
batteries

Article

Parameterization and Validation of an Electrochemical
Thermal Model of a Lithium-Ion Battery

Gerd Liebig * , Gaurav Gupta, Ulf Kirstein, Frank Schuldt and Carsten Agert

DLR Institute of Networked Energy Systems, 26123 Oldenburg, Germany
* Correspondence: gerd.liebig@dlr.de; Tel.: +49-441-99906-423

Received: 15 July 2019; Accepted: 2 September 2019; Published: 6 September 2019;
Corrected: 23 October 2023

����������
�������

Abstract: The key challenge in developing a physico-chemical model is the model parameterization.
The paper presents a strategic model parameterization procedure, parameter values, and a developed
model that allows simulating electrochemical and thermal behavior of a commercial lithium-ion
battery with high accuracy. Steps taken are the analysis of geometry details by opening a battery
cell under argon atmosphere, building upon reference data of similar material compositions,
incorporating cell balancing by a quasi-open-circuit-voltage experiment, and adapting the battery
models reaction kinetics behavior by comparing experiment and simulation of an electrochemical
impedance spectroscopy and hybrid pulse power characterization. The electrochemical-thermal
coupled model is established based on COMSOL Multiphysics® platform (Stockholm, Sweden) and
validated via experimental methods. The parameterized model was adopted to analyze the heat
dissipation sources based on the internal states of the battery at different operation modes. Simulation
in the field of thermal management for lithium-ion batteries highly depends on state of charge-related
thermal issues of the incorporated cell composition. The electrode balancing is an essential step to be
performed in order to address the internal battery states realistically. The individual contribution of
the cell components heat dissipation has significant influence on the temperature distribution pattern
based on the kinetic and thermodynamic properties.

Keywords: lithium-ion battery; electrochemical-thermal model; model parameterization; model
validation; electrochemical impedance spectroscopy; hybrid pulse power characterization; internal
resistance; heat dissipation; reversible and irreversible heat

1. Introduction

Lithium-ion batteries have evolved to be a dependable energy storage technology for mobile
and stationary applications due to their high operating voltage and high energy density. To ensure
enhanced performance, whilst the applications demand is met, is an increasing challenge on their
durability and safety [1,2]. The operating conditions, such as environment temperature, applied
current, state of charge (SoC), and mechanical stress within the battery design induce component
degradation and can individually or in combination with each other influence the lifetime performance
of the battery [3–6]. Hence, the classification, prediction, and minimization of these stress factors have
emerged as important but challenging topics in the field of battery research [7–11].

Different kinds of models were developed to simulate lithium-ion batteries at varying internal
states. Simple electrical-circuit models are used to address control strategies within battery management
systems. Impedance models are more complex and can be used to map physical processes, which
allow for separation of internal physical phenomena and analyzing their dependence on operating
conditions. Physico-chemical models are based on fundamental equations describing the migration
and diffusion process, as well as the intercalation reaction kinetics within the batteries. Hence, they
can be used to understand the impact of changes in material properties on the system’s behavior and
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improve it. Several papers have been published based on the initial work of Newman and Tiedemann
in 1975, and others [12–16]. Further approaches including temperature distributions, first in 2D and
later in 3D, are reported in literature [17,18].

However, the key challenge in developing a physico-chemical model is the model parameterization.
If conclusions on the battery performance should be drawn based on the internal battery states,
the parameter set for the material under consideration is of major importance. Several study
approaches have been witnessed on this topic, which range from simple estimations and literature-based
parameterization [4,19,20], parameter determination by nonlinear-regression [21,22], to dedicated
electrode experiments and full cell evaluation [23–25]. The problem with electrode material data is that
small changes in the composition and microstructure of the coating can greatly influence the electrode
behavior. Electrode performance related to the reaction kinetics is especially problematic, since
referenced data is either not available or deviates within several orders of magnitude in comparison
to the actual material used [24]. Therefore, several scientific gaps remain to be filled regarding the
most appropriate parameterization approach and the accuracy of the model predictions with respect to
parameter interdependencies and the model’s application [12].

In this study, a commercially available 40 Ah nickel–manganese–cobalt (NMC) lithium-ion battery
cell was selected as the research target, for which no interior construction plan or detailed information
on material composition is given. We contribute with this paper by proposing a strategic model
parameterization procedure to replicate the heuristic electrical and thermal behavior of the battery,
while unrealistic behavior, especially induced at limiting operation modes, is avoided. Four mandatory
parameter evaluation groups are identified: “Cell geometry details, thermo-physical properties, cell
balancing, and reaction kinetics” and accompanied methods are introduced and executed. The model is
established based on the COMSOL Multiphysics® simulation platform and validated via experimental
methods. The main advantage of the proposed model is to quickly and non-invasively identify a wide
range of parameter values dependent on the choice of operating conditions during the parametrization
and thereafter. Finally, the parameterized model was adopted to analyze the heat dissipation sources
based on the internal states of the battery.

2. Theory

The conversion and transport theory behind electrochemistry and heat transfer will be introduced
from an application-oriented point of view. This model is implemented in the COMSOL Multiphysics®

v5.4 environment using the “lithium-ion battery” submodule to describe the electrochemical behavior
and an ordinary differential equation to respect heuristic thermal behavior of the battery.

The schematic of the model implemented is shown in Figure 1.
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2.1. Lithium Ion Battery

The implementation rests on porous electrode theory, concentrated solution theory, and kinetics
equations [12,13,16]. The partial differential equations of the electrochemical and temperature propagation
are reported in similar applications [20,26].

The intercalation and de-intercalation processes of the lithium-ions in each electrode are evaluated
on the surface of spherical particles (r-axis), while the transfer processes are considered unidirectional
between the cell layer (x-axis). The variables solved within the electrochemical model are the
solid-phase lithium-ion particle concentration (cs), the liquid-phase lithium-ion particle concentration
(cl), the solid-phase potential (φs), and the liquid-phase potential (φl) [12].

The physical phenomena considered are current and mass conservation in the solid and liquid
phase. For the electrodes, Fick’s Law of diffusion for spherical particles is used to derive the solid
phase lithium-ion particle concentration (cs). The determination of the liquid phase lithium-ion particle
concentration (cl) is done using mass conservation within the electrolyte in each domain. The derivation
of solid-phase potential (φs) in the electrodes is accounted for by Ohm’s law. The calculation
of the liquid-phase potential (φl) in the electrolyte is done by using Kirchhoff’s and Ohm’s laws.
The calculation of the pore wall flux of the lithium-ions ( jk) into the electrodes is performed with help
of the Butler–Volmer reactions kinetics equation [12,27].

A complete derivation of the model equations, including initial and continuity conditions,
is beyond the scope of the paper. Derivation and discussions of the model type [28–31] and the
implementation in COMSOL Multiphysics® [20] can be found within the reference list.

The governing equations are shown in Table 1. For the sake of simplicity, whenever a parameter
is modified with respect to the underlying degrees of freedom, it is denoted by (·)e f f . The phase and
domain indices are denoted by l, s and k = neg, pos, sep, respectively. The parameter definition and
parameterization are referred to in Section 5.5.

Table 1. The governing equations of the physico-chemical model.

Domain/Meaning Governing Equation Boundary Condition

Solid Phase/Electrodes

Mass Conservation ∂cs,k
∂t = 1

rk
2
∂
∂r

(
De f f

s,k rk
2 ∂cs,k
∂r

)
∂cs,k
∂r

∣∣∣∣
r=0

= 0; De f f
s,k

∂cs,k
∂r

∣∣∣∣
r=rk

= −
je f f
k

ak F

Charge Conservation ∂
∂x

(
σ

e f f
s,k

∂φs,k
∂x

)
= je f f

k

∂φs,neg

∂x

∣∣∣∣
x=Lneg

=
∂φs,pos

∂x

∣∣∣∣
x=Lneg+Lsep

= 0

−σ
e f f
s,neg

∂φs,neg

∂x

∣∣∣∣
x=0

= σ
e f f
s,pos

∂φs,pos

∂x

∣∣∣∣
x=L

= I
A

Liquid-Phase/Electrolyte

Mass Conservation εl,k
∂cl,k
∂t = ∂

∂x

(
De f f

l,k
∂cl,k
∂x

)
+

1−t+0
F je f f

k
∂cl,neg

∂x

∣∣∣∣
x=0

=
∂cl,pos

∂x

∣∣∣∣
x=L

= 0

Charge Conservation ∂
∂x

(
σ

e f f
l,k

∂φs,k
∂x

)
−

∂
∂x

(
σ

e f f
D,k

∂lncl,k
∂x

)
= − je f f

k
∂φl,neg

∂x

∣∣∣∣
x=0

=
∂φl,pos

∂x

∣∣∣∣
x=L

= 0

Reaction Kinetics

Reaction Rate Pore Wall Flux jre f
k = akKk

(
cmax

s,k − csur f
s,k

)1−α(
csur f

s,k

)α( cl,k
cl,re f

)1−α[
e(

(1−α)Fµk
RT )

− e(
−αFµk

RT )
]

Over-Potential µk = φs,k −φl,k −Uk(SoCk); SoCk =
csur f

s,k
cmax

s,k

Battery

Terminal Voltage Vcell = φs,pos(x = L) −φs,neg (x = 0) + I R0
A

Heat dissipation sources will be quantified based on the solution variables. The total battery heat
dissipation density Qtot is implemented in this study as the sum of the integrated heat dissipation
sources resulting during energy transfer processes [20,32]. Heat generated by side reactions and
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particle mixing within the electrode domains is considered negligible [2,33]. The heat dissipation
density variable is defined based on [20,31,32] and is shown in Table 2.

