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Abstract: Reliable development of LIBs requires that they be correlated with accurate aging
studies. The present project focuses on the implementation of a weighted ampere-hour throughput
model, taking into account the operating parameters, and modulating the impact of an exchanged
ampere-hour by the well-established three major stress factors: temperature, current intensity
(rated), and state of charge (SoC). This model can drift with time due to repeated solicitation,
so its parameters need to be updated by on-field measurements, in order to remain accurate. These
on-field measurements are submitted to the so-called Incremental Capacity Analysis method (ICA),
consisting in the analysis of dQ/dV as a function of V. It is a direct indicator of the state of health of
the cell, as the experimental peaks are related to the active material chemical/structural evolution,
such as phase transitions and recorded potential plateaus during charging/discharging. It is here
applied to NMC/graphite based commercial cells. These peaks’ evolution can be correlated with the
here-defined Ah-kinetic and

√
t-kinetic aging, which are chemistry-dependent, and therefore, has to

be adjusted to the different types of cells.
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1. Introduction

Rechargeable lithium-ion batteries (LiBs) appear to be the best system for energy storage in many
applications, especially electric vehicles and stationary mass storage in the context of the energy
transition. Any system employing Li-ion cells must be informed of the amount of energy that can be
stored and the power that can be provided by the battery at any time. Therefore, reliable developments
need to be correlated with accurate aging studies.

The aging of a battery leads mainly to loss of capacity, loss of power, and increase of internal
resistance. The understanding of the underlying mechanisms is fundamental in order to provide an
accurate and reliable aging prediction in the models. However, it is not always easy to build a strong
model, since the battery cell consists of a complex system including interactions between several
domains: mainly, physics, electrochemistry, and thermal sciences. Qualitative aging of the battery has
been studied in all these fields, regarding electrolyte degradation, solid electrolyte interphase (SEI)
formation, or mechanical deformations [1–4].

A LIB is expected to have a life span of more than 10 years. Therefore, the implemented model
should predict the aging of a LIB in the long-term, and have a fast computation time.
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In order to produce a quantitative aging estimation, cell degradation needs to be studied under
various aging conditions, and models need to be strengthened with on-field measurements in order to
generate predictions of energy storage capacity and power capability. Several generations of LIBs have
been tested both at EDF Lab Les Renardières facility and Université Paris-Sud ICMMO Lab, using
specific protocols and monitoring aging degradations.

Many different models have been developed so far to evaluate the electrochemical behavior
of batteries:

• fundamental models or physical models;
• phenomenological models or empirical models; and
• mathematical models.

They are described in the following sections.

1.1. Fundamental Models

Physical models appreciate the aging of a battery by precisely describing the internal mechanisms,
such as ion transport in the electrolyte or within the electrode active material, charge transfer at the
electrode/electrolyte interface, thanks to partial differential equations, Fick’s law, or the Butler–Volmer
equation for example. Newman and Fuller have developed the porous electrode model [5], extended
by Ramadass et al. to take into account the loss of capacity during each cycle [6]. An approximation
of the lithium-ion concentration profile within the solid phase has been presented by Wang et al. [7]
and by Subramanian et al. [8]. A simpler physical model has been introduced by Haran et al. that
represents each electrode as a simple spherical particle [9], it has been extended to LIB by Ning et al. [10],
and further studied by Delacourt and Safari [11].

The advantage of the porous electrode model’s is that it takes into account almost all the
physical processes taking place while battery is cycling, however solving it is time consuming
and many required parameters cannot be verified. The simple spherical particle is easier to solve
but does not encompass all the mechanisms. One has to remember that the computation time is
crucial since the model has to be recomputed at every cycle. The influence of each separate aging
parameter (temperature, state of charge, and rated current) on the model has, to our knowledge, never
been developed.

1.2. Phenomenological Models

Despite physical models, the phenomenological models provide links between inputs and outputs
of the system, without a comprehensive examination of the physical phenomena taking place. A simple
structure is enough to solve the model. Instead of equations, this model consists of experimental
and extrapolated curves. Experimental knowledge obtained with these models can circumvent an
equational or theoretical problem.

