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Abstract: Aging assessment is critical for lithium-ion batteries (LIBs) as the technology of choice for
energy storage in electrified vehicles (EVs). Existing research is mainly focused on either increasing
modeling precision or improving algorithm efficiency, while the significance of data applied for
aging assessment has been largely overlooked. Moreover, reported studies are mostly confined to a
specific condition without considering the impacts of diverse usage patterns on battery aging, which
is practically challenging and can greatly affect battery degradation. This paper addresses these
issues through incremental capacity (IC) analysis, which can both utilize data directly available from
on-board sensors and interpret degradations from a physics-based perspective. Through IC analysis,
the optimal health feature (HF) and the state of charge (SOC)-based optimal data profile for battery
aging assessment have been identified. Four stress factors, i.e., depth-of-discharge (DOD), charging
C-rate, operating mode, and temperature, have been selected to jointly characterize diverse usage
patterns. Impact analysis of different stress factors through the optimal HF with the SOC-based
optimal data profile from aging campaign experiments have generated practical guidance on usage
patterns to improve battery health monitoring and lifetime control strategies.

Keywords: lithium-ion battery; aging; capacity fade; incremental capacity analysis; usage pattern;
health feature; optimal data profile; electrified vehicle

1. Introduction

With the continuously increasing energy and power densities as well as the decreasing cost, the
lithium-ion battery (LIB) has been widely acknowledged as the most promising technology for energy
storage in electric vehicles (EVs) [1–3]. Nonetheless, battery aging, which results from extremely
complicated physicochemical reactions and coupled degradation mechanisms upon impacts from
both intrinsic and extrinsic factors, has become one of the most challenging topics in the advancement
of LIB technologies [2] and remains a major concern in the public acceptance towards EV. Hence
the battery management system (BMS) is designed to improve battery lifetime control strategies
based on an accurate battery state-of-health (SOH) estimation and a reliable remaining useful life
(RUL) prediction [4,5]. Immense research efforts have been dedicated into LIB aging assessment,
in particular the SOH evaluation, which serves as a quantitative metric of aging and also as the
foundation for predicting RUL. An extensive literature review indicates that state-of-the-art on LIB
aging can be classified into three main categories: the model-based approach [6–16], the data-driven
methods [17–20], and the experimental techniques [21–31].

The model-based approach can be further divided into two branches: the empirical or
semi-empirical approach [6–9] and the physics-based approach [10–16]. The former normally describes
battery dynamics with equivalent circuit models (ECMs) through empirical relations from data
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fitting. The simplicity and superiority in real-time computation have given rise to their wide
applications in BMS [9]. Yet the lack of physical representation makes it unable to interpret battery
degradation mechanisms and ultimately suffers from insufficient estimation accuracy. In contrast,
the physics-based approach is built upon electrochemical models (EChMs) to gain insights into the
internal physicochemical processes related with aging. However, the high modeling precision comes
at the price of demanding computation resources, given that the governing equations of EChMs
are mostly partial differential equations (PDEs) [11], which are not amendable for BMS application.
Despite multiple model order reduction (MOR) techniques [14] to reduce the computational complexity
with various introduced approximations, the balance between modeling precision and computation
efficiency still faces severe challenges.

The data-driven methods [17–20] have attracted tremendous attention in LIB aging research owing
to their flexibilities from the model-free feature. The independence from battery physical properties
makes it feasible for the application of various machine learning methods, including support vector
machines (SVM) [17], artificial neural networks (ANN) [18], relevance vector machines (RVM) [19], and
particle swarm optimization [20], etc., to develop mathematical descriptions of battery degradation
behaviors through statistical learning from a large amount of data. Nevertheless, data-driven methods
are often subject to certain drawbacks, such as data saturation and specific input requirement. And
the reliability of data-driven methods strongly depends on the scope of training data, which severely
hinders their application in BMS.

