
batteries

Article

State of Charge Estimation of Power Battery Using
Improved Back Propagation Neural Network

Chuan-Wei Zhang, Shang-Rui Chen *, Huai-Bin Gao, Ke-Jun Xu and Meng-Yue Yang

College of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, China;
zhangcw@xust.edu.cn (C.-W.Z.); gaohuaibin0904@163.com (H.-B.G.); 15991600997@163.com (K.-J.X.);
dou663721ya@163.com (M.-Y.Y.)
* Correspondence: m18829514913@163.com; Tel.: +86-188-2951-4913

Received: 15 October 2018; Accepted: 22 November 2018; Published: 11 December 2018
����������
�������

Abstract: Accurately estimating the state of charge (SOC) of power batteries in electric vehicles is of
great significance to the measurement of the endurance mileage of electric vehicles, as well as the
safety protection of the power battery. In view of lithium ion batteries’ nonlinear relation between
SOC estimation and current, voltage, and temperature, the improved Back Propagation (BP) neural
network method is proposed to accurately estimate the SOC of power batteries. To address the
inherent limitations of BP neural network, particle swarm algorithm is adopted to modify the relevant
weighting coefficients. In this paper, the lithium iron phosphate battery (3.2 V/20 Amper-Hour) was
studied. Charge and discharge experiments were conducted under a constant temperature. The
training data were used to construct the surrogate model using the improved BP neural network.
It is noted that the accuracy of the developed algorithm is increased by 2% as compared to that of
conventional BP. Finally, an actual vehicle condition experiment was designed to further verify the
accuracy of these two algorithms. The experimental results show that the improved algorithm is
more suitable for real vehicle operating conditions than the traditional algorithm, and the estimation
accuracy can meet the industry standards to a greater extent.
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1. Introduction

With the increasing global demand for energy conservation and environmental protection,
electric vehicles have developed rapidly [1,2]. Power batteries serve as the driving core of electric
vehicles. In order to ensure the safe use and service life of the battery as well as satisfy the user’s
requirement of real-time monitoring, the power battery must be strictly and efficiently managed.
Various battery management systems (BMSs) and their corresponding data management methods have
been proposed [3,4]. Among them, accurate state of charge (SOC) estimation plays an important role
in the prediction of electric vehicle range and the safety protection of power batteries [5,6]. Therefore, a
reliable estimation algorithm for power batteries is urgently needed. However, battery SOC estimation
is a complex nonlinear system model. Moreover, battery voltage, current, and temperature represent
complex nonlinear relationship cycles, so the corresponding SOC estimation algorithm must take
these factors into account [7,8]. At present, the main battery SOC estimation algorithms include the
Coulomb counter method, the open circuit voltage method, the anti-time integral method, the Kalman
filtering method [9], and the neural network method, etc. Huang et al. [10] gave a brief introduction to
the advantages of the Coulomb counter method, which is easy to implement in practical conditions.
However, the disadvantages of this method are also obvious, as its estimation is not accurate and it is
easily impacted by the environment [11]. Zheng et al. [12,13] used low current open circuit voltage
and incremental open circuit voltage two ways to observe the relationship between the open circuit
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voltage (OCV) and SOC. This approach was more accurate, but the precision still needs to be improved.
Xu et al. [14,15] developed a battery management system in which the information sampling circuit,
such as battery voltage and current, were considered. Moreover, the estimation of the battery SOC
was completed based on the Amper-Hour integral method. Zheng et al. [16,17] proposed a differential
voltage (DV) analysis based a universal battery model and two associated SOC estimation algorithms
using extended Kalman filter (EKF) and particle filter (PF), respectively. Based on the natural cubic
interpolation approach, the SOC of the battery was deduced from the DV curves of various cells at
different aging levels, and the SOC-DV model was proposed. Guo et al. [18,19] employed a lithium
iron phosphate battery as their research object and, based on the shortcomings of the traditional SOC
estimation algorithm, an improved BP neural network algorithm was proposed, which has a certain
effect in reducing the lithium iron phosphate battery SOC estimation error. Pan [20] proposed a novel
open-circuit voltage model based on cubic-Hermite interpolation to update the state estimation. This
method can effectively improve the accuracy of the extended Kalman filter. Li et al. [21] analyzed
the values of relevant parameters in the formula of the ANN time integration using a lithium iron
phosphate power cell as the research object. Mao et al. [22] investigated the defects of the estimation
algorithm of traditional battery SOC; the extended Kalman filter method was used to estimate the
SOC and put it into practical application. Sepideh et al. [23] employed an extended Kalman filter
algorithm based on an electrochemical model that was developed to estimate the SOC of power cells.
The results showed that this algorithm has high precision and strong adjustment ability, based on
the experimental data of the discharge test. Yu et al. [24] used the wavelet neural network method
to estimate the battery SOC, and the results showed that the wavelet neural network method has a
good approximation effect and strong robustness. In summary, the battery SOC estimation algorithm
can basically realize the simple estimation function of SOC at the present stage, but SOC estimation
is limited by working conditions and defects in the algorithm. Therefore, there is room for further
improvement in the estimation accuracy.