Among these models designed for lithium-ion batteries, we find the fatigue models, like the one
originally designed by Dudézert and Franger [12] and refined by Badey and Franger [13]. The model
tends to modulate the impact of an exchanged ampere-hour by the conditions in which it is exchanged.
Mathematical functions of the current, the state of charge, and the rated current are therefore established
as weighting functions. Therefore, this model is natively able to decipher the contribution of each
aging parameters: temperature, state of charge, and rated current. The second strength of this model
is being able to distinguish the two contributions of aging to the cell: calendar aging proportional to
the root square of time and cycling aging proportional to the total ampere-hours exchanged. Indeed,
the aging of a battery occurs both when the battery is in use, corresponding to the cycling aging,
and when it remains unused, corresponding to the calendar aging. The aging can be thus modeled by
two different contributions: an active regime loss and a temporal one.

Previous attempts to do so include Baghdadi et al. [14], who suggested an exponentially decreasing
capacity with time, or Bloom et al. [15], who proposed a model where the temperature follows an
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Arrhenius law. Most of the authors use a root square dependency to describe the calendar loss of
capacity [13–16]. Other authors suggest multiplying a degradation coefficient of the calendar aging
to the cycling one. Badey’s model includes the two most important features required in our case:
decoupling between the calendar and cycling aging, thanks to a sum of two terms, and identification
of each parameter’s impact.

1.3. Mathematical Models

Mathematical models require a huge amount of data in order to find a link between inputs and
outputs. They are based on numerical resolution, and use probabilistic or statistical methods. Generally
speaking, they cannot extrapolate to a situation that was not given in the initial set of data. Given
the ongoing increasing volume of data and their valorization, one can think these models will play
an important role in the future. However, they do not embed any expertise. Furthermore, the error
cannot be controlled.

The model chosen to establish our own aging model is based on the fatigue model of Badey.
The functions have already been explained thermodynamically [17]. However, fatigue models drift
with repeated solicitation, so that their parameters need to be regularly reevaluated. This is what the
incremental capacity analysis (ICA) will allow.

In this contribution, we aim at investigating and establishing a link between the ICA and the
loss of calendar and cycling capacity, as defined in our model. Our model would then be able to be
reparametrized thanks to this metric computed on-field. In this paper, the evolution of the ICA peaks
obtained for NMC/graphite cells are discussed to provide a comprehensive interpretation.

The first part of this paper focuses on the aging model implementation and experimental and
model basics, whereas the second part deals with the integration of the incremental capacity analysis
as a way to explain the degradation process in a quantitative manner.

2. Materials and Methods

In this piece of work, commercial NMC/graphite cells were considered. Due to confidentiality,
the cell manufacturer cannot be named. The main technical characteristics of the cells are summarized
in Table 1.

Table 1. NMC cell technical characteristics.

Cell Capacity Cut-Off Voltages Charging Protocol

NMC/Graphite 64 Ah 4.2 V/3 V CC-CV

The cells received were surveyed by weight and open-circuit voltage (OCV) measurements.
Variations in OCV with temperature have also been measured.

NMC is very much considered nowadays because it enables very good cyclability as well as
good capacity: 180–200 mAh/g. However, NMC suffers from noticeable manganese dissolution in
the electrolyte.

All cells were tested with laboratory-made racks, enabling air ventilation. It is important to pay
close attention to cell connections to the power channel, in order to minimize variability and achieve
better consistency in tests results. All cells used in the tests were submitted to an initial check-up, also
called the Reference Performance Test (RPT). Therefore, cells with close initial characteristics (capacity,
weight) were selected to go through the aging tests, described by Delétang et al in [17] and in Table 2.
The average OCV recorded at 30 ◦C is 3.60 V, which corresponds to a SOC of ~40%.
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Table 2. Aging test matrix.

Cell Number Temperature/◦C SOC I Charge I Discharge

1 T1 = 10 100%
2 T1 = 23 100%
3 T1 = 45 100%
4 T1 = 55 100%

5a T1 = 45 15% 1C 1D
5b T1 = 45 30% 1C 1D
5c T1 = 45 50% 1C 1D
5d T1 = 45 80% 1C 1D
6a T1 = 45 50% C/2 1D
6b T1 = 45 50% 1C D/2
7a T1 = 23 50% 1C 1D
7b T1 = 23 30% 1C 1D
8 T2 = 10 50% 1C 1D

The RPT procedure was performed at 23 ◦C and consists of the following steps; constant
current phase charge at a regime of C/3, followed by a constant voltage phase at 4.2 V until the
termination current C/20 was reached, then charge and discharge resistance pulses for 10 s at 1C
current every 3.2 Ah discharged until the cutoff voltage is reached (3.0 V), the complete recharge
at C/3 CC-CV, and then complete CC discharge at C/2 until the cutoff voltage is reached. This
last discharge provides the remaining capacity. The detection of capacity fading therefore requires
columbic counting of a full charge/discharge cycle. The cell is finally charged to 50% nominal SOC
in order to achieve an electrochemical impedance spectroscopy measurement. This latter is done
at SOC 50%. The measurements were performed using the battery testing bench VMP Biologic
multichannel potentiostat.