The experimental techniques [21–31] are based on electrochemical principles and can be grouped
into ex-situ and in-situ methods. Common ex-situ methods, such as scanning electron microscopy
(SEM), energy dispersive spectrometry (EDS), and X-ray diffractometry (XRD), apply physicochemical
and electrochemical invasive techniques to study the battery cell internally. On the contrary, in-situ
methods, including incremental capacity (IC), differential voltage (DV) and electrochemical impedance
spectroscopy (EIS), etc., take the non-invasive approach to characterize battery degradation, which
make them more suitable for BMS application. In particular, the incremental capacity (IC) analysis
has recently gained great popularity as an effective tool for battery aging assessment [21]. It enjoys
the advantage of utilizing data from readily available on-board sensors and possesses the capability
of interpreting battery capacity fade, which is a key health indicator (HI), without relying on a
physics-based model. Specifically, IC analysis transforms voltage plateaus on the charging/discharging
voltage-capacity (V-Q) curve into clearly identifiable dQ/dV peaks on the IC curve, by differentiating
the charge capacity (Q) versus the voltage (V) [23]. The peaks on the IC curve can be associated with
the phase transition during lithium intercalation and de-intercalation [24]. And the characteristics of
extracted peak properties, such as position and amplitude, can be applied for battery health monitoring
and aging assessment.

However, the IC analysis is not without limitations. For instance, an accurate V-Q curve would
typically require static charging/discharging protocol [25] with low C-rate throughout the full SOC
range. In addition, the voltage plateau of V-Q curve is flat and easily subject to measurement noise,
rendering difficulty for extracting dQ/dV from raw data. Hence, the reported research on IC analysis
for LIB health assessment are mainly focused on either the degradation mechanisms [26,27] or the
design of robust algorithms to obtain an improved IC curve [23–25,28–31], often confined to a specific
battery cell under a given load profile. There has been scarce published work on applying IC analysis
to study impacts of diverse usage patterns on battery capacity fade, which is a realistic and highly
challenging problem in practical automotive applications. This paper is presented to address the
aforementioned issues and the contributions of this study are twofold: the optimal health feature (HF)
and the optimal data profile for capacity fade assessment are identified through IC analysis and further
validated with real experimental aging data; different stress factors, which jointly characterize diverse
usage patterns, are studied for their impacts on battery capacity fade, providing useful information for
BMS design to improve the prediction and control of RUL. It should be noted that this paper applies
IC analysis to assess battery aging through the lumped capacity fade, which may result from multiple
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different aging mechanisms. Differentiation and quantification of each contributing aging mechanism
towards the lumped capacity fade is beyond the scope of discussion of this paper. The remainder of this
paper is structured as follows: Section 2 describes the aging campaign experiment that generates data
under different load profiles; Section 3 starts with obtaining the IC curve, followed by the identification
of the optimal HF and the optimal data profile through IC analysis, then details the impacts of different
stress factors on capacity fade; Section 4 summarizes the discoveries and clarifies the future work.

2. Aging Campaign Experiment

2.1. Cell Specifications and Experiment Design

Battery cell of composite electrode with two or more kinds of chemistries can provide more
flexibility in balancing power, energy, life, and cost, making it popular with automotive applications [14],
especially for plug-in hybrid electric vehicle (PHEV), which is demanding for both power and energy.
Hence the LG Chem pouch cell of mixed LMO-NMC cathode intended for PHEV application is selected
in this study for experiment and the cell specifications are listed in Table 1.

The aging campaign experiment is designed to evaluate multi-stage cell level degradation under
various different load profiles in a non-destructive approach. As shown in Figure 1, the aging campaign
experiment includes two parts: characterization tests and aging tests (i.e., cycling). Characterization
tests are conducted to measure cell capacity and internal resistance at different aging stages. The aging
tests aim to accelerate cell aging process through repeated cycling of fast dynamics.

Table 1. Cell specifications.

Property Value

Cell type LG Chem P1.4—Pouch
Nominal capacity 15 Ah at 1C
Nominal voltage 3.75 V

Nominal resistance 1.75 mΩ for 1s
Cathode material Mixed spinel LiMn2O4 (LMO) and layered LiNi1/3Mn1/3Co1/3O2 (NMC)
Anode material Mixed graphite and amorphous carbon
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Figure 1. Schematic of the aging campaign experiment.

Specifically, periodic characterization tests (Figure 2) are conducted at approximately every 2000
to 5000 Ah of charge throughput from cycling in aging tests. Within each characterization test: there is
the section of hybrid pulse power characterization (HPPC) test to measure battery internal resistance;
while the capacity test section for measuring cell capacity at a given aging stage includes an initial
constant current constant voltage (CCCV) charge to 4.15 V, followed by a 1C constant discharge to
2.8 V, then charged with 1C CCCV protocol [14].

