

94 0.327 207 20.5 1.55 11.3

88 0.327 209 19.1 1.32 11.49

82 0.326 213 18.6 1.36 12.58

75 0.325 218 18.1 1.39 12.95

65 0.325 221 18.4 1.37 11.98

55 0.323 230 18.7 1.35 8.17

45 0.323 237 19.8 1.61 8.13

40 0.322 229 22.5 1.78 8.01

34 0.325 226 24.8 2.03 9.44

26 0.325 228 26.5 2.39 9.62

20 0.324 227 29.6 2.7 9.8

13 0.323 228 37.4 2.69 17.8

6 0.322 228 38.3 2.62 75.26

(b) Samsung-18650

100 0.140 13.00 5.36 0.23 2.09

90 0.141 12.88 5.00 0.15 1.82

80 0.142 12.91 5.04 0.25 1.53

70 0.145 12.93 4.59 0.21 1.04

60 0.145 12.95 4.57 0.17 0.59

50 0.143 12.94 4.61 0.21 0.37

40 0.129 13.04 5.18 0.19 1.30

30 0.130 13.05 4.92 0.16 0.86

20 0.134 13.04 5.13 0.24 0.47

10 0.131 13.04 4.85 0.16 0.54

5 0.131 13.13 5.31 0.23 0.79

1 0.133 13.16 5.48 0.23 0.94

5.3. Unification of Methods for Resistance Identification

The results from ECM based parameter estimation have been compared with the EIS test results
for the same battery in Figure 13. The charging discharging tests have been conducted consecutively
after the EIS tests. Thus, the change in RΩ is insignificant. At the end of the EIS tests, RΩ was
227.75 mΩ for B600BC battery and RΩ was 13.16 mΩ for 18650 battery. The resistance varies between
18650 battery and B600BC battery because of different chemistry and shape. R̂0h identified from
conventional ECM based parameter estimation methods are ≈342 mΩ for B600BC battery and ≈
37 mΩ for 18,650 battery. These values differ 50% from RΩ for B600BC battery. For 18,650 battery,
the difference is 172%. Therefore, we conclude that R̂0h does not represent the internal resistance
properly. R̂0h can be useful for fuel gauging but useless to determine internal electrochemical behavior
of a battery. The effective resistance found by conventional ECM is R0h = R0 + Rh, while effective
resistance found by EIS testing is R = RΩ + RCT + RSEI + RW . The proposed method estimates R̂0,
which is 236.51 mΩ for B660BC battery and R̂0 is only 3.5% different from the actual internal resistance
obtained from EIS. For 18,650 battery, the estimated value of R̂0 by the proposed method is 11.41 mΩ
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and differs only 1.76 mΩ from the value of RΩ. Therefore, it can be concluded that R̂0 ≈ RΩ. This
unified understanding of internal resistance will be useful for estimating internal electrochemical
behavior of a battery.
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Figure 13. Identified internal resistances from different methods.

6. Conclusions

Parameter identification methods (based on ECM and EIS) for a Li-Ion battery are compared
considering their similarities and differences. Hysteresis is the major difference between the two
methods for resistance identification. To compare the methods, the following theories are developed:

• A parameter extraction algorithm to interpret the properties of impedance spectrum.
• A hysteresis-free ECM based parameter estimation method.
• Internal resistance obtained from EIS test is approximately equal to hysteresis-free resistance from

ECM based parameter estimation

These theories are validated by experimental results. The parameter extraction algorithm was
applied for impedance spectra of two different batteries. The proposed hysteresis-free resistance
identification method is used to analyze data obtained from a charging–discharging test. Finally,
a match is found for the value of internal resistance from both methods with an insignificant
tolerance. The proposed parameter extraction will be useful for the online EIS where fast interpretation
of impedance spectrum is necessary. The quadratic model of hysteresis resistance separation is
computationally effective and will be useful for the modeling of a battery. The proposed methods will
be supplementary to track electrochemical parameters properly which can improve the accuracy of
SOH prediction.
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