Capacity remaining was thus measured at C/2 discharge regimes. The datasheet featured a 64 Ah
capacity. The average value was 62.93 Ah, and the capacity measured was quite consistent among
all cells (the median value being 62.92 Ah, the standard variation being 0.17 (0.27%), there is little
cell-to-cell variation), demonstrating the cell quality in performance. This cell-to-cell variation of 0.27%
is satisfying when compared to literature [18].

The resistance pulses allowed computing the polarization resistance of the cell. It was calculated
from the difference in voltage drops using Ohm’s law: ∆V = I R.

A series of tests were launched so that cells undergo unitary aging tests.
The aging parameters were temperature (in ◦C), rated-current C-rate (abusively written I in

A/Ah), and the state of charge of the battery (SOC in %). Cycling aging was performed at an
approximation of the adequate value of SOC with a depth of discharge (DOD) of 10%, so that the
aging of the cell can be considered as due to the defined SOC. The cycling process was the following:
the cell was first charged to 100% SOC at C/3 in CC-CV mode, it is then discharged to the targeted
SOC subtracted by 5% at a rate of C/3. Then a rest of 1 h is imposed before the ulterior cycles start.

The values of the parameters have been chosen in order to be aligned with the real applications in
use. Especially, temperature does not exceed 55 ◦C and is never lower than 10 ◦C. The test facility is air
conditioned to maintain a stable temperature. Due to difference in charge and discharge efficiency,
the SOC, around which the cell is being cycled, tends to decrease with cycling. Therefore, every
100 cycles at 10% DOD, the re-SOC is imposed to the cell. It is a common test procedure, as described
by Delacourt et al. [19]. Approximately every 3000 cycles at 10% DOD the cell was subjected to a RPT
to assess changes in performance.

Impedance measurements associated with the RPT was performed in galvanostatic mode as
recommended for LIB in which the voltage changes during testing. The current amplitude was set
to 1 A, which shows a good signal-to-noise ratio and stays in the linear region. The frequency swept
between 10 kHz to 10 mHz. All measurements were carried out at 23 ◦C.
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3. Results

3.1. Cycling Aging

The usual test procedure, like the one mentioned in the European Standard CE NF 50,272 which
specifies safety requirements for secondary batteries and battery installations, defines the end-of-life
of a battery when it cannot deliver more than 80% of its initial capacity under a specific test protocol.
At this time, the cells were at ~10/12%-capacity loss, constituting a huge volume of recorded data.
Only some selected results are presented here.

Figure 1 presents the evolution of capacity over the 45 ◦C cycling for the different SOC. As explained
in the above section, the discharge rate was C/2. It has to be noted that the higher the SOC, the higher the
fade rate, except for SOC 15% that features a higher degradation rate than SOC 30%.
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The data were subsequently computed to apply the fatigue model [11,12], of which, the main
capacity evolution equation is mentioned below.

∆Q = Kcyc f1(T) f2(I) f3(SOC)·Ah + Kcal g1(T)g2(I)g3(SOC)·
√

t

where Kcyc and Kcal are two constant coefficients specific to the cell considered. The loss of capacity is
the sum of two terms: the first one is called the cycling aging and the second one is called the calendar
aging. This separation is more and more specifically addressed in the literature [20,21].

For each data set, the linear regression of the function ∆Q/(
√

t) with respect to (CT (Ah))/(
√

t)
provides two coefficients, as seen on Figure 2, A,B defined as follows

A = Kcyc f1(T) f2(I) f3(SOC),

B = Kcal g1(T)g2(I)g3(SOC),
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These two coefficients allow to extract the values of the weighted functions fi and gi, and to
decipher the capacity fade due to calendar aging and the loss due to cycling aging [17]. The cycling
aging of an aging test is equal to A.Ah and the calendar aging is equal to B.

√
t. Therefore the cycling

aging is proportional to the number of ampere-hours exchanged and the calendar aging is proportional
to the square root of time. This latter square root of time dependency is, however, discussed by
Dubarry [22], who compared it with a t3/4 and a t dependency. The

√
t obtained the best fit, so that the

authors used it in the end.