Table 2. The heat dissipation sources within the physico-chemical model.

Domain/Meaning Equation

Electrode (k=neg, pos)

Reversible Heat Qrev,k = je f f
k T ∂Uk

avg

∂T
Irreversible Polarization Heat Qirr,pol, k = je f f

k µk

Irreversible Ohmic Heat Qirr,ohmic, k = σ
e f f
s,k

(
∂φs,k
∂x

)2
+ σ

e f f
l,k

(
∂φl,k
∂x

)2
+ σ

e f f
D,k

∂lncl,k
∂x

∂φl,k
∂x

Separator (k=sep)

Irreversible Ohmic Heat Qirr,ohmic, k = σ
e f f
l,k

(
∂φl,k
∂x

)2
+ σ

e f f
D,k

∂lncl,k
∂x

∂φl,k
∂x

Terminal/Current Collector (k=0)

Irreversible Ohmic Heat Qirr,ohmic,0 = I2R0
A

Battery

Total Heat Dissipation Qtot =
∑
k

 Lk∫
0

Qrev,k + Qirr,pol,k + Qirr,ohmic,k dx

+ Qirr,ohmic,0

The specific parameter definition and parameterization is referred to in Section 5.5.

2.2. Heat Transfer

The following ordinary differential equation accounts for the heuristic temperature calculation
and is defined with respect to [34]:

ρe f f Ce f f
p Vbatt

dT
dt

= QtotVstack −Ahthht(T − Text) −Aεe f f
rad σ

(
T4
− T4

ext

)
(1)

where T is temperature, Text is the external temperature, ρe f f is the battery density, Ce f f
p is the

battery heat capacity, Vbatt is the battery volume, Qtot is the total heat dissipation density, Vstack
is the electrode stack volume, Aht is the battery surface with cooling by convection, hair is the
convective heat transfer coefficient, Aεe f f

rad is the surface area-dependent effective emissivity, and σ is
the Stefan–Boltzmann constant.

2.3. Coupling of the Physics

The governing equations shown in Table 1 represent the electrochemical behavioral model of the
battery with respect to the operations modes: I, T, and SoC. The total heat dissipation density Qtot

of the battery with respect to the aforementioned setting is defined in Table 2. In Equation (1)
the thermal behavior of the battery is calculated in dependence of the heat dissipated, while
simultaneously exchanging the temperature T with the electrochemical variables in the particle,
electrode, and electrolyte domains.

3. Experimental Techniques

A model parameterization includes multiple steps: “Opening a battery cell, sample extraction
and preparation, measurement execution, and evaluation [23–25,35,36].” Special focus was taken on
an accurate pre-set of the initial SoC of the battery cell before each measurement objective. The initial
SoC of 100% was approached by a 1 C constant current–constant voltage charge to 4.2 V with a cut-off

current of 1/20 C. The initial SoC of 0% was approached by stepwise constant current discharge phases
with 1 C, 1/2 C, 1/4 C, 1/8 C, 1/20 C, and 1/40 C until the cut-off voltage of 2.8 V was reached.
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Between each measurement, there was at least two hours’ wait for a full thermal and electrochemical
homogenization at the initial state of the test environment.

In this section, measurement techniques used for the battery under investigation are described.

3.1. Battery Description

The commercially available prismatic format (PHEV2) battery used for the model parameterization
is labelled to be an NMC/Graphite type with a nominal theoretical capacity of 40 Ah and 144 Wh,
measured at 1/3 C constant current rate. A voltage range between 2.8 V to 4.2 V is recommended
with a nominal voltage of 3.6 V. Charging within a temperature range of 0 to 45 ◦C up to a maximal
discharge current rate of 5 C, as well as discharging with 10 C within −10 ◦C to 65 ◦C, is approved.

3.2. Pre-Mortem Techniques

The cycling for the electrical measurements was performed by a Maccor series 4000 Potentiostat,
multiple cell tester with 0 to 8 V (0.02% accuracy) for voltage and 0 to 150 A current (0.05% accuracy)
range each. The climate was controlled by a Vötsch climate chamber, VC 7018 with a temperature
range of −75 to 180 ◦C, and temperature was measured by an Agilent 34972A with PT100 sensors, −40
to 85 ◦C (±0.1 K accuracy) temperature range. The chamber has active air circulation to ensure accurate
conditions dependent on each measurement style. The electrical impedance spectroscopy (EIS) was
performed by a Solartron Analytical Modulab, XM ECS System, Potentiostat.

3.2.1. Quasi-Open-Circuit Voltage (qOCV)—Low Current Method

The battery was measured during a separated charge and discharge phase with a 1/40 C rate and
a constant temperature environment of 25 ◦C.

3.2.2. Open-Circuit Voltage (OCV)—Rest Method

The battery was measured during a discharge and a charge phase. Each stepwise discharge of
10% nominal capacity was followed by a break until a voltage change of smaller than 2 mV occurred or
1 h duration was reached. The initial state during the charge phase was the last state of charge during
the discharge phase, after relaxation, when a cut-off voltage of 2.8 V was reached.

3.2.3. Electrochemical Impedance Spectroscopy (EIS)

The potentiostatic measurement was performed at the battery at 50% SoC, roughly at 22.5 ◦C,
with 10 mV amplitude and a maximal current of 2 A within a frequency range of 10 mHz to 1 kHz.

3.2.4. Internal Resistance Measurement by Hybrid Pulse Power Characterization (HPPC)

The resistance of the battery within a 3 C discharge pulse for 30 s, measured after 2 s, 10 s, and 18 s,
and within a 2 C charge pulse, measured after 10 s, was evaluated at nine different SoCs (10% to 90%),
roughly at a temperature of 22.5 ◦C. After the first and second pulse, a relaxation time of 40 s was
performed. Each stepwise discharge of 10% nominal capacity was followed by a break until a voltage
change of smaller than 2 mV occurred, or 0.5 h duration was reached.

3.2.5. Electrical/Thermal Validation

Three batteries were measured during separate charge and discharge phases at 0.5 C, 1 C,
and 2 C constant current profiles with an initial temperature set to 25 ◦C. While the battery was
charged/discharged, the chambers climate control was turned off to avoid undesired fan cooling.
The exterior environment temperature of 22.5 ◦C and imposed reflective radiation by the chambers
interior metal surfaces are assumed to have a negligible effect on the measurement results.
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3.3. Post-Mortem Techniques

3.3.1. Cell Opening and Sample Preparation

The battery was opened at a SoC of 0% and an ambient temperature of 22 ◦C. Due to the
possibility of undesired material modification by contact to air, a full disassembly of the battery cell is
recommended to be done under argon atmosphere within a glovebox [37]. However, to be able to
separate the electrode stack and terminal from the metal casing of the prismatic battery cell, a cut at the
top edge of the battery cell was performed first with a Dremel® tool (Racine, WI, USA) under a fume
hood [38]. During this process, the batteries’ temperature and voltage were carefully measured. Fast
changes would have indicated the activation of electrode stack internal chemical heating processes due
to the reaction with air or due to the heating by the cutting process. A voltage drop above 0.1 V or a
high temperature increase above 5 K difference did not happen. Thereafter, the lower part of the metal
casing could be detached from the terminal and electrode stack carefully with no excessive force.