In aging tests (Figures 3 and 4), the cell is cycled under the mode of charge depleting (CD),
charge sustaining (CS), or a combination of both, to simulate the practical PHEV operating profile
defined by the United States Advanced Battery Consortium (USABC) [32]. The current profile for CD
mode consists of a series of constant current pulses (of different C-rates) and rests that are repeated
multiple times to gradually deplete the cell voltage until a lower cut-off state-of-charge (SOC) or a
depth-of-discharge (DOD) is reached, given that DOD = 100% − SOCmin. Then the cell is charged
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under a CCCV protocol. The current profile for CS mode is similar to that of CD mode but manages
to sustain the cell within a very limited SOC range centered at a given SOC level. Different practical
operating modes can be approximated by different ratios of CD versus CS, where the ratios are with
respect to the time duration of each mode. The aging tests are conducted under controlled constant
temperature of 30 ◦C, unless otherwise specified (e.g., cell # 8 and 9 in Table 2).

DOD, C-rate, operating mode, and temperature are the four most typical stress factors to
characterize a usage pattern, or a battery load profile. To study their impacts on battery capacity fade,
four groups of aging tests are conducted with nine independent cells which are designed to share the
same specifications but subject to different load profiles, characterized by different combinations of
these stress factors, as summarized in Table 2.

Table 2. Design of aging tests for impact analysis.

Group Stress Factor Value

1 DOD (SOCmin) 75% (25%) 65% (35%) 55% (45%)
Cell #1 Cell #2 Cell #3

2 C-rate
C/3 3C/2 5C

Cell #1 Cell #4 Cell #5

3
Operating mode

(CD:CS)
1:0 1:1 1:3

Cell #1 Cell #6 Cell #7

4
Temperature
(CD:CS = 1:1)

10 ◦C 30 ◦C 45 ◦C
Cell #8 Cell #6 Cell #9

2.2. Experimental Data Profiles

To facilitate the impact analysis in Section 3 by further elaborations of the load profiles discussed
in Section 2.1, data profiles of input current and output voltage from both characterization test and
representative aging test are shown in Figures 2 and 3, respectively. Figure 4 demonstrates data profiles
of different operating modes of CD, CS, and CCCV within one unit-cycle (in the green box of Figure 3)
from a full aging test (Figure 3).
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3. Impact Analysis of Usage Patterns on Aging

3.1. Obtain the Incremental Capacity (IC) Curve

It is acknowledged that an accurate V-Q curve for further IC analysis typically requires static
charging/discharging protocol at very low C-rate (e.g., <C/10). However, it is common that experimental
data under such an ideal condition is unavailable. Hence, the capacity test data at 1C is applied in
this study. The accuracy and validity of employing 1C capacity test data to assess battery capacity
fade across different aging stages have been proved in References [14] and [16]. In addition, this
study seeks to identify the optimal data profile for battery aging assessment in the real world EV
operating scenario, for which 1C is more realistic than C/10. Moreover, the data of 1C capacity test
(Figure 2) from constant charging is selected over constant discharging to obtain the V-Q curves across
different aging stages shown in Figure 5, given that constant discharging is not realistic outside the
laboratory-controlled situation.

Apparently, the charge capacity Q at the higher cut-off voltage gradually decreases as the cell ages
and there consistently present the gradient tuning point of V-Q curves around 3.6 V from different
aging stages. This can be attributed to the gradient turning point of cell level OCV-SOC curve around
3.6 V [11,14] determined by the inherent properties of cell chemistry.
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As mentioned in Section 1, the flat V-Q curve can be greatly affected by measurement noise as
illustrated in Figure 6, thus creating challenges for extracting accurate HFs. Therefore, it is important
to determine an appropriate resample frequency of the original data and a proper smoothing method
before conducting any further analysis. By the definition of IC analysis in Equation (1), the differential
voltage interval ∆V plays a critical role, given that a small ∆V may introduce errors due to measurement
noise, while a large ∆V could result in a smoother IC curve but with the risk of losing key features [21].
There have been plenty of different methods proposed to obtain an accurate and smooth IC curve,
such as the moving average filter [31], the Gaussian filter [24], and the improved center least squares
method [30]. Detailed comparative study of these methods is not the focus of this paper and the filtfilt()
from Matlab is selected due to its simplicity under comparable smoothing effect and its advantage in
zero phase delay. The resample frequency of 0.5 Hz is chosen via comparison as a balance between
accuracy and smoothness, as shown in Figure 7.

dQ
dV

=
∆Q
∆V

=
Qt −Qt−1

Vt −Vt−1
(1)
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3.2. The Optimal Health Feature and Optimal Data Profile

Five HFs can be extracted in general from the filtered IC curve at each aging stage, as shown in
Figure 8. Specifically, as the cell ages through increased cycle number, the magnitudes of these HFs
gradually decrease, and their positions featured by the corresponding voltages shift in a consistent
pattern, which jointly deliver a reduced area under the curves that signifies a fading capacity as the cell
ages. In particular, the peak A and valley D present comparatively the most significant evolving trends
as the cell ages, making them promising candidates for the optimal HF to assess cell capacity fade.