3.2. Incremental Capacity Analysis

Figure 3a displays the evolution of the IC curves with time for cell aged at 45 ◦C at ~50% SOC
at 1C/1D (denoted as (45◦, SOC 50, 1C/1D)). In the same manner, Figure 3b stands for (45◦, SOC 30,
1C/1D), Figure 3c stands for (45◦, SOC 15, 1C/1D), and Figure 3d stands for (45◦, SOC 80, 1C/1D).
It exhibits two different peaks: the highest peak (maximum at ~3.6 V) and the second peak (maximum
at ~3.4 V), which is coherent with what is observed by Berecibar et al. [23]. The highest peak has a
symmetrical shape. Qualitatively, the most striking feature is that the intensity of the highest peak and
of the second peak decreased for different states of health, which is coherent with the few NMC-based
ICA study [21,23,24]. The average voltage of the maximum intensity of the highest peak is shown
in Table 3. The average value was stable and the standard deviation was almost zero. This voltage
remained stable with time (aging), and the highest peak is simply denoted as “3.5 V-peak” in the
following sections. It seems that the curve remained in the same shape around the extrema of voltage
values, indicating that the kinetics of the cell reaction has not been affected. As shown in Table 3,
the average voltage of the maximum intensity was not as stable as the highest one. The standard
deviation was also higher.Batteries 2018, 4, x FOR PEER REVIEW  7 of 17 
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sake of clarity: the curves have a 15 Ah/V-offset each.
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Table 3. Average value of voltage and standard deviation for 3.5 V and 3.4 V peak maxima.

Average Voltage of the
Maximum of the 3.5 V Peak

Standard
Deviation 3.5 V

Average Voltage of the
Maximum of the 3.4 V Peak

Standard
Deviation 3.4 V

(45 ◦C, 15%, 1C/1D) 3.57 0.01 3.42 0.03
(45 ◦C, 30%, 1C/1D) 3.56 0.01 3.41 0.01
(45 ◦C, 50%, 1C/1D) 3.55 0.01 3.43 0.04
(45 ◦C, 80%, 1C/1D) 3.56 0.01 3.43 0.02
(23 ◦C, 30%, 1C/1D) 3.57 0.00 3.41 0.00
(23 ◦C, 50%, 1C/1D) 3.55 0.01 3.42 0.03
(10 ◦C, 50%, 1C/1D) 3.56 0.01 3.43 0.01

Changing the temperature, the tests (23◦, SOC 50, 1C/1D; 23◦, SOC 30, 1C/1D) feature similar
behaviors in IC curves, as shown in Figure 4.
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The peak area has been defined for the 3.5 V peak, as the area under the curve comprised between
the peak’s voltage value and is symmetrical, as described on Figure 5. It corresponds to the capacity
involved in the related reaction happening in between the borders. For the 3.4 V peak, it is defined as
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Figure 5. Incremental capacity analysis (ICA) versus voltage for one cell at the initial state, obtained
for dV = 20 mV. AP-3.5 V is the area of the peak at 3.5 V and AP-3.4 V is the area of the peak at 3.4 V.

It can be observed that the 3.5 V peak area is linearly proportional to the total loss of capacity due
to cell aging, which is coherent with [25,26].

The correlation coefficient of that left curve (Figure 6) is quite high (0.97), the other one is weaker.
Others are also strongly correlated as shown in Table 4.
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Figure 6. Capacity loss (%) as a function of peak area (3.5 V) (Ah) for cell (23◦, SOC 30, 1C/1D) ((a) is for
the 3.5 V peak and (b) is for the 3.4 V peak).

Table 4. Correlation coefficient of highest peak with the total loss of capacity for different tests.

Test Description Correlation Coefficient
HP-3.5 V//Loss Capacity

Correlation Coefficient
HP-3.4 V//Loss Capacity

(45 ◦C, 15%, 1C/1D) 0.97 0.93
(45 ◦C, 30%, 1C/1D) 0.97 0.91
(45 ◦C, 50%, 1C/1D) 0.95 0.78
(45 ◦C, 80%, 1C/1D) 0.90 0.73
(23 ◦C, 30%, 1C/1D) 0.96 0.69
(23 ◦C, 50%, 1C/1D) 0.98 0.92
(10 ◦C, 50%, 1C/1D) 0.80 0.63

These first cycling tests show that the highest peak (3.5 V) seems to be strongly correlated with
the total loss of capacity. In order to decipher between the calendar contribution (B.