The final disassembly step of the electrode stack and terminal was done within a glovebox under an
inert argon atmosphere on non-conducting ground, atmospheric pressure, and with water and oxygen
below 5 ppm. Due to the electrode stack design, a clean cut with a sharp ceramic knife between terminal
and stack was executed. This step has to be done with care, however, to avoid cross-contamination
or short circuits by metal dust and swarfs between the electrode types. The double-sided electrodes
and the separator are detached from each other and stored and sealed in separate containers. In these
conditions, the electrode materials quality is not stable, since the material’s fraction of active lithium
might still react with small amounts of oxygen or water and electrolyte might evaporate even when
the bags are sealed airtight. Therefore, further measurements should be performed within days to
avoid the effect of uncertain sample dissipation.

For measurement methods outside the glovebox or when material is intended to be stored for a
longer duration, however, a washing process with solvent is recommended to reduce the impact of
sample dissipation. The procedure chosen within this study consists of two bathing steps per material
sheet with 10 mL pure dimethyl carbonate (DMC) and 1 min duration each, always performed in
exactly the same way. The procedure chosen within this study consist of two bathing steps per material
sheet with 10 mL pure DMC and 1 min duration each, always performed in exactly the same way [37].

3.3.2. Geometrical Data Measurement

The total thickness of the electrode sheets and the separator were measured with a micrometer-screw
at five different points of each material and an average was taken.

X-ray micro-computed (µ-CT, SkyScan 1172, Bruker, Belgium) and nano-computed tomography
(n-CT, SkyScan 2011, Bruker, Belgium) was used to access the electrodes layer and coating configuration.
All tests were done at room temperature with a set voltage of 80 kV for the µ-CT and 40 kV for
the n-CT. The recorded data sets were reconstructed and selected volume of interest(s) (VOI) and
region of interest(s) (ROI) were quantitatively analyzed using associated software products (SkyScan,
Bruker, Belgium):

• NRecon: The obtained datasets of recorded images are reconstructed to a 3D cross-Section image
stack. The ring artefact and beam hardening values are kept constant for all the samples.

• Data Viewer: The reconstructed images are adjusted parallel to their respective viewing plane,
coronal and sagittal, and the VOI is defined.

• CTAn: For the 3D morphometric analysis, the shape and sheet number of ROI are defined.

For the determination of the current collector thickness, the electrode sheets were measured by
the µ-CT at a resolution of 1.17 µm/pixel with a rotation step of 0.75◦ per projection, each projection
being an average of four image frames. The 3D reconstructed data set was viewed at coronal and
sagittal planes, the thickness was determined at a minimum of ten different points on each plane,
and an average was taken.
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For the analysis of particle size and porosity percentage, the negative and positive electrode
coatings were detached from the current collector foils. The negative electrode coating was measured
by the µ-CT with a resolution of 1 µm/pixel and a rotation step of 0.18◦ per projection, with each
projection being an average of six frames, while the positive electrode coating was measured by the
n-CT with a resolution of 0.2 µm/pixel and a rotation step of 0.2◦ per projection, with each projection
being an average of four frames. The morphometric analysis was done on the defined VOI and square
shaped ROI of 500 µm × 500 µm for the negative electrode coating and ROI of 100 µm × 100 µm for the
positive electrode coating.

Scanning electron microscopy (SEM) was utilized to visualize and confirm the particle sizes and
homogenization at the electrode’s surfaces. An InLens electron detector and an accelerator voltage of
20 kV were used for both electrode measurements.

3.3.3. Thermal Parameter Measurement

The cell components double coated graphite anode on copper foil, double coated NMC cathode
on aluminum foil, and separator of the electrode stack were characterized using differential scanning
calorimetry (DSC 204 F1, Netzsch, Germany) to determine their heat capacities Cp.

The DSC device setup and measurement fundamentals for the evaluation of Cp are described
in [39]. The anode and cathode coating were scrapped from the copper and aluminum foil using a
scalpel. The scrapped samples were loaded and sealed in hermetic aluminum pans. The measurements
parameters were defined on the DSC 204 F1 phoenix software (Netzsch, Germany). The measurements
were performed from a temperature of 25 ◦C to 60 ◦C with a heating rate of 10 K/min. The baseline
correction measurement was performed with an empty pan and the calibration measurement with a
sapphire standard of 12.73 mg, a thickness of 0.25 mm, and a diameter of 4 mm. The obtained data was
loaded onto the proteus analysis software (Netzsch, Germany) for Cp evaluation. A similar application
of the methods for the characterization of lithium-ion battery components is shown in [1].

4. Simulation Techniques

The focus in this section is to assess the types of simulation methods that are needed to analyze the
design key parameters that define the correlation of the electrode and cell voltage. The determination
of the contributing factors on the cell voltage due to the current flow is separated in the following
standardized way, as shown in [40]:

Vcell −VOCV = µohmic + µ f ,pos + µ f ,neg + µpol,pos + µpol,neg + µcon (2)

Therein Vcell represents the cell voltage, VOCV is the open circuit voltage without an applied
load, µohmic is a pure ohmic voltage drop, µ f is a voltage drop due to passivation film or layers on
each electrode respectively, µpol are the polarization voltage drops due to interfacial charge-transfer
reactions at each electrode, and µcon is a concentration-related effect like particle diffusion, migration,
or convection [40]. Each of the different phenomena is reported to occur on different time scales within
the battery’s application and deviate dependent on the considered chemistry [40].

At the start, the behavior of the electrode vs. cell balancing ratio is analyzed in Section 5.3, when
no current applied. Hence, Vcell in Equation (2) is solely defined by the electrode’s contributions:

Vcell = VOCV = Upos −Uneg (3)

Afterward, reaction kinetics methods are considered that are able to separate contributing factors
on the battery voltage in Section 4.2, when a current is applied. In both sections, a set of subsequent
equations is provided that point out modifications for the application in the model.
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4.1. Cell and Electrode Examination

The aim within this examination is to find a suitable and realistic representative function of the
negative electrode equilibrium potential Uneg under the assumption of a known positive electrode

equilibrium potential Ure f
pos and a measured quasi-equilibrium cell voltage VqOCV. A similar approach

is reported in previous studies [3,25]. The stoichiometry of both electrodes at 100% and 0% SoC
(four parameters: SoCmin

pos , SoCmax
pos , SoCmin

neg , and SoCmax
neg ) are initially chosen to be the same as in [25].

The following steps one to three are performed to examine the electrode potentials based on the
investigated cell SoC:

1. The qOCV potential for the cell is measured during a charge and discharge phase to investigate
the actual capacity Qcell. The OCV potential of the cell is approximated by the average of the
qOCV profiles at normalized time, since the overvoltage error is canceled with respect to the
direction of the energy transfer:

VOCV ≈ VqOCV =
VqOCV,ch + VqOCV,dch

2
(4)

The overvoltage error cancels out with respect to the direction of each energy transfer.
2. The positive electrodes potential in dependence of the electrode SoC is chosen to be taken from

literature [25]:
Upos = Ure f

pos (5)

The positive electrode potential profile is known to show no extreme characteristic slopes in
comparison to the negative electrode potential within the mean SoC range.

3. By applying Equations (4) and (5) to Equation (3), the negative electrodes potential is calculated
as follows:

Uneg = Upos −VOCV (6)

By shifting and rescaling parts of the electrode potential curves to fit to the difference of the
cell potential the parameters SoCmin

pos , SoCmax
pos , SoCmin

neg and SoCmax
neg are derived that uniquely define the

electrode SoC windows. A shift of the function Uneg is happening, when the threshold values for

Ure f
pos are transformed by the same value, while rescaling of the function Uneg is happening, when the

difference ∆SoCk = SoCmax
k − SoCmin

k is altered. The characteristic potential slope S2, which is localized
at a theoretical electrode SoC of 50%, is considered as fit criterion to uniquely define the final thresholds
values [41]. A discussion of this step and the results is referred to in Section 5.3. The data processing
and implementation of the potential profiles is referred to in Appendix A.