In this paper, a particle swarm optimization (PSO) algorithm is used to optimize and improve
the neural network method in order to solve the problem of the SOC being prone to falling
into local minimum when the BP neural network method is employed. Considering the voltage,
current, temperature, and cycle attenuation of the battery, the accuracy of battery SOC estimation is
further improved.

2. Back Propagation Neural Network Principle

Back propagation neural network is a multi-layer feedforward neural network model. The
corresponding signal is forward-propagating, and the error can be reverse-transmitted and
corrected [25]. The s-type function is used as the transfer function between neurons, and the range of
network output values is (0, 1). Back propagation neural network can deal with complex nonlinear
problems well, and can provide the appropriate network model according to different training data.
The structure of back propagation neural network consists of a three-layer model, including an input
layer, hidden layer, and output layer [26]. The back propagation neural network model is shown in
Figure 1.
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As you can see in Figure 1, the nerve cells between each layer interact with each other. If the
mean square error between the output value from the output layer and the expected output value does
not meet the set requirements, then reverse recurve and the correct weights and thresholds according
to the principle of gradient descent can make the output value of the output layer meet the ideal
requirements. The unit output of the corresponding neural network is shown in Equations (1) and (2).

Pi= p(
m

∑
i=1

ωijxi + θi)j = 1, 2, . . . l (1)

Yk = q(
l

∑
j=1

ωjkPi + θk)k = 1, 2, . . . n (2)

In the above equations, Pi represents the output of the hidden layer; Yk represents the output
of the output layer; p and q respectively represent the transfer function of the hidden layer and the
output layer; ωij is the connection weight between the input layer and the hidden layer; and ωjk is the
connection weight between the hidden layer and the output layer. Moreover, m is the number of input
layers; l is the number of hidden layers; n is the number of output layers; X = [x1, x2, ..., xm]T is the
vector of input variables; and θ is threshold value. The mean square error calculated in the preceding
feedback process is shown in Equation (3).

E =
1
2

n

∑
k=1

(tk − yk)
2k = 1, 2, . . . n (3)

E represents the mean square error; tk represents the expected output; and Yk represents the actual
output. In the process of error reverse transfer, weight correction follows Equation (4).

ωa+1 = ωa − η
∂E

∂ωa
(4)

ωa+1 represents the correct weight; ωa represents the current state weight; and η represents the
learning rate. Through continuous training and adjustment, the neural network can obtain the best
training model, so that the mean square error can meet the set requirements. In the BP neural network
method, the Levenberg Marquardt (LM) gradient descent algorithm is adopted to optimize the mean
square error weight. This algorithm can effectively improve the convergence speed of BP neural
network and reduce the prediction error value. Because the Hessian matrix is avoided, the calculated
amount is greatly reduced, so the LM algorithm converges quickly. The problem is that the estimated
error value falls into the local minimum value; it is not the optimal value. Therefore, it is necessary to
improve the BP neural network, further revise the weight of the estimation process, and prevent the
estimation value from falling into the extreme local minimum, so as to improve the accuracy of SOC
estimation to a certain extent.
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3. Improved Back Propagation Neural Network