√
t) and the

cycling contribution (A.Ah) of our aging model, we were interested in determining if the area of the
peak (labeled A) could be correlated to the Ah-exchanged or to the root square of t, as suggested by
Cabelguen [18] and Riviere [27]. The correlation coefficient is shown in Table 5.

Table 5. Correlation coefficient of highest peak area with Ah and
√

t for different tests.

Test Correlation Coefficient
Peak 3.5 V//Ah

Correlation Coefficient
Peak 3.4 V//

√
t

(45 ◦C, 15%, 1C/1D) 0.97 0.98
(45 ◦C, 30%, 1C/1D) 0.98 0.71
(45 ◦C, 50%, 1C/1D) 0.94 0.76
(45 ◦C, 80%, 1C/1D) 0.82 0.32
(23 ◦C, 30%, 1C/1D) 0.81 0.97
(23 ◦C, 50%, 1C/1D) 0.98 0.93
(10 ◦C, 50%, 1C/1D) 0.88 0.53

With all the correlation coefficients above 0.81 for 3.5 V, in terms of modeling, it seems to be safe
to consider the highest peak to be correlated to the Ah-exchanged. The second peak (3.4 V peak) seems
to be correlated to the square root of time, although some quite low coefficients were determined.

The Ah-results summarized in Table 6 were not convincing enough as they do not show a clear
trend about the 3.4 V peak, as discussed earlier. This is probably due to the difficulty in removing the
cycling part in the calendar part with this criterion. Furthermore, considering only calendar aging tests
at four different temperatures—10 ◦C, 23 ◦C, 45 ◦C, and 55 ◦C—the correlation between the area of the
peak and the root square of the time was almost ideal, except for (55 ◦C, 100%, CAL). This confirms
that cycling aging has an impact in the calendar aging contribution of the global capacity loss.
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Table 6. Correlation coefficient of 3.4 V peak with Ah and
√

t for different tests.

Test Correlation Coefficient
Peak 3.4 V//Ah

Correlation Coefficient
Peak 3.4 V//

√
t

(45 ◦C, 15%, 1C/1D) 0.96 0.98
(45 ◦C, 30%, 1C/1D) 0.88 0.71
(45 ◦C, 50%, 1C/1D) 0.84 0.76
(45 ◦C, 80%, 1C/1D) 0.26 0.32
(23 ◦C, 30%, 1C/1D) 0.20 0.97
(23 ◦C, 50%, 1C/1D) 0.86 0.93
(10 ◦C, 50%, 1C/1D) 0.37 0.53
(55 ◦C, 100%, CAL) – 0.56
(45 ◦C, 100%, CAL) – 0.85
(10 ◦C, 100%, CAL) – 0.99
(23 ◦C, 100%, CAL) – 0.94

The last strategy was to seek if the area AP of that 3.4 V peak could follow the same kinetic as the
loss of capacity, and then evaluate the predominant part of aging that affects that peak. We have thus
computed the following equation, searching for alpha and beta coefficients.

∆AP√
t

= alpha·Ah√
t
+ beta

Table 7 shows the corresponding correlation coefficients.

Table 7. Correlation coefficient of 3.4 V peak with (alpha * Ah/
√

t + beta) for different tests.

Test Correlation Coefficient
Peak 3.4 V//Alpha and Ah/

√
t + Beta

(45 ◦C, 15%, 1C/1D) 0.70
(45 ◦C, 30%, 1C/1D) 0.92
(45 ◦C, 50%, 1C/1D) 0.97
(45 ◦C, 80%, 1C/1D) 0.18
(23 ◦C, 30%, 1C/1D) 0.78
(23 ◦C, 50%, 1C/1D) 0.66
(10 ◦C, 50%, 1C/1D) 0.26

The correlation coefficients were quite satisfying for three tests: (45 ◦C, 30%, 1C/1D), (45 ◦C, 50%,
1C/1D), and (23 ◦C, 30%, 1C/1D). The coefficients alpha and beta are not significant enough to be
compared, as they are ~10−6. This seems to be a promising path in order to better distinguish the
different processes of aging taking place in the cell, to be further studied.

In terms of the model, we proposed assigning the Ah-kinetic of our aging model to the area of the
3.5 V peak and the Ah-kinetic and

√
t-kinetic aging to the area of the 3.4 V peak.