Therefore, to examine the relation between the extracted HFs and the capacity fade, the HF
amplitude and positions (with respect to both the cell voltage V and the corresponding SOC) are
fitted versus capacity loss Qloss, both measured from aging experiment across different aging stages
and further projected until the end of life (EOL), which is 20% capacity loss defined for automotive
applications, as shown in Figure 9. As an initial validation of the extracted HFs and of the method for
analyzing the relation between properties of extracted HFs and Qloss, the cell #9, which is aged under
an extensively different load profile than that of cell #1, is employed for the same analysis and the
corresponding results are respectively plotted next to those of cell #1 in Figure 9.

It can be seen from Figure 9a,b that the amplitude (dQ/dV) of each of the five HFs for both cell #1
and #9 has presented linear dependence on Qloss, among which the dQ/dV of peak A has demonstrated
relatively the largest gradient in decreasing as the cell ages. In Figure 9c–f, the positions of HFs with
respect to cell voltage V and the corresponding SOC also present linear relation versus Qloss. The V
as well as SOC for peak A and valley D gradually increase with Qloss. Joint analysis reveals that the
voltage window between peak A and peak C decreases as the cell ages, while the dQ/dV of each HF
decreases (except the peak C of cell #1 which presents extremely mild increase) with the increase of
Qloss, resulting in a shrinking area under the IC curve between peak A and C, which is closely related
with the extractable cell capacity. Hence the voltage window between peak A and peak C, as well
as the corresponding area under the IC curve, can also potentially characterize cell capacity fade.
Yet, this study would seek the optimal HF as not only effective in characterizing capacity fade, but
also obtainable in a relatively straight forward way, without potentially introducing additional error
from prior computations. Hence the peak A is selected as the optimal HF with its amplitude dQ/dV
to characterize the cell capacity fade, given the practical on-board voltage sensor precision and the
realistically achievable SOC estimation accuracy.
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Figure 9e,f show that the absolute variation of SOC for peak A throughout life under the projected
linear trajectory is very limited, despite an observable gradient for increase. Namely, the cell SOC
corresponds to the identified optimal HF peak A, stays within a very limited range across different
aging stages, which benefits the determination of SOC-based optimal data profile for capacity fade
evaluation. Now that dQ/dV of peak A is identified as the optimal HF, a partial SOC range that can
accommodate the computation of the optimal HF would be sufficient to evaluate Qloss, rather than
using the full SOC range. Hence, the optimal testing profile (Figure 10) is identified as constant charging
below 25% SOC with the initial SOC lower than 10%, which is achievable for realistic PHEV application.

Despite certain similarities shared between cell #1 and #9 in the fitted linear relations among
properties of HFs versus Qloss, some differences still get reflected, such as the gradients of dQ/dV of
peak C versus Qloss. Hence, the load profile characterized by different stress factors indeed has impacts
on capacity fade, which will be analyzed in detail in Section 3.3.
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3.3. Impacts from Different Stress Factors

To validate the optimal HF and SOC-based optimal data profile for capacity fade assessment
identified in Section 3.2, dQ/dV of peak A computed from the optimal partial SOC range across different
aging stages are fitted versus Qloss, both from measurement and projected until EOL. Besides the linear
fit, weighted linear fit without consideration of the first data point (given the significantly sharp drop
between the first two data points) has been conducted as well. In addition, polynomial fit of different
orders has also been tested out on each cell and only the results that “make sense” in the projected
trajectory of dQ/dV versus Qloss under an appropriate polynomial fit order has been plotted out (except
the demonstrations of incorrect polynomial fit). Typical cases where the polynomial fit doesn’t “make
sense” include: the projected dQ/dV drops to zero before EOL (Figure 11c) and the excessive dynamics
of dQ/dV from fitting (Figure 11b).