Based on the SoC thresholds of the electrodes and with respect to the maximal lithium particle
concentrations of each electrode, the following equations are established with respect to ideas of [28,36]
and can be used to define the initial lithium particle concentration of the electrodes at the initial state
of charge SoC0:

c0
s,neg(SoC0) = cmax

s,neg ·
(
SoCmax

neg · SoC0 + SoCmin
neg · (1− SoC0)

)
(7)

c0
s,pos(SoC0) = cmax

s,pos ·
(
SoCmax

pos · (1− SoC0) + SoCmin
pos · SoC0

)
(8)

The upcoming set of equations are derived and used to reproduce the design specification of the
full cell based on the electrode’s properties (k = neg, pos) and are used similarly by [23–25]:

• The inactive fraction of the electrodes SoC windows is calculated by:

fk = 1−
(
SoCmax

k − SoCmin
k

)
(9)
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• The actual electrode capacities Qneg and Qpos are calculated based on the fact that the usable
capacity Qcell represents the active material loading, while the counterparts in each electrode
remain inactive:

Qk =
Qcell

(1− fk)
(10)

• The theoretical electrode capacities are calculated as follows:

Qtheo
k =

ρk ·Vk · F
Mk

(11)

• The electrodes active material fraction is received by calculating the ratio of the actual electrode
capacity of the theoretical electrode capacity:

εs,k =
Qk

Qtheo
k

(12)

• The specific surface area is calculated as follows:

ak =
3 · εs,k

rk
(13)

• Similarly, the actual surface area is calculated as follows:

Sk =
3 ·Vk · εs,k

rk
(14)

The final results are reported in Table 6 in Section 5.5.

4.2. Reaction Kinetics Examination

Several studies reported on EIS experiments of lithium-ion batteries and half-cells to evaluate cell
performance, as shown in Equation (2), and employed the method as reliable to separate the dynamic
effects based on the measured impedance response [25,40,42–46]. A small sinusoidal current signal Ĩ is
imposed on the battery at a given frequency ω and induces a sinusoidal voltage Ṽ response. Using
complex numbers to represent the sinusoidal current and voltage, the complex impedance Z̃ of the
battery at a given frequency can be calculated as follows:

Z̃ =
Ṽ

Ĩ
(15)

In fact, two characteristic points and corresponding resistance values will be assessed that roughly
describe the dynamic behavior of the battery [46]:

• Ro at − Im
(
Z̃
)
= 0: The impedance spectrum crosses the x-axis at the frequency, when the inductive

behavior is compensated by capacitive behavior of battery components. Hence, the battery
impedance at this point is nearly the pure ohmic resistance R0 of the battery.

• RCt at min
(
−Im

(
Z̃
))

: The negative imaginary part of the impedance spectrum shows a local
minimum at the end of a large semicircle at low frequencies. The semicircle is usually associated
with interfacial charge transfer reaction combined with double layer capacitance.

The entire impedance spectrum of the battery is evaluated based on the frequencies in the given
frequency range 1000 Hz to 0.01 Hz, when a sinusoidal voltage response with 10 mV is produced.
The COMSOL Multiphysics® physico-chemical modeling approach [45,47] will be introduced based



Batteries 2019, 5, 62 10 of 29

on the model study one needs to perform to evaluate equation (15). The model study is a stationary
frequency analysis and requires modifications of the governing equations:

1. The time-dependent model variables, here represented by n, are modified by a sinusoidal
perturbation and solved in the complex-valued domain for predefined frequencies ω :

n(ω, t) = nre f + Re
(̃
n · e2πω·it

)
(16)

2. Where nre f is the initial time-dependent value at time zero and ñ is the complex-valued extension
of n. The particle concentration time derivative mentioned in Table 1 is exchanged by a frequency
mode as follows:

iωεl,kcl,k =
∂
∂x

(
De f f

l,k

∂cl,k

∂x

)
+

1− t+0
F

j̃k (17)

where j̃k incorporates the double layer capacitance Cdl,k at each electrode:

j̃k = je f f
k + iω(µk + Uk)Cdl,k (18)

Correspondingly, j̃k instead of je f f
k in the governing equations in Table 1.

3. Thus, the cell impedance Z̃ is calculated dependent on the perturbed boundary flux variables φ̃s

and Ĩs and incorporated conditions defined at the positive current collector:

φ̃s = φs,re f + ∆φse−iωt (19)

− n · Ĩs = is,re f + ∆ise−iωt (20)

Z̃ = R0 + iωL0 +
φ̃s

n · Ĩs
(21)

Therein R0 and L0 are a resistance and inductance component, is is equal to the applied current
density in the solid domain, φs is the potential within the solid domain, φs,re f and is,re f are the
initial time-dependent values at time zero, n is the normal boundary flux vector, ∆φs is the
amplitude of the potential perturbation and ∆is is the amplitude of the current perturbation
induced by ∆φs.

The model results are initiated based on reference values [25] and refined with respect to the EIS
experiment at cell SoC 50% and temperature at 25 ◦C. The final fitting results are shown in Table 6 in
Section 5.5.

For the characterization of low frequency battery dynamics, a HPPC experiment and simulation
is considered, as suggested in literature [48,49]. The pulse methodology is not able to separate
dynamic contributing factors to the internal resistance value, but it is able to show its evolution
and is considered to be the more standardized way in present battery diagnostics and scientific
evaluations [40]. To analyze the internal resistance progression at multiple time constants and different
SoC levels, the internal resistance is evaluated as the battery’s voltage response of a constant current
pulse during a discharge and charge phase:

R(t) =
V(t) −V(0)

I
(22)

where t is time, V(t) is the voltage measured at time t, V(0) is the voltage measured the pulse initiation,
and I is the applied current.



Batteries 2019, 5, 62 11 of 29

The following set of equations were chosen and partially refined to reproduce the reaction kinetics
of the cell with respect to the governing equations and underlying domains k = neg, pos, sep defined
in Table 1:

• The temperature dependence of model variables is considered by applying the Arrhenius relation
as considered in [25]:

n(T) = nre f · e
Eact

n
R ( 1

Tre f
−

1
T ) (23)

where n is the variable, nre f is the variables value at the reference temperature Tre f , Eact
n is the

activation energy, R is the universal gas constant, and T is the temperature variable.
• Each electrode’s exchange current density is defined temperature-dependent with respect to [25]:

je f f
k

(
cl,k, cs,k, T

)
= jre f

k

(
cl,k, cs,k

)
· e

EAct
jk
R ( 1

Tre f
−

1
T ) (24)

• Each electrode’s diffusion coefficient is dependent on the electrodes SoC and temperature.
Therefore, the following equations are defined with respect to [25]:

De f f
s,k (SoC, T) = Dre f

s,k (SoC) · e

EAct
Ds,k
R ( 1

Tre f
−

1
T ) (25)

where

log10 Dre f
s,neg(SoC)

(
cm2/s

)
=


−3.5 · SoC− 8.8 0 < SoC < 0.2

59.375 · SoC3
− 26.563 · SoC2

− 8.9125 0.2 < SoC < 0.3

−9.7 0.3 < SoC < 1.0

(26)

and
log10 Dre f

s,pos(SoC)
(
cm2/s

)
= −1.682 · SoC− 9.127 (27)

• The electrolyte diffusion coefficient is defined as follows, as taken from [50]:

De f f
l,k

(
cl,k, T

) (
cm2/s

)
= Dre f

l,k

(
cl,k

)
· ε
β
l,k · e

EAct
Dl,k
R ( 1

Tre f
−

1
T ) (28)

where
Dre f

l,k

(
cl,k

)
= 8.794 · 10−11 c2

l,k − 3.972 · 10−10cl,k + 4.862 · 10−10 (29)

• The Li+ transference number t+0 is defined as follows, as taken from [50]:

t+0
(
cl,k

)
= −0.1287 · c3

l,k + 0.4106 · c2
l,k − 0.4717 · cl,k + 0.4492 (30)

• The effective thermodynamic activity f e f f
cl coefficient is defined as follows, as taken from [50,51]:

f e f f
cl

(
cl,k, T

)
=

1 +
∂ ln( fcl)

∂ ln
(
cl,k

) (cl,k, T
)
=

0.28687 · c2
l,k − 0.74678 · cl,k + 0.44103(

1− t+0
(
cl,k

)) · e

EAct
fcl
R ( 1

Tre f
−

1
T ) (31)

• The electrolyte conductivity is defined as follows, as taken from [3,51]:

σ
e f f
l,k

(
cl,k, T

)
(s/m) = σ

re f
l,k

(
cl,k

)
· ε
β
l,k · e

EAct
σl,k
R ( 1

Tre f
−

1
T ) (32)
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where
σ

re f
l,k

(
cl,k

)
= 0.1297 · c2

l,k − 2.51 · c1.5
l,k − 0.3329 · cl,k (33)

• The effective electrode conductivity is defined as follows, similar to [3,25]:

σ
e f f
s,k = σ

re f
s,k · εl,k (34)

• The effective diffusional electrolyte conductivity is defined as follows, similar to [3]:

σ
e f f
D,k

(
cl,k, T

)
(s/m) =

2σe f f
l,k

(
cl,k, T

)
RT

F
· f e f f

cl

(
cl,k, T

)
·

(
1− t+0

(
cl,k

))
(35)

The final results are reported in Table 6 in Section 5.5.