3.1. Improved Back Propagation Neural Network Principle

In order to solve the problem of estimating SOC by the LM steepest descent algorithm built in BP
neural network, the particle swarm algorithm was adopted to re-optimize the weights in the training
process. Particle swarm optimization is a method which can find the optimal intelligent solution. The
PSO algorithm imitates the regularity of bird cluster activity. The optimal solution is obtained using
the information of real-time sharing in the population to determine the optimal path. The position of
the corresponding particle i is given as Xi = (Xi1, Xi2, Xij, ..., XiN), while the velocity is Vi = (Vi1, Vi2,
Vij, ..., ViN), i ∈ [1, M], j ∈ [1, N]. The best position in the continuous space experienced by particle i
is given as Pi = (Pi1, Pi2, . . . , PiN), and the optimal position of the particle in the global space is Ph =
(Ph1, Ph2, Phj, ..., PhN). The corresponding velocity updating formula in particle swarm algorithm is
expressed by Equation (5).

Vij(t + 1) = ωVij(t) + c1r1(Pij(t)− Xij(t))
+c2r2(Phj(t)− Xij(t))

(5)

Including the following variables: ω—Inertia weight; Vij(t)—Current particle velocity; t—Current
iteration times; c1c2—Learning factor; r1, r2—[0.1] Uniformly distributed random numbers.

The corresponding position update formula is expressed by Equation (6).

Xij(t + 1) = Xij(t) + Vij(t + 1) (6)

The basic modeling of the improved BP neural network is the same as that of the traditional BP
neural network. The difference is that the rules for adjusting and updating the weights and thresholds
between the input layer and the hidden layer as well as between the hidden layer and the output layer
are changed, as shown in Figure 2.
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As can be seen in Figure 2, the improved BP neural network algorithm can quickly find the global
optimal solution. The estimation error of SOC can be improved in theory. Corresponding weight and
threshold correction follow Equations (7)–(10).

ωij(α + 1) = ωij(α) + aηjXj (7)

ωjk(α + 1) = ωjk(α) + aσkYk (8)

θi(α + 1) = θi(α) + bηi (9)

θk(α + 1) = θk(α) + bσk (10)
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3.2. Improved Back Propagation Neural Network Modeling

3.2.1. Input Layer Modeling

According to the research on the characteristics of the target battery, a battery’s SOC estimation
is mainly affected by voltage, current, and environment temperature. At the same time, in order to
correct the rate of a battery’s circulating capacity attenuation in a timely manner, the number of charge
and discharge cycles of the battery was added to revise the SOC estimation. After comprehensive
evaluation and analysis, the input layer was determined to include four neurons.

3.2.2. Hidden Layer Model

The number of nodes in the hidden layer and the number of layers are positively correlated with
the complexity of the neural network. In general, the more nodes, the smaller the mean square error,
and the more accurate of training. At the same time, the training time of the network will become
longer and serious overfitting will occur. The number of nodes in the hidden layer is generally based
on Equations (11) and (12), which are used to determine the approximate range.

l = log2 m (11)

l =
√

n + m + a (12)

Here, m is the number of input layer nodes; n is the output nodes number; and a is the adjustment
coefficient, which is between 0 and 10. According to the empirical formula, the value of l is determined,
and then different values at both ends of the l value are tried. According to the network training
duration and the minimum mean square error, the number of hidden layers of the optimal combination
is considered. Through the present experiment, the number of hidden layer nodes was set at 10, at
which point the mean square error is relatively reasonable.

3.2.3. Output Layer Model

The final output variable is only the estimated value of the SOC, so the value of n is 1. We can set
up the following network model, as shown in Figure 3.
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4. Improved Back Propagation Neural Network Algorithm

Based on the original network model, the particle swarm algorithm is implanted. The specific
steps of the algorithm are as follows:

(1) Initialize: first, the whole model is initialized to determine the particle size, setting particle
velocity, location, global extremum, individual extreme value, and maximum number
of iterations.

(2) Neural network training: the initial state neural network training is conducted.
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(3) Determination of particle fitness: the feedback mean square error is fully utilized in neural
network training, and then brought into the calculation as the fitness function value of the
particle swarm.

(4) Optimal value finding: the fitness value of each particle is compared with the optimal value of
the individual in the current state, leaving the optimal result; in the same way, group optimal
values are identified.