4. Discussion

4.1. Background on Aging Mechanisms

Aging can generally be due to three main causes:

- Loss of lithium inventory (LLI) is caused by the consumption of Li cations by parasitic reactions
of which the major remains the well-known SEI growth at the negative electrode. Therefore, less
and less lithium ions are available to shuffle back and forth in the electrodes, captured in the
electrode bulk or inside the electrolyte aggregates. The reactions lead to by-products released in
the electrolyte, which can further cause side reactions [28,29]. This aging cause can often explain
the first stages of the aging. The impact on the potential of LLI, as explained by Bloom et al.
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in [30], is that as the side reactions proceed, the lower potential regions of the NE would be
removed, and thus, charging the cell would incompletely lithiate the NE. Compared to its initial
state, at the end of charge, the NE is now at a higher potential. To maintain the upper limit value,
there would be a shift to compensate at the positive electrode to higher potentials. However, in
the graphite, the end of charge is a plateau and the potential of the PE will not very much.

- Loss of active material (LAM): insulation of active material with loss of contacts with the conductive
matrix, dissolution of transition metal in the electrolyte, structural changes in the crystalline structure
of anode, and cathode active materials due to repeated insertions/disinsertions of ions. LAM
appearing at the negative electrode only (LAM NE) and LAM appearing at the positive electrode
only (LAM PE) have to be differentiated. Dubarry et al. [28] even separate LAM on delithiated
and LAM on lithiated electrodes. The impact of LAM on the potential of PE and NE is well
explained in Figure 6 of ref. [31] and by Matadi [16] and Dubarry [32,33].

- Conductivity loss (CL): increasing of the faradic resistance due to mass transport slowdown
or ionic conduction in the bulk of the electrode and increasing of the ohmic resistance due to
contacts degradations in the electrodes or in the electrolyte conduction. CL only affects the cell
voltage, not the capacity.

These mechanisms are schematically separated here, but they are coupled during the aging process.
Dubarry et al. used a very suitable analogy with a water clock [24], composed of two connected

bulbs filled with a given amount of liquid. LAM affects the size of the bulb and LLI affects the amount
of available liquid, if there was a leak in the water clock. They have also constructed a comprehensive
toolbox “alawa” to simulate these phenomenas [31]; it is used in Section 4.4.

4.2. Background on ICA

The Incremental Capacity Analysis (ICA), meaning the analysis of dQ/dV as a function of V (dQ
corresponds to the change in capacity that happens in the gap dV) is a direct indicator of the state of the
cell. Differential Voltage Analysis (DVA), which analyses dV/dQ as a function of Q, is not appropriate
for our study since the reference (x-axis) varies when capacity fades [26,31]. dV/dQ highlights single
phase regions whereas dQ/dV curve represents the phase transformations [25,26,34,35]. The peaks
represent the electrochemical mechanisms occurring in the cell. They are mainly related to the
chemistry of the cell [23–33].

ICA is more beneficial when the cell is at equilibrium. Discharge regimes should therefore be
small, approximately C/20 or C/25. However, these very low rates require too much time in real
application (approximately 50 h to complete a charge and discharge cycle). As proven by Li [26],
one can take benefit from this technique until 1C regime. In the above 1C regime, the results are erratic
and not exploitable [32].

The evolution of the voltage of the cell during a discharge of 100% DOD shows the variations
of voltage (that indicates what reaction is taking place) as a function of displaced charges (meaning
capacity, which shows the extent of that reaction), as shown in Figure 7. Two clear voltage plateaus
can be identified from that curve, approximately 3.4 V and 3.6V. A voltage plateau on a full cell
means both electrodes are experiencing phase transformations (there is coexistence of two distinct
phases on each electrode) [27]. As a phase depends on the quantity of lithium ions inserted in
the electrode, the information about the battery aging mechanism is contained in the shift of these
plateaus. The dQ/dV analysis estimates the capacity displaced in each incremental change of voltage
in the reaction. However, it does not only provide pieces of information on electrochemical reactions
occurring inside the cell (through voltage plateau for example) but its evolution with time reveal how
these reactions are affected by aging.

The principle of the ICA is therefore clear: the peaks obtained at different aging states RPTs
provide an aging signature and enable identification of the degradation modes (LAM PE, LAM NE,
LLI, and CL). A peak is characterized by a voltage position and its area (linked to its height also called
intensity, which is deeply studied by Berecibar et al. [23]).
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Curves are shown according to their State of Health (SOH).