4.3. Thermal Behaviour Examination

Effective parameter sets for the density ρ and heat capacity Cp are considered with respect to
the geometry of the cell and are calculated based on volume, averaging similar to [1]. Therefore,
the geometry was reconstructed based on volumetric measurements of each material component of the
battery cell:

ρe f f =
∑

i

vipi (36)

Ce f f
p =

∑
i

viCp,i (37)

where vi =
Vi

Vbatt
is the volume fraction, pi is the density, and Cp,i is the heat capacity of the i-th material

component of the battery cell.
Convective cooling by air is considered material-independent and the surface area Aht is simply

the sum of each material surfaces exposed to air. Cooling by radiation, however, is dependent on the
materials surface emissivity. Therefore, the effective emissivity is calculated as follows:

Aεe f f
rad =

∑
i

Arad,iεi (38)

where Aεe f f
rad is the surface-area dependent emissivity, Arad,i is a surface with applied cooling by

radiation, and εi is the i-th material emissivity.
The final results are reported in Table 6 in Section 5.5.

5. Results and Discussion

In this section, the experimental characterization results and evaluated key parameters are
gathered and incorporated into the simulation model of the commercially available 40 Ah battery cell.
It is investigated how the electrodes balancing and reaction kinetics related phenomena can be derived
from full cell measurements and used to define the electrodes characteristics. The simulations are
compared with validation experiments to evaluate the electrical and thermal model behavior under
the influence of simulated heat dissipation.

5.1. Electrode Geometry Evaluation

The geometry parameters presented in this section are analyzed by post-mortem analysis of
the commercial battery cell. The experimental procedures undertaken for this step are explained in
Section 3.3.
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Based on the material analysis by SEM and data sheet description of the manufacturer, the negative
electrode is considered to be graphite, while the material of the positive electrode is supposed to be of
the NMC class. The negative electrode consists of flake-shaped particles and the positive electrode
consists of agglomerates of smaller particle types as shown in SEM pictures in Figure 2:
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Figure 2. SEM images of (a) the negative electrode and (b) the positive electrode. 

The electrode stack of the battery cell is constructed based on a z-folding of the separator with 

each electrode contained within the folds in alternate order. All electrode sheets are double-coated, 

even the exterior negative electrode sheets, although no counter electrode is present. Only the interior 

electrode area is considered to be electrochemically active, therefore the electrode surface area with 

counter electrode is chosen to be used for the parameterization. Electrodes material properties 

considered for the parameterization are the thicknesses, particles sizes, and the porosities. The 

Figure 2. SEM images of (a) the negative electrode and (b) the positive electrode.

The electrode stack of the battery cell is constructed based on a z-folding of the separator with each
electrode contained within the folds in alternate order. All electrode sheets are double-coated, even the
exterior negative electrode sheets, although no counter electrode is present. Only the interior electrode
area is considered to be electrochemically active, therefore the electrode surface area with counter
electrode is chosen to be used for the parameterization. Electrodes material properties considered for
the parameterization are the thicknesses, particles sizes, and the porosities. The coating thickness is
recalculated based on the current collector thickness. The evaluated geometry properties are listed
in Table 3.

Table 3. Geometrical data of the 40 Ah battery cell.

Parameter Symbol Unit Anode Separator Cathode

Number of electrode sheets # (pc.) 91 90
Total thickness of one sheet *1 l (µm) 110.0 24.0 129.0
Height for one electrode sheet h (cm) 8.0 8.0 8.0
Width for one electrode sheet w (cm) 14.6 14.6

Electrode surface area A (cm2) 21,258 21,024 *2

Thickness of current collector *2 lcc (µm) 19.01 ± 0.12 *3 17.78 ± 1.20 *3

Coating thickness L (µm) 47.5 24.7 54.5
Particle Size r (µm) 9.89 ± 3.31 *3 1.72 ± 0.54 *4

Porosity εl (%) 30.79 *3 19.73 *4

*1 measured with µm-screw; *2 A = #2hw, active surface area; *3 measured with µ-CT; *4 measured with n-CT.

5.2. Battery Thermal Parameter Examination

Within each component of the battery, thermo-physical properties are different; hence, each
component has to be taken into account. The thermal parameters for the battery are listed in Table 4.
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Table 4. The parameter list of volumetric thermo-physical properties of the battery cell for the reference
temperature 25 ◦C.

Material Density ρ (kg·m−3) Heat Capacity Cp (J·kg−1K−1) Volume Fraction (%)

Positive Electrode Coating 4670 [25] 940 29.29
Negative Electrode Coating 2260 [25] 1040 25.53

Aluminum [1] 2700 900
4.03 *1

0.26 *2

Copper [1] 8700 385
5.37 *1

0.26 *2

Separator 1009 1907 12.9
Steel [52] 8030 502.48 13

Synthetic (Acrylic Plastic) [20] 1190 1470 9.36

*1 inside electrode stack; *2 outside electrode stack.

The obtained values for the single components are in good agreement with data reported for a
NMC/Graphite battery [2]. Temperature dependence of the heat capacity is not considered for the
model parameterization, since the analysis of the cell sheet components have shown almost constant
behavior within the range from 25 ◦C to 60 ◦C. Therefore, the mean value is taken instead.

The radiation related surface properties of the battery materials, shown in Table 5, are taken from
reference [53].

Table 5. The parameter list of the surface-related thermo-physical properties.

Material Emissivity
ε

Surface Area (cm2)

Isolating Tape 0.97 399.20
Steel 0.74 11.11

Synthetic (Acrylic Plastic) 0.95 0.695

5.3. Cell Balancing Evaluation

The purpose of the cell balancing evaluation is to access electrode SoC and cell SoC vice versa for
SoC-dependent model application and evaluation.

The capacity in the qOCV-experiment during the discharge-phase is Qcell, dch = 37.3 Ah and
during the charge-phase is Qcell, ch = 36.8 Ah. The measured capacity difference of 0.5 Ah might be
attributed to one of the following reasons:

• Due to the difficulty to set up the initial cell SoC at 0%, as described in Section 3.2, an off-set within
the experiment is realistic.

• An overhang effect at the negative electrode during a prior charge-phase lead to an increased
discharge capacity after relaxation [54].

Since this effect is not reproducible with this model type, the cell capacity is defined based on the
discharge phase result.

The existence of characteristic potential slopes in the interim SoC range of the full cell are
reported to occur within the Graphite OCV profile rather than the positive electrode of different
Graphite/Li-Metal-Oxides [23,25,41]. A typical graphite electrodes OCV profile shows several potential
slopes dependent of the SoC stages. This is caused by the structure of graphite, where the lithium
intercalation between the graphene layers occurs in an ordered pattern [41,55]. The potential profiles
for the cell balancing evaluation, a simulation variant, and an experimentally determined OCV profile
by rest method are shown for comparison with the suggested lithiation stages within the calculated
graphite electrode OCV profile in Figure 3:



Batteries 2019, 5, 62 15 of 29

Batteries 2019, 5, x FOR PEER REVIEW 14 of 29 

5.3. Cell Balancing Evaluation 

The purpose of the cell balancing evaluation is to access electrode SoC and cell SoC vice versa 

for SoC-dependent model application and evaluation. 

The capacity in the qOCV-experiment during the discharge-phase is 𝑄𝑐𝑒𝑙𝑙,𝑑𝑐ℎ =  37.3 Ah and 

during the charge-phase is 𝑄𝑐𝑒𝑙𝑙,𝑐ℎ =  36.8 Ah. The measured capacity difference of 0.5 Ah might be 

attributed to one of the following reasons: 

 Due to the difficulty to set up the initial cell SoC at 0%, as described in Section 3.2, an off-set 

within the experiment is realistic. 

 An overhang effect at the negative electrode during a prior charge-phase lead to an increased 

discharge capacity after relaxation [54]. 