(5) Update speed and location: the velocity and position of the particle swarm is updated according
to Equations (5) and (6).

(6) The particle algorithm ends: the end condition is the maximum number of iterations that has
been set or the point at which N steps is reached, and the mean square error of all samples can
meet the requirements. If the end condition is not met, the particle fitness determination step is
repeated, and the sequence is carried forward step by step. When the requirements are met, the
iteration is stopped and returned to the optimal individual. The optimal value of the individual
particle is the improved neural network weight, and the global optimal value is used as the
adjustment threshold.

(7) Improved neural network model error analysis: this step determines whether the final mean
square error and the SOC estimation error meet the requirements—the training will be finished if
they are satisfied; if not, resetting and training is continued until the error requirements are met.
The flow chart of the corresponding algorithm is shown in Figure 4.
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5. Working Condition Test and Simulation Analysis

5.1. Construction of Experimental Platform and Training Sample Collection

In this paper, a prismatic lithium iron phosphate battery was selected as the research object. The
nominal voltage was 3.2 V and the rated capacity was 20 Ah. The charging limit voltage was 3.65 V,
the lower limit voltage was 2.5 V, and the maximum discharge current was 2 C. In this paper, all
training samples were collected under a 1-C discharge rate. The experimental apparatus included a
blue electric charge and discharge tester, a thermostat, and a computer. It is shown in Figure 5.
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First, the thermostat temperature was set to 25 ◦C; the charge and discharge tester was used
to charge the battery to full power in the charging mode of the constant current constant voltage
(CCCV). After 30 min, discharge at the rate of 1 C current brought to the single battery voltage to
2.5 V, which indicates that the battery was discharged. During the test period, the tester recorded the
voltage, current, and number of cycles every two seconds, and the thermostatic test box recorded the
ambient temperature data [27,28]. Finally, the total number of training samples was determined to be
1500 groups.

5.2. Back Propagation Neural Network Simulation

After the sample collection and selection process was completed, the normalized processing of
the samples followed, thus accelerating the convergence speed of the network and improving the
accuracy of the network. The data were then imported into the neural network model for training.
First, the neural network model needed to be initialized. Next, the corresponding maximum number
of iterations, target mean square error, learning rate, and initial weight were set. Then training could
begin. After inputting the training samples, the model of the neural network was trained and adjusted
based on the actual samples, until the mean square error (MSE) of the final output value and the
theoretical output value met the needs of setting or the maximum number of iterations.

Through constant debugging and training, the key parameters of the network model were
determined, as shown in Table 1.

Table 1. Key parameters of the network model.

Network Parameters Value Network Parameters Value

Maximum number of
iterations 1000 Learning rate 0.05

Target mean square error 4–10 Optimal number of
iterations 312

After completing the training of the neural network, the next step is to complete the estimation
accuracy of the neural network model. The 1500 group test samples were input into the neural
network model that was completed by training, and the corresponding network output was obtained.
Subsequently, the theoretical output was compared with the actual output of the network. The
corresponding output is shown in Figure 6.
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Figure 6. BP network estimation accuracy: (a) Comparison curves between SOC estimation and
theoretical values; (b) the error curves of the estimation methods compared with the theoretical values.

It can be seen from Figure 4 that the predicted value of the BP neural network model output
after training is basically consistent with the theoretical prediction. By further analyzing the relative
error comparison curves, it can be seen that the estimation error of the SOC is within 5%, which
basically meets the requirements of SOC estimation in the industry. However, there is still room for
further improvement.

5.3. Improved Back Propagation Neural Network Simulation

The data follows the training data and validation data of the previous model. Through continuous
training, it was finally determined that when the training sequence reaches 320 steps, the mean square
error reaches the minimum and meets the design requirements. Therefore, the same validation data
were selected to verify the improved model. The corresponding SOC estimation effect is shown in
Figure 7.
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Figure 7. The estimation accuracy of the state of charge (SOC) before and after the algorithm is
improved: (a) Comparison curves between different estimation methods and SOC theoretical values;
(b) the error curves of the two estimation methods compared with the theoretical values.