To study the impacts of various usage patterns characterized by a combination of different stress
factors on capacity fade, the fitting results of nine independent cells from four groups defined in
Table 1 are summarized in Figure 11 (each row corresponds to one group) with 95% confidence interval
boundaries shown altogether. Statistics of fitting, including coefficients R2 and standard deviation δ,
are listed in Table 3 and the standardized residuals from fittings are shown in Figure 12. Joint analysis
of Figures 11 and 12 and Table 3 reveals that:

• Group 1—impacts of depth-of-discharge (DOD):

When aged under the equally low charging rate of C/3, the cell (#1) that has been cycled with
the largest DOD (75%) presents comparatively strongest (versus cell #2 and #3) linear dependence of
dQ/dV towards Qloss, with the highest R2 above 0.99 from both linear fit and weighted linear fit. As the
cycling DOD decreases, the gradient of linear fit of dQ/dV clearly increases, indicating an elevated
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capacity fade, while the gradient of weighted linear fit basically remains unchanged, resulting in a
diverging gap between the two fits. Figure 11b,c show that at lower DODs, the 95% confidence interval
from the weighted linear fit is significantly narrower than that from the linear fit, indicating that the
weighted linear fit is the preferred solution in relating dQ/dV with Qloss when a cell is cycled without
sufficiently deep discharge. Polynomial fit of order up to 5 are unable to generate reasonable fit of
dQ/dV versus projected Qloss till EOL. The standardized residual of both linear and weighted linear fit
under different DODs in general are all bounded within ±2, except the one corresponding to the first
data point from weighted linear fit. Apart from the first data point, the standardized residuals from
weighted linear fit are more closely centered around zero compared with those from liner fit.

• Group 2—impacts of charging C-rate:

Given the same high DOD of 75% during cycling, the cell (#1) charged at relatively the lowest
C-rate demonstrates the strongest (versus cell # 4 and #5) linear dependence of dQ/dV towards Qloss,
with comparatively the highest R2. As the charging C-rate increases, the gradient of dQ/dV versus Qloss

from linear fit increases, projecting an elevated capacity fade, which is not reflected in the gradient
from weighted linear fit. With a comparatively narrower 95% confidence interval and higher R2, the
weighted linear fit proves to be a better solution than linear fit under a charging rate higher than
1C. The standardized residual of both linear and weighted linear fit under different charging C-rates
during cycling are basically bounded within ±1.5, with the ones from weighted linear fit under higher
charging C-rates performing especially well and bounded within ±0.5 (except the first data point).
The third order polynomial fit presents as an acceptable solution under high charging rate of 5C
with a ten times smaller standard deviation (0.131) than that from weighted linear fit (1.451). Yet the
projected dynamics of dQ/dV from the third order polynomial fit may still need further theoretical and
experimental verifications.

• Group 3—impacts of operating mode:

Under different ratios of CD versus CS, there presents clear linear dependence of dQ/dV towards
Qloss from both linear and weighted linear fit. With the increase of the proportion of CS, the gradient
of dQ/dV from linear fit increases as well, which is not clearly reflected in the gradient from weighted
linear fit until CS becomes the dominating operation mode (cell #7). The linear and weighted linear
fit are comparable under each operating mode ratio, with the latter outperforms the former under
CS dominating operation through a slightly higher R2 and a narrower 95% confidence interval.
The standardized residual from two linear filters are bounded within ±1.5 (except the first data point).
The comparatively (versus cell #1 and #6) largest drop of projected dQ/dV under CS-dominated
operation (cell #7) indicates the most significant capacity fade. This indicates that the CS dominating
operation mode, especially for long-term sustaining at a low SOC (25% in this case), can be detrimental
for battery capacity.

• Group 4—impacts of temperature:

When battery operates under low (cell #8) and high (cell #9) temperatures, the 95% confidence
intervals are apparently wider than that under normal temperature (cell #6), indicating a relatively
weakened linear dependence of dQ/dV towards Qloss. This is consistent with the discovery that the
third order polynomial fit can generate a reasonable projection trajectory of dQ/dV with a limited
standard deviation three times smaller than those under two linear fits. Namely, the variation of
operating temperature could introduce more dynamics that are potentially beyond the description
based on a linear relation. Especially for the cell (#8) under low temperature, the standard deviation
from linear fit presents to be the highest among those of all the tested cells. This verifies the importance
of accurate characterization of cell thermodynamics in heath assessment. The standardized residuals
from three kinds of fits under the low and high operating temperature are bounded within ±1.5 (except
the first data point), and those under the normal operating temperature are more closely distributed
around zero and bounded within ±1 (except the first data point).
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Table 3. Statistics of fittings.

