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Abstract: Estimation of a lithium battery electrical impedance can provide relevant information
regarding its characteristics. Currently, electrochemical impedance spectroscopy (EIS) constitutes the
most recognized and accepted method. Although highly precise and robust, EIS is usually performed
during laboratory testing and is not suitable for any on-board application, such as in battery electric
vehicles (BEVs) because it is an instrumentally and computationally heavy method. To address this
issue and on-line system applications, this manuscript describes, as a main contribution, a passive
method for battery impedance estimation in the time domain that involves the voltage and current
profile induced by the battery through its ordinary operation without injecting a small excitation
signal. This method has been tested on the same battery with different passive voltage and current
profile and has been validated by achieving similar results. Compared to the original idea presented
in the published conference paper, this manuscript explains, in detail, the previously developed
method of transforming the battery impedance from the frequency domain to time domain. Moreover,
this impedance measurement is used to estimate more robustly the battery state of charge (SoC)
through Kalman filters. In the original published conference paper, only an extended Kalman filter
(EKF) was applied. However, in this manuscript, an EKF and an unscented Kalman filter (UKF) are
used and their performances are compared.

Keywords: battery impedance; Fourier transform; Kalman filtering; state of charge estimation

1. Introduction

Thanks to its advantageous characteristics, such as high energy and power density, long lifetime,
low cost, and higher safety characteristics [1,2], lithium batteries are currently recognized as the most
interesting technology for battery electric vehicles (BEVs). For such applications, it is crucial for both
consumers and manufacturers to try to learn more about battery performance over its lifetime. This is
why an efficient battery management system (BMS) [3,4] measures the main battery parameters,
such as the temperature, the state of charge (SoC), the state of health (SoH), or the state of power (SoP)
and how to avoid damage

To avoid damaging the battery, only noninvasive and nondestructive measurement processes
are employed, and only external variables including the battery current, voltage and surface
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temperature [3–6] can be recorded over time. From these measurements, the battery electrochemical
impedance can be estimated [7]. Battery impedance characterizes its dynamic behavior and is
influenced by many factors such as the battery history, its polarization current, its SoC, its SoH,
and its internal temperature. This explains why the battery electrochemical impedance is utilized in
several approaches to evaluate the internal temperature [8–10], the SoC [11–13], and the SoH [13,14] of
the managed battery.

The most accepted approach to estimate the battery impedance is electrochemical impedance
spectroscopy (EIS) [15,16]. It is an active identification class method [17] and supposes the system to
be LTI (Linear time invariant). It consists of exiting the battery through a current input composed of
a unique sine wave with low amplitude and constant frequency, and recording the answering battery
voltage output fluctuation. Then, the battery impedance can be estimated at the current sine wave
frequency only. Finally, this measurement process is repeated to estimate the impedance for several
frequencies. It is also possible to excite the battery through a current input composed of a sum of
sines wave current with multiple discrete frequencies, measure answering battery voltage output
fluctuation, and estimate the battery impedance for the corresponding discrete frequency bandwidth.
Although very accurate, EIS is not applicable for an embedded system. In fact, advanced electronic
generators are required to create sine waves with distinct frequencies or a multisine signal and so
are responsible for a supplementary expense. Furthermore, this approach provides only one battery
impedance estimation per measurement. As a consequence, every time a new impedance estimation is
required, the entire measurement process has to be duplicated. It sharply reduces the ability to track
the impedance over time.

Prediction of the battery behavior can be reached through modeling. In a prior publication [18]
an invariant battery impedance model of a former Subaru BRZ 2015 converted into a Plug-in Hybrid
Electric Vehicle (PHEV) has been developed. Nevertheless, it is written in [18] that the battery
impedance model stays constant over the battery aging. Consequently, as the main contribution,
this manuscript details a procedure that evaluates and revises regularly the PHEV battery impedance
model during its lifetime. This strategy is similar to the one detailed in [19,20]. In contrast to [19,20],
the method developed in this manuscript does not add a pseudo random binary signal (PRBS) to the
battery current profile for evaluating its impedance and the impedance is computed in a time domain.
Indeed, only the passive voltage and current induced by the battery, through its ordinary operation,
are involved. This distinction makes our method more suitable for on-line system applications
including the former Subaru BRZ 2015 converted into a PHEV. Compared to the original idea presented
in the published conference paper [21], this manuscript explains, in detail, the previously developed
method of transforming the battery impedance from frequency domain to time domain.