The final goal of using this metric is to be able to update the first fatigue model. Therefore,
the correlation made previously between the peak and the calendar and cycling aging processes will
be used in a numerical way. Having that correlation link, a discharge profile of the cell will lead to
the updated real values of the weighted functions (and no more the predicted values), leading to the
refinement of our model.

4.3. Data Analysis of ICA

The C/2 discharge data and very fast acquisition rate require mathematical filtering, to minimize
the noise and enlighten the peaks. This filtering was done with Microsoft Excel, considering a fixed ∆V
of 20 mV for discharge data (which is consistent with Bloom et al. [35,36] and Li et al. [37]). dQ then
appears to be the exchanged charges during this given voltage step ∆V. For charge-related IC data,
the ∆V depends on the rate of the charge so that the peaks can be observed and compared: 20 mV
for 0.04 C, 10 mV for 0.2 C, and 2 mV for 0.33C. There is proportionality between these two values as
shown in Figure 8.
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A plot of dQ/dV versus voltage for a cell at t = 0 during discharge is given in Figure 5. It contains
primarily two peaks that can be assigned thanks to additional information, found in the literature.
The first statement that can be made is that these two peaks correspond to two different electrochemical
reactions taking place during discharge inside the whole cell (both anode and cathode). These peaks
are strongly chemistry-dependent as mentioned in the literature [23,25,26].

Based on the literature, starting from the highest potential where the NMC electrode forms a
solid solution, during discharge, the voltage of the cell decreases consistently from 4.2 V to 3.75 V
(vs Li+/Li), filling the NMC cathode of lithium ions [18]. In this stage, the graphite electrode content
transfers from LiC6 to LiC12 and then from LiC12 to LiC18 [18]. From the ripples in the IC curve of
Figure 5, ~3.75 V can be due to the transition phase LiC6 to LiC12. This transition phase lasts much
longer than the others in the graphite (it is kinetically slower) [34]. As no hysteresis between lithiation
and delithiation in this phase was observed, this should be reversible and thus, not strongly affected
by aging.
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Then, the lithium intercalation inside the crystalline structure leads to a phase transformation
of NMC at 3.75 V (vs. Li+/Li) [18]. Convolution of this reaction vs. the graphite negative electrode
implies a decrease of 0.122 V (vs. Li+/Li) in the cell voltage, as the graphite transits from LiC12 to
LiC18 (stage 2 transformation). This explains the observed peak at ~3.6V (3.75 V–0.122 V ≈ 3.6 V).
The additional difference can be explained by additives in the electrolyte. This is the only NMC-based
reaction, as confirmed by Li et al. [26].

The remaining reactions happening inside the cell are graphite-based. From LiC18 to LiC24,
and even to LiC36, the graphite potential (vs. Li+/Li) increases drastically up to 0.6 V. At this step,
the PE is on a voltage plateau. Therefore, since PE potential is not changing, but the NE potential is,
a new peak will appear. This could explain the second peak observed at 3.4 V.

LLI and LAM NE could be the aging cause for the 3.4 V-peak evolution, as this peak is
graphite-related. It is well-known that LLI, leading mainly to SEI formation, occurs primarily at
the negative electrode. Indeed, LLI induces a potential shift of the NE curve of V = f(SOC) towards
higher SOC (see Figure 7 of [31]). The last graphite reaction (LiC18 to LiC24 and to LiC36, stage 4–5
transformation), that is involved in the 3.5 V-peak, will be progressively convoluted with a flatter
PE-curve. Thus the convolution will lead to a thinner and more intense peak.

The 3.5 V-peak corresponds both to the PE reaction and the NE stage 2 transformation. With LLI,
the NE curve (V = f(SOC)) will be shifted towards higher SOC relative to the PE. Therefore, the stage 2
transformation of NE will be initiated at higher SOC and prior to the start of the PE-reaction. Thus,
less of the capacity involved in the stage 2 will convolute with the PE and the peak area will go
down. One could suppose that LAM PE could be responsible as well. Indeed, as SEI grows, there is
production of species resulting from the electrolyte decomposition that might accumulate on the active
grain surface, which may cause isolation of the grains inside the electrode matrix. LLI would therefore
result in LAM PE. This would explain the difficulty to separate both modes of aging based on the 3.4 V
peak’s evolution. In any case, it is well-established that the cycling aging affects more the cathode
electrode (NMC) [12]. Therefore, the fact that the area under the 3.5 V peak appears to be proportional
to the number of exchanged-ampere hours seems legitimate. This hypothesis needs to be confirmed.