Cell #
Linear Fit

f (x)= αx + β

α β δ R2

1 −0.797 25.504 0.130 0.995
2 −0.914 24.425 0.676 0.923
3 −1.100 25.121 0.851 0.891
4 −0.809 24.251 1.064 0.850
5 −0.906 24.441 0.879 0.945
6 −0.853 25.091 0.526 0.952
7 −1.003 26.005 0.303 0.984
8 −0.871 24.630 1.094 0.902
9 −0.760 24.163 0.663 0.965

Cell #
Weighted Linear Fit

fw(x)=αwx+βw

αw βw δw R2

1 −0.744 25.235 0.177 0.993
2 −0.613 22.603 1.028 0.973
3 −0.596 22.571 1.402 0.950
4 −0.343 20.664 1.812 0.940
5 −0.620 21.805 1.451 0.993
6 −0.653 23.819 0.758 0.969
7 −0.881 25.328 0.420 0.987
8 −0.605 22.341 1.491 0.928
9 −0.649 23.060 0.837 0.983

Cell #
Polynomial Fit

p(x)= p1x n+p2x n−1+· · ·+pnx+pn+1

n p=(p1, p2,· · · ,pn, pn+1) δp

1 / / /

2 4 (−8.655 × 10−5, −0.005, 0.172, −1.955, 25.468) 0.0865
3 3 (−0.0211, 0.388, −2.768, 26.247) 0.135
4 / / /
5 3 (−0.005, 0.145, −1.951, 25.625) 0.131
6 / / /
7 / / /
8 3 (−0.006, 0.171, −2.160, 26.358) 0.373
9 3 (−0.002, 0.0666, −1.381, 25.290) 0.213

4. Conclusions

As an increasingly popular tool for LIB health evaluation and aging assessment, the IC analysis
enjoys advantages in both the flexibility from the readily available measurement data through on-board
sensors, and the capability in interpreting capacity fade mechanisms from the physics-based perspective.
This paper extracts multiple HFs and investigates into various properties of the extracted HFs across
multiple aging stages to identify the optimal HF for capacity fade assessment. The peak amplitude in
the relatively lowest SOC level, namely, dQ/dV of peak A, is eventually selected as the optimal HF,
given that it is effective in characterizing the long-term cell capacity fade and is straight forward to
obtain. The SOC-based optimal data profile corresponding to the optimal HF is identified as well,
which enables LIB capacity fade evaluation through only a partial SOC section below 25% with the
initial SOC lower than 10%, a scenario achievable for practical PHEV application.

Multi-stage experimental aging data of nine independent cells, which are designed to be of the
same specifications but are aged under significantly different load profiles, are applied to not only
validate the identified optimal HF and SOC-based optimal data profile for LIB health monitoring, but
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more importantly, to investigate the impacts of different usage patterns on LIB capacity fade. Four key
stress factors, including DOD, charging C-rate, operating mode, and temperature, are employed to
characterize various practical usage patterns. Impact analysis of four stress factors indicate that:

1 Under a low cycling charge rate of C/3, dQ/dV from larger DOD presents a better linear dependence
towards Qloss. Lower DODs during cycling could disrupt the linear dependence, making the
weighted linear fit a preferred solution for estimation and prediction of dQ/dV throughout life.

2 Under a high cycling DOD of 75%, dQ/dV under charging rate above 1C presents more dynamics
compared with its strong linear dependence towards Qloss from low charge rate of C/3. Therefore,
the dQ/dV under high charging rates can be more accurately characterized and further projected
by weighted linear fit and potentially polynomial fit.

3 Under the blended operation mode of CD and CS, cell capacity fade could be elevated under the
CS dominating scenario, especially when sustained at a low SOC level of 25%.

4 Under the high and low operating temperatures, more dynamics of dQ/dV could be introduced
compared with that from the normal temperature, thus demanding more flexible fitting technique
than linear fit to appropriately characterize thermodynamics within the cell for more accurate
aging assessment.

These discoveries from the impact study of different stress factors can provide useful information
closely related with diverse practical automotive usage patterns, such as when (DOD) to recharge
batteries, how aggressive (C-rate) the charging profile should be, how to allocate different driving
modes (CD:CS), and how to determine a healthy battery operating temperature. All of these can help
improve the lifetime control strategies within BMS.

For future work, further aging experiments are planned to obtain data under more diversified
scenarios to better approximate different battery practical usage patterns. For a given aging scenario,
multiple battery cells are scheduled for tests to mitigate the intrinsic impacts on degradation evaluation.
The design of large-scale Monte Carlo simulations is in progress for more accurate prediction of the
LIB long-term aging propagation.
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