It can be seen from Figure 7 that the SOC estimation accuracy of the BP neural network algorithm
is 2 percentage points higher than that of the traditional BP neural network algorithm. The total
estimation error can be controlled within ±3% to meet the industry requirement of 5% error.
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5.4. Working Condition Test

In order to verify whether the traditional BP neural network algorithm and the improved BP
neural network algorithm can be applied to the actual operating conditions, the actual operating
conditions were established in accordance with the special DST (Dynamic Stress Test) conditions for
electric vehicle batteries. This simplified working condition model refers to DST working condition in
the USABC (United States Advanced Battery Consortium) manual and the domestic battery testing
manual, as shown in Figure 8.Batteries 2018, 4, x FOR PEER REVIEW  9 of 12 
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Figure 8. Simulated working conditions.

According to the established model of real vehicle operation conditions, the cycle simulation
of the operating condition was carried out using a charge and discharge tester until the power was
exhausted. Then, the original data samples were collected and imported into the neural network
model for training. After training, the condition test experiment was carried out. By receiving the
corresponding voltage, current, temperature, and cycle times of the battery, the two neural networks
output the estimated SOC value, and the corresponding estimated SOC relative error of the two
algorithms is shown in Figure 9.
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Figure 9. SOC comparison diagram of working condition experiment: (a) Comparison curves between
different estimation methods and SOC theoretical values; (b) the error curves of the two estimation
methods compared with the theoretical values.

It can be seen from Figure 9a that as the discharge progresses, the error of the two improved
algorithms becomes increasingly smaller. However, in Figure 9b we can see that the SOC estimation
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error of the unimproved neural network algorithm reaches 6%, indicating poor performance under
actual working conditions. Meanwhile, the improved neural network algorithm can accurately estimate
the SOC value of the battery under practical conditions, and the estimated error can be controlled
within 4%. The accuracy of estimation is slightly lower than that under the condition of constant
multiple discharge, as shown in Figure 7, but it can meet the industry requirement of less than 5%
error, which has certain guiding significance.

6. Conclusions

Based on the advantages and disadvantages of the mainstream SOC estimation algorithm and the
problem of power battery SOC estimation, a kind of SOC estimation algorithm based on BP neural
network was proposed in this paper. Furthermore, the SOC estimation model based on BP neural
network was established. At the same time, because the BP neural network is prone to falling into the
extreme local minimum due to the defects of its own optimization algorithm, a new neural network
algorithm was proposed to realize SOC estimation using an improved and optimized neural network
model. Matlab was used to verify the estimation accuracy of the two algorithms, and the comparison
results are shown in Table 2. The results show that the estimation error of the neural network algorithm
is less than 3%, which satisfies the industry requirement of a maximum of 5% error.

Table 2. Error comparison of the simulation analysis by different methods.

Research Methods BP Neural Network Improved BP Neural Network

Maximum estimation error in
simulation 5% 3%

Maximum estimation error in
working condition test 6% 4%

To verify whether the improved algorithm can be used in actual operating conditions, real vehicle
working conditions based on a DST model were established and the working condition data were
imported into the improved neural network for training. The experimental results show that the
improved BP neural network control algorithm can meet the SOC estimation of a power battery under
actual operating conditions, and the error was controlled within 4%. The accuracy of SOC estimation
error of the optimized network model was improved by 2 percentage points, which has a certain value
for the promotion of this model.
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Nomenclature

BMS Battery management system
SOC State of charge
BP Back propagation
DV Differential voltage
EKF Extend Kalman filter
PF Particle filter
OCV Open circuit voltage
PSO Particle swarm optimization
MSE Mean square error
LM Levenberg Marquardt
CCCV Constant current constant voltage
DST Dynamic Stress Test
USABC United States Advanced Battery Consortium
Pi Output of the hidden layer
Yk Output of the output layer
p Transfer function of the hidden layer
q Transfer function of the output layer
ωij Connection weight between the input layer and the hidden layer
ωjk Connection weight between the hidden layer and the output layer
M Number of input layers
L Number of hidden layers
N Number of output layers
X Vector of input variables
θ Threshold value
E Mean square error
tk Expected output
Yk Actual output
ωa Current state weight
η Learning rate
m Number of input layer nodes
a Adjustment coefficient
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