Since this effect is not reproducible with this model type, the cell capacity is defined based on 

the discharge phase result.  

The existence of characteristic potential slopes in the interim SoC range of the full cell are 

reported to occur within the Graphite OCV profile rather than the positive electrode of different 

Graphite/Li-Metal-Oxides [23,25,41]. A typical graphite electrodes OCV profile shows several 

potential slopes dependent of the SoC stages. This is caused by the structure of graphite, where the 

lithium intercalation between the graphene layers occurs in an ordered pattern [41,55]. The potential 

profiles for the cell balancing evaluation, a simulation variant, and an experimentally determined 

OCV profile by rest method are shown for comparison with the suggested lithiation stages within 

the calculated graphite electrode OCV profile in Figure 3: 

 

Figure 3. Experimental and simulated OCV and qOCV profiles (V) as a function of cell SoC and OCV 

profiles (V) as a function of electrode SoC and intercalation stages at the negative electrode profile. 

The lithium distribution is numerated by a stage number, which indicates the number of 

graphene layers between the layers of intercalated lithium. Areas of coexisting intercalation phases 

are seen as plateaus and single-phase areas as change in potential. The intercalation stages are named 

Figure 3. Experimental and simulated OCV and qOCV profiles (V) as a function of cell SoC and OCV
profiles (V) as a function of electrode SoC and intercalation stages at the negative electrode profile.

The lithium distribution is numerated by a stage number, which indicates the number of graphene
layers between the layers of intercalated lithium. Areas of coexisting intercalation phases are seen
as plateaus and single-phase areas as change in potential. The intercalation stages are named with
an increase in lithium-ion concentration as follows: dilute stage-1 (S1’), stage-4 (S4), stage-3 (S3),
liquid-like-stage 2 (S2L), ordered-stage-2 (S2), and ordered stage-1 (S1) [41,56]. S2 is considered as
characteristic potential change for the electrode SoC threshold evaluation, since it is located at the
theoretical electrode SoC of 50% [25,56,57].

5.4. Reaction Kinetics Evaluation

By fitting the experimental EIS results at cell SoC 50% and temperature 25 ◦C, the initial electrode
exchange current densities taken from [25] are updated.

The Nyquist plot obtained from the experiment and the cell impedance model are shown together,
with each contributing impedance part in the frequency domain in Figure 4.

Three different processes with the identified frequency ranges are annotated in Figure 4a: region I:
100 Hz up to 1000 Hz, region II: 1 Hz up to 100 Hz, and region III: 0.01 Hz up to 1 Hz. Each region
is reported to coincide with a separate underlying physical phenomenon: experimental test-setup
(region I), charge-transfer processes (Region II), and diffusion processes (region III) [58]. In region I,
an inductive component is existent. A deviation between the simulation and the experiment results
is visible. The combination of an inductive component L0 connected in series with a resistance R0 is
not able to reproduce the slope of the experimental pattern. The effect however can be interpreted as
measurement artifacts that originate from connections at high frequencies and might be attributed to
the wiring of the experimental test setup and not necessarily to the battery cell [59].
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of real impedance (mΩ) and (c) negative imaginary impedance (mΩ) as function of frequency (Hz).

The semicircle of the charge transfer region II is fully resolved and can be fitted to derive values
for the reaction rate constants Kk and their double layer capacitances. Cdl,k [43].

The diffusion process within region III cannot be fully analyzed due to the limitations in the
frequency range of the experimental setup below 0.01 Hz. Hence, a diffusion-induced contribution on
the cells internal resistance will be evaluated based on the pulse methodology. The absolute mean
errors for the fitting procedure are shown in Figure 4b,c. The refined values are denoted in Table 6 in
Section 5.5.

The evaluation of the HPPC test of the internal resistance is performed based on Equation (22).
In Figure 5, mean experimental results and deviations of four different battery cells of the same kind are
compared against the simulation results of the battery that is considered for the model’s parameterization.Batteries 2019, 5, x FOR PEER REVIEW 16 of 29 
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charge initialization.
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The general trend visible is an increase of the internal resistance R(t) with an increasing time
constant t = 2 s to t = 18 s at all SoC levels during the discharge and charge pulse in the simulation
and in the experiment. By comparing the magnitude of Re(Z) within the EIS experiment in Figure 4
at the SoC level 0.5 and temperature 25 ◦C, it can be concluded that the internal resistance value
R(2s) already comprises the ohmic resistance, the complete charge-transfer-resistance, and parts of the
diffusion resistance. Hence, the resistance increases between R(2s) and R(18s) within the considered
temperature regime can mainly be attributed to the effect of electrolyte salt diffusion and electrode
diffusion [40,59,60].

Table 6. Summary of all the material and cell properties resembling the analyzed battery cell.

Definition Symbol Unit Negative
Electrode Separator Positive

Electrode Reference

Design Specifications

Domain Thickness L (µm) 47.5 24.7 54.5 Table 3

Electrode Plate Area A (m2) 2.1024 Table 3

Particle Radius r (µm) 9.89 1.72 Table 3

Actual Capacity Q (Ah) 48.17 69.20 Equation (10)

Active Electrode
Volume V (cm3) 99.86 114.58

Molar Mass M (g/mol) 72.0 96.5 [25]

Density ρ (kg/m3) 2260 [61] 4670 [62] [25]

Theoretical Capacity Qtheo (Ah) 84.01 148.61 Equation (11)

Lower Electrode SoC SoCmin 0.01 0.415 Fitted: OCV

Upper Electrode SoC SoCmax 0.785 0.955 Fitted: OCV

Active Material Fraction εs 0.548 0.457 Equation (12)

Specific Surface Area a (m-1) 172,730 825,880 Equation (13)

Surface Area S (m2) 17.25 94.63 Equation (14)

Electrolyte Volume
Fraction εl 0.308 0.395 [25] 0.191

Inactive Volume
Fraction f 0.189 0.45 Equation (9)

Kinetic and transport properties

Open-Circuit Potential U (V) Equation (6) Equation (5) Fitted OCV, [25]

Temperature derivative
of Open-Circuit

Potential

dU
dT (V/K) Taken from [32] −7.255× 10−5 [63] [32,63]

Charge Transfer
Symmetry Factor α 0.5 0.5 [36]

Maximum Lithium
Intercalation

Concentration
cmax

s (mol/m3) 31,389 48396 [25]

Equilibrium Electrolyte
Concentration cl,ini (mol/m3) 1000 1000 1000 [25]

Effective Electrode
Diffusion Coefficient De f f

s (m2/s) Equation (25)/(26) Equation (25)/(27) [25]

Reference Electrode
Diffusion Coefficient Dre f

s (m2/s) Equation (26) Equation (27) [25]

Effective Electrode
Electronic Conductivity σ

e f f
s (s/m) Equation (34) Equation (34) [25]

Reference Electrode
Electronic Conductivity σ

re f
s (s/m) 100 10 [25]

Effective Electrolyte
Conductivity σ

re f
l

(s/m) Equation (32) [50]

Reference Electrolyte
Conductivity σ

re f
l

(s/m) Equation (33) [50]

Bruggeman Exponent β 1.5 1.5 1.5 [3]
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Table 6. Cont.

Definition Symbol Unit Negative
Electrode Separator Positive

Electrode Reference

Kinetic and transport properties

Effective Diffusional
Electrolyte conductivity σ

e f f
D

(s/m) Equation (35) [52]

Effective Electrolyte
Diffusion Coefficient De f f

l
(m2/s) Equation (28) [50,51]

Reference Electrolyte
Diffusion Coefficient Dre f

l
(m2/s) Equation (29) [50]

Li-transference Number t+0 Equation (30) [50]

Effective Electrolyte
Activity coefficient f e f f

cl
Equation (31) [50,51]

Reaction Rate
Coefficient Kk (m2.5/mol0.5s) 2.41× 10−5 2.41× 10−5 Fitted: EIS

Double Layer
Capacitance Cdl (F/m2) 5.18 0.96 Fitted: EIS

Ohmic Resistance R0 (mΩ) 1.24 Fitted: EIS

Inductance L0 (H) 2.077× 10−7 Fitted: EIS
Exchange Current
Density Activation

Energy
Eact

J (kJ/mol) 48.9 78.1 [25]

Electrode Diffusion
Activation Energy Eact

Ds
(kJ/mol) 28.8 49.6 [25]

Electrolyte Diffusion
Activation Energy Eact

Dl
(kJ/mol) 16.5 [51]