However, because the aging has reached less than 10% of capacity loss, the predominant mode of
degradation seems to be LLI. This could be confirmed in the fact that in [31], the authors attributed to
LAM PE an exponential evolution and to LLI a linear evolution (with capacity loss): at the beginning,
the exponential is hardly differentiable from the straight linear.

4.4. Verification of Assumptions Based on ‘Alawa’ Tool

Different degradation of scenarios has been simulated on the ‘alawa’ toolbox developed by
Dubarry et al. [31]. The data used to simulate our full cell come from the software (Graphite and NMC
electrode data), so it was compulsory to adjust the Loading Ratio and the Offset to fit the IC curve
obtained as close as possible to our own IC curve. Figure 9 shows the resulting IC curves obtained for
a G//NMC cell with LR = 1.2, OFS = −5, resistance = 1, and a discharge rate of C/25.

LAM PE corresponds to LAMdePE (delithiated state), as LAM occurring on the lithiated state is
equivalent to LAMdePE plus some LLI (same for LAM NE).

These simulations show the following tendencies.

- LLI increases the 3.4 V peak intensity, and reduces the 3.5 V peak intensity. It confirms that
less and less lithium is involved in NE stage 2-reaction through cycling. The remainder of the
capacity that is not engaged in that stage 2-reaction remains available for the other reactions,
thus the growing and earlier start of the 3.4 V peak.

- LAM PE reduces the 3.4 V peak intensity, until it disappears, and moves the 3.5 V peak to lower
voltages (slightly) while decreasing its intensity slightly.

- LAM NE decreases slightly the 3.4 V peak and increases slightly the 3.5 V peak intensity.
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Therefore, what we observed on the 3.5 V peak of our own cell seems indeed to be mostly due
to LLI. The intensity evolution of the 3.4 V peak seems indeed to be a mix of LLI (that increases
its intensity) and LAM NE (that reduces its intensity). The 3.4 V peak area is shown to be slightly
increasing (Figure 6b). It is however difficult to decipher between LLI and LAM NE which one is
dominating, since the ‘alawa’ toolbox is not designed to take into account the temperature and precise
SOC impact.
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4.5. Connection between ICA and the Fatigue Model

The question arisen is how to combine the ICA observations and the fatigue model explained
previously in Section 3.1.

The preliminary analysis of all the unitary aging tests leads to six weighting functions, and so
six graphs (see the previously published graphs by Deletang et al. [17]). Being given a solicitation
made of time steps, a rate, a temperature, and a SOC at each time step, the fatigue model will provide
the infinitesimal (between two time steps) loss of cycling capacity (A.Ah), called delta_f[i], and the
infinitesimal loss of calendar capacity (B.

√
t), called delta_g[i]. With these two values, we can compute

the value of the predicted remaining capacity at each time step. This is the direct pathway.
However, with on-field measurements, the value of the real capacity can be different from what

has been predicted. So it is all about taking the reverse pathway: from the information of the on-field
measurement, we extract the Incremental Capacity data and we update the delta_f[i] and delta_g[i]
from which we then extract the weighted functions and, finally, we recompute the prediction with the
updated weighting functions. To our knowledge, this has never been done before. Simulations from
the developed software will be further published.
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5. Conclusions

In this paper, we suggested a review to summarize the different aging models used for LIBs,
and we presented the fatigue model used. Then we presented some results coming from an aging test
campaign and suggested a link between an observable value (IC peak area), related to the discharge
curve of a Li-ion cell, and the cycling and calendar capacity loss, defined in our fatigue model.

We observed two IC peaks for the studied NMC-based cell. One seems to be correlated to
the number of exchanged ampere-hours, and thus could be correlated to what was defined as the
“cycling aging” in our model. The other one is not clearly correlated to the root square of time, even
if it is observed when considering cells aged only in calendar pattern (no exchanged ampere-hour).
The difficulty in assigning a trend in the evolution of that peak would be due to the fact that calendar
aging is also appearing during cycling. The alawa toolbox has been used to verify some assumptions.

The implementation of that result on another chemistry where the peaks’ position will change
will be further studied.

As the IC peak degradation shown in the data is related to the first 10% of aging, the correlation
needs to be verified for further degradation, where LLI is not the main degradation mechanism any
longer [38–40]. Continuation of aging will clarify the explanation regarding LLI and LAM in order to
further explain the loss of capacity.
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