Electrolyte
Conductivity Activation

Energy
Eact
σl

(kJ/mol) 4.0 [51]

Electrolyte Activity
Coefficient Activation

Energy
Eact

fcl
(kJ/mol) −1.0 [51]

Thermal parameters

Heat Capacity Ce f f
p (J/kgK) 1055.1 Equation (37)

Density ρe f f (kg/m3) 3179.66 Equation (36)

Battery Volume Vbatt (cm3) 371.08 Measured

Electrode Stack Volume Vstack (cm3) 286.16 Measured

Convective
Heat-Transfer

Coefficient
hht (W/m2K) 6.9 [36]

Convective Cooling
Surface Area Aht (cm2) 415.99 Measured

Area-specific Emissivity Aεe f f
rad

(cm2) 402.05 Equation (38)

At the SoC 0.1, the experimental resistance values are increased at all time constants within
comparison to the SoC window 0.2 < SoC < 0.9. Similarly, the mean error within the SoC window
0.2 < SoC < 0.9 is increased in comparison to the SoC 0.1.The simulation results are located within the
error margin of the experimental results in Figure 5a and remain close to or within the error margin in
Figure 5b,c. Two distinct peaks are visible within the simulation results that are located at each time
constant within the SoC range 0.1 to 0.4 and 0.6 to 0.8, called peak one and peak two, respectively.
Their location coincides with the potential slopes due to the structural changes of S4 and S2 within the
negatives electrode, as seen in Figure 3. A shift of the peak might be attributed to a SoC change during
the applied pulse profile.

The peaks, although heavily shaved, are also visible within the experimental results, around the
peaks SoC windows. There are two major reasons that would indicate a peak shaving behavior within
the experimental result:
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• Each nominal SoC level of the batteries could comprise a deviation in their real capacity that
cannot be captured by the experiment setup.

• Each battery contains ninety cells gathered in a parallelized electrode stack. Non-uniformity of
the cell SoCs within the stack would indicate a variation in duration and time until the slopes S2
or S4 are passed. Since the batteries’ internal resistance comprises the contributions of each of the
cell’s contribution, a slight shift within the peak’s potential would shave the peak magnitude and
move its location.

The model is not capable of reproducing the peak shaving behavior, since only one cell sheet is
considered; however, the model accurately predicts the increase of the internal resistance dependent
on the Cell SoC within comparable magnitude.

5.5. Model Parameterization

In the following, the model’s setup is demonstrated.

5.6. Cell Voltage Validation

The model validation considers both electrochemical and thermal properties. The experimental test
procedures considered electrochemical and thermal constant current tests, as described in Section 3.2.
For electrical validation, both the voltage curves during a 0.5 C, 1 C, and 2 C discharge and charge
phases were taken into account, as shown in Figure 6a–f. The simulated curves match well with the
experimental curve and show a relative error within 1% deviation.

More pronounced deviations are visible at the end of the discharge phase and at the beginning of
the charge phase. These regions are correlated with a low SoC of the negative electrode and a high SoC
of the positive electrode.
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Figure 6. Experimental and simulated cell voltage profile (V) of the cell as a function of time (s) during
a discharge and charge phase at: (a,b) 0.5 C, (c,d) 1 C, and (e,f) 2 C current rates. The cells were initially
kept at a constant temperature of 25 ◦C for multiple hours in a fully charged/fully discharged state.

5.7. Temperature Validation

For the thermal validation, both the temperature curves during a 0.5 C, 1 C, and 2 C discharge and
charge phases were taken into account. The experiments were conducted as mentioned in Section 3.2.
The battery temperature was measured by fourteen thermocouples, positioned at different locations on
the batteries surface. The average battery temperature and maximal temperature variability of the
experiment were compared with the simulation as shown in Figure 7a–f:
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Figure 7. Experimental and simulated cell temperature profiles (◦C) of the cell as a function of time
(s) during a discharge and charge phase at: (a,b) 0.5 C, (c,d) 1 C, and (e,f) 2 C current rates. The cells
were initially kept at a constant temperature of 25 ◦C for multiple hours in a fully charged/fully
discharged state.
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The range within the variability of the experimental values and the simulation are basically
the same at each constant current rate. However, the relative error increases from 0.5 C to 2 C and
the model tends to overestimate the experimental results at elevated current rates. The deviations
between the experimental and the simulated temperature values might be attributed to one of the three
upcoming reasons:

• No spatial resolution of the battery cell is considered. Hence, no thermal gradient based on the
interior cell component connection is created.

• The active material within the electrode stack is considered to be homogenous and stable according
to the electrochemical model definition, but side reactions or the effect of heat of mixing could
influence the experimental results, although considered negligible by others as well [2,32,33].

• The environment conditions of the battery could affect the experimental results. The climate
chamber was turned off, when the experiment was initialized at a constant temperature to prevent
weak forced cooling, but fluctuations could still arise by the buoyancy effect within air [64].
The wires and fastener connected to the battery cell could influence the experimental thermal
behavior of the battery cell by inducing a thermal outflow [2].

5.8. The Effect of Heat Dissipation on Thermal Behaviour

The heat dissipation sources resulting from effects from each layer and the current collectors
within the electrochemical model are categorized into two categories: reversible heat Qrev, originated
from entropy change of the electrode materials, and irreversible heat, divided into polarization heat
Qirr,pol and ohmic heat. Qirr,ohmic The simulated heat dissipation densities and temperature curves
during 0.5 C, 1 C, and 2 C discharge and charge phases are simulated and shown in Figure 8a–f:

Batteries 2019, 5, x FOR PEER REVIEW 22 of 29 

 

  

Figure 8. Cont.



Batteries 2019, 5, 62 23 of 29

Batteries 2019, 5, x FOR PEER REVIEW 23 of 29 

 

Figure 8. Simulated heat dissipation density profiles (kW/m3)  of the cell as a function of cell SoC (%) 

during a discharge and charge phase at: (a,b) 0.5 C, (c,d) 1 C, and (e,f) 2 C current rates. The simulated 

cell temperature profile (°C) is shown for comparison in each case. 

The total heat dissipation 𝑄𝑡𝑜𝑡 is visible as sum of the several contributions. The hatched area 

depicts compensated dissipation by the mix of endothermic and exothermic heat sources. 

The irreversible ohmic heat 𝑄𝑖𝑟𝑟,𝑜ℎ𝑚𝑖𝑐  is almost constant at each C-rate, independent of the 

charge or discharge direction, and increases from 0.5 C to 2 C practically 15 times.  

The irreversible polarization heat 𝑄𝑖𝑟𝑟,𝑝𝑜𝑙  has two characteristic peaks within the interims SoC 

and increases at SoC below 10% significantly at all current rates. The peaks are shifted from their 

original location at 0.5 C dependent on the charge and discharge direction. They grow and widen 

with increased current rate up to 15 times their original magnitude. The existence and origin of the 

peaks is discussed in Section 5.4 based on the resistance evaluation. 

The reversible heat dissipation 𝑄𝑟𝑒𝑣  comprises the electrodes entropy profiles [32,63]. The SoC-

dependency in this study, however, solely originated from the negative electrode, since the NMC-

based electrodes contribution is assumed to be constant [63]. The reversible heat source acts as a 

coolant at low current SoC during the charge phase and at the interims SoC range during the 

discharge phase. The first case is reported to correlate to a transition between ordered and disordered 

states, while the second case is correlated to the transition between the stages S2L and S2 within the 

lithiation of the negative electrode, as mentioned in Section 5.3. 

With increasing current rate, irreversible heat dissipation is dominant. The result is represented 

by the fact that the characteristic thermal pattern, which is originated from reversible heat dissipation, 

almost vanished at the 2 C rate; both visible in the simulation and in the experiments. 

6. Conclusions 

The strategic model parameterization procedure and the developed model established in this 

study allow simulating electrochemical and thermal behavior of a commercial lithium-ion battery 

cell with high accuracy. 

This work shows that commercially available battery cell models can be parametrized by a 

sophisticated mixture of material characterization, literature review, and model refinement. This has 

been confirmed by multiple experimental characterization approaches focused on the battery cell at 

hand. The hierarchical model parameterization procedure starting from geometry details, 

incorporating cell balancing and adapting the model to reaction kinetics behavior might be applied 

by other model developers as well, when data of the considered electrodes are not available. 

Figure 8. Simulated heat dissipation density profiles (kW/m3) of the cell as a function of cell SoC (%)
during a discharge and charge phase at: (a,b) 0.5 C, (c,d) 1 C, and (e,f) 2 C current rates. The simulated
cell temperature profile (◦C) is shown for comparison in each case.

The total heat dissipation Qtot is visible as sum of the several contributions. The hatched area
depicts compensated dissipation by the mix of endothermic and exothermic heat sources.

The irreversible ohmic heat Qirr,ohmic is almost constant at each C-rate, independent of the charge
or discharge direction, and increases from 0.5 C to 2 C practically 15 times.

The irreversible polarization heat Qirr,pol has two characteristic peaks within the interims SoC
and increases at SoC below 10% significantly at all current rates. The peaks are shifted from their
original location at 0.5 C dependent on the charge and discharge direction. They grow and widen with
increased current rate up to 15 times their original magnitude. The existence and origin of the peaks is
discussed in Section 5.4 based on the resistance evaluation.

The reversible heat dissipation Qrev comprises the electrodes entropy profiles [32,63].
The SoC-dependency in this study, however, solely originated from the negative electrode, since the
NMC-based electrodes contribution is assumed to be constant [63]. The reversible heat source acts as a
coolant at low current SoC during the charge phase and at the interims SoC range during the discharge
phase. The first case is reported to correlate to a transition between ordered and disordered states,
while the second case is correlated to the transition between the stages S2L and S2 within the lithiation
of the negative electrode, as mentioned in Section 5.3.

With increasing current rate, irreversible heat dissipation is dominant. The result is represented
by the fact that the characteristic thermal pattern, which is originated from reversible heat dissipation,
almost vanished at the 2 C rate; both visible in the simulation and in the experiments.

6. Conclusions

The strategic model parameterization procedure and the developed model established in this
study allow simulating electrochemical and thermal behavior of a commercial lithium-ion battery cell
with high accuracy.

This work shows that commercially available battery cell models can be parametrized by a
sophisticated mixture of material characterization, literature review, and model refinement. This
has been confirmed by multiple experimental characterization approaches focused on the battery
cell at hand. The hierarchical model parameterization procedure starting from geometry details,
incorporating cell balancing and adapting the model to reaction kinetics behavior might be applied by
other model developers as well, when data of the considered electrodes are not available.

Under consideration of the heuristic battery thermal properties, this model has proven to be a
trustworthy tool to investigate the heat dissipation during diverse battery operation modes. It could be
confirmed that the thermal behavior of the battery cell at lower current rates is dominated by reversible
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heat dissipation. With increasing current rates, a shift towards the dominance of irreversible heat
dissipation has been profound.
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Appendix A

OCV Profiles

For the use of interpolated functions within COMSOL Multiphysics®, a reduced set of nodes
and corresponding function values are required. Within the simulation platform, the piecewise cubic
interpolation method is considered within the node interpolation functions. The method generates a
Hermite polynomial h(x; h(xi) = yi∀i ∈ I), I index set, which preserves the shape of the data, respects
monotonicity, and has a continuous first derivative. The interpolation values of the positive electrode
profile are created based on the coefficient data taken from literature [25]. The derivation of the negative
electrode profile is described in Section 4.1.

Table A1. Values of the interpolation nodes of the electrode equilibrium potential profiles.

h=Uneg h=Upos

xi yi xi yi

0.0100 0.8391 0.4150 4.2754
0.0178 0.6452 0.4204 4.2626
0.0255 0.5368 0.4258 4.2497
0.0333 0.4587 0.4312 4.2369
0.0410 0.3983 0.4366 4.2242
0.0488 0.3493 0.4420 4.2116
0.0565 0.3082 0.4474 4.1993
0.0643 0.2736 0.4528 4.1873
0.0720 0.2447 0.4582 4.1754
0.0798 0.2271 0.4636 4.1636
0.0875 0.2226 0.4690 4.1519
0.0953 0.2211 0.4744 4.1404
0.1030 0.2200 0.4798 4.1290
0.1108 0.2190 0.4852 4.1177
0.1185 0.2178 0.4906 4.1066
0.1263 0.2163 0.4960 4.0956
0.1340 0.2142 0.5014 4.0847
0.1418 0.2114 0.5068 4.0739
0.1495 0.2070 0.5122 4.0633
0.1573 0.2007 0.5176 4.0527
0.1650 0.1941 0.5230 4.0423
0.1728 0.1884 0.5284 4.0320
0.1805 0.1821 0.5338 4.0219
0.1883 0.1754 0.5392 4.0119
0.1960 0.1699 0.5446 4.0022
0.2038 0.1658 0.5500 3.9926
0.2115 0.1617 0.5554 3.9832
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Table A1. Cont.

h=Uneg h=Upos

xi yi xi yi

0.2193 0.1574 0.5608 3.9738
0.2270 0.1528 0.5662 3.9646
0.2348 0.1500 0.5716 3.9555
0.2425 0.1480 0.5770 3.9465
0.2503 0.1459 0.5824 3.9378
0.2580 0.1440 0.5878 3.9294
0.2658 0.1426 0.5932 3.9212
0.2735 0.1413 0.5986 3.9133
0.2813 0.1399 0.6040 3.9057
0.2890 0.1391 0.6094 3.8982
0.2968 0.1383 0.6148 3.8910
0.3045 0.1378 0.6202 3.8839
0.3123 0.1374 0.6256 3.8770
0.3200 0.1369 0.6310 3.8703
0.3278 0.1367 0.6364 3.8639
0.3355 0.1363 0.6418 3.8577
0.3433 0.1358 0.6472 3.8519
0.3510 0.1354 0.6526 3.8464
0.3588 0.1350 0.6580 3.8410
0.3665 0.1347 0.6634 3.8359
0.3743 0.1343 0.6688 3.8309
0.3820 0.1339 0.6742 3.8261
0.3898 0.1333 0.6796 3.8215
0.3975 0.1329 0.6850 3.8171
0.4053 0.1323 0.6904 3.8128
0.4130 0.1316 0.6958 3.8088
0.4208 0.1310 0.7012 3.8048
0.4285 0.1301 0.7066 3.8011
0.4363 0.1293 0.7120 3.7975
0.4440 0.1282 0.7174 3.7941
0.4518 0.1269 0.7228 3.7907
0.4595 0.1254 0.7282 3.7875
0.4673 0.1242 0.7336 3.7844
0.4750 0.1225 0.7390 3.7813
0.4828 0.1205 0.7444 3.7783
0.4905 0.1180 0.7498 3.7753
0.4983 0.1141 0.7552 3.7724
0.5060 0.1092 0.7606 3.7696
0.5138 0.1037 0.7660 3.7669
0.5215 0.0989 0.7714 3.7642
0.5293 0.0954 0.7768 3.7616
0.5370 0.0931 0.7822 3.7589
0.5448 0.0915 0.7876 3.7563
0.5525 0.0905 0.7930 3.7537
0.5603 0.0894 0.7984 3.7510
0.5680 0.0886 0.8038 3.7483
0.5758 0.0879 0.8092 3.7456
0.5835 0.0873 0.8146 3.7429
0.5913 0.0864 0.8200 3.7402
0.5990 0.0857 0.8254 3.7375
0.6068 0.0851 0.8308 3.7347
0.6145 0.0848 0.8362 3.7319
0.6223 0.0846 0.8416 3.7291
0.6300 0.0844 0.8470 3.7262
0.6378 0.0843 0.8524 3.7232
0.6455 0.0843 0.8578 3.7201
0.6533 0.0840 0.8632 3.7171
0.6610 0.0841 0.8686 3.7140
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Table A1. Cont.

h=Uneg h=Upos

xi yi xi yi

0.6688 0.0840 0.8740 3.7109
0.6765 0.0838 0.8794 3.7076
0.6843 0.0840 0.8848 3.7043
0.6920 0.0838 0.8902 3.7008
0.6998 0.0838 0.8956 3.6971
0.7075 0.0837 0.9010 3.6933
0.7153 0.0838 0.9064 3.6893
0.7230 0.0836 0.9118 3.6852
0.7308 0.0835 0.9172 3.6810
0.7385 0.0834 0.9226 3.6765
0.7463 0.0833 0.9280 3.6718
0.7540 0.0835 0.9334 3.6669
0.7618 0.0834 0.9388 3.6616
0.7695 0.0832 0.9442 3.6560
0.7773 0.0829 0.9496 3.6500
0.7850 0.0808 0.9550 3.6434
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