Using the estimated impedance computed by the proposed algorithm, another crucial state of the
battery is then estimated: the SoC. In fact, a precise estimation of battery SoC is challenging, but it is
necessary to overcome the “range anxiety” problem. This issue refers to the driver’s fear of running
out of battery power on the road [22,23]. The first one is the range of an EV. In fact, the autonomy of
electric varies from 100 miles for the most affordable car (Mitsubishi i-Miev) [24] to 335 miles for the
most luxurious one (Tesla Model S) [25]. This fear comes from two factors. The second one is the lack
of battery charging infrastructure. Both reasons lead to the necessity to predict the more accurately
as possible the remaining range to prevent EVs from complete depletion on the road and leaving
passengers stranded.

Nowadays, many methods have been developed and tested for SoC estimation. A recent journal
article reviewed all of them in [26]. The most popular one is the Coulomb counting [27,28]. It consists
of computing the remaining charge by integrating the current going into the battery over time.
This is one of the most straightforward methods to embed in a vehicle. However, this methodology
suffers from drift caused by the measurement noise and battery aging and requires knowledge
of the initial SoC. Another well-known method is the voltage based SoC estimation, which infers
SOC by an open circuit voltage (OCV)-SOC lookup table [29]. Unfortunately, OCV measurement
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requires an extended rest period before the terminal voltage reaches the actual OCV, which make
this method unpractical. Many other works have been conducted using computational intelligence
algorithms, such as fuzzy-logic [30], artificial neural networks (NNs) [31–35], and support vector
machines (SVMs) [36–38]. These methods do not need expertise in battery modeling to be accurate.
However, it requires many training data of all loading conditions, which can be time-consuming
and potentially not provide adequate coverage for real-life applications. Electrochemical model-based
methods have also recently been employed for SoC estimation [39–41]. Those techniques have the
advantage to provide at the same time macroscopic quantities such as cell voltage and current but
also microscopic quantities such as cell temperature, concentration, and potential. It allows to reflect
more physically the chemical reaction happening inside a battery cell, such as the charge transfer
and kinetic process. However, those methods require a high level of battery understandings and are
computationally heavy making them unsuitable for BMS.

More recently, the development of model-based filtering methods [42–50] for establishing
closed-loop estimation has been done. The impedance battery model and Coulomb counting model are
employed to build a battery state-space model, where the current is utilized as the input, the voltage
as the output, and the SoC as a hidden state. A filtering method including the extended or unscented
Kalman filter (EKF and UKF), is then employed to estimate the SoC. Plett [42–44] presented an EKF
filter for estimating the SoC of LiFePO4 batteries. At each time point, the filter evaluates a voltage
based on the system model and the recorded cumulative current. Then, the difference between the
estimated and measured voltages serves to compute a correction term to adjust the SoC. However,
an EKF is just a first order approximation, in the sense of Taylor series expansion, of a nonlinear model.
The higher order terms are neglected, which can lead to significant errors for a nonlinear state-space
model such as a battery. On the other hand, UKF is an upgraded version of EKF that uses an unscented
transform, which computes statistics of a random variable propagating through a nonlinear system. In
UKF, a set of sample points called sigma points represents the state distribution. The posterior mean
and covariance of the state distribution, when propagated through the nonlinear system, are also
captured by the propagated sigma points. UKF has been proven accurate to the third order, in the
sense of Taylor series expansion, for any nonlinearity [51–53].

In every case, both EKF and UKF depend on the precision of the impedance battery model
for estimating the battery SoC. Using the estimated impedance computed by the passive tracking
impedance algorithm, the estimation of the battery SoC through Kalman filters can be more precise.
In the original contribution of the published conference paper [21], only an EKF was applied. However,
in this manuscript, the contribution has been extended by using an EKF and UKF and comparing their
performance regarding the battery SoC estimation. The manuscript is organized as follows. In Section 2,
the proposed approach is detailed, and the battery impedance estimation is validated by achieving
similar results for the same battery using different passive voltage and current profile. Thereafter,
in Section 3, using this estimated impedance an extended Kalman filter (EKF) and unscented Kalman
filter (UKF) are applied to compute more robustly the battery SoC. Moreover, both filter performances
are compared. The conclusion and future work are drawn in Sections 4 and 5, respectively.

2. Impedance Estimation Method

The battery impedance estimation approach is explained in this section. This strategy, based on
the Fourier transform and an exponential local averaging strategy, aims at tracking (precisely and
regularly) the battery impedance over time. A similar method have already demonstrated accuracy
to evaluate the lithium polymer battery impedance of a drone [19,20]. However, in this manuscript,
the methodology is applied for a different battery chemistry (lithium iron phosphate), for a different
application (a plug-in hybrid vehicle) and only uses the voltage and current profile induced by the
battery during its ordinary operation without injecting a small excitation signal. Figure 1 summarizes
the proposed method.
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2.1. Linear and Time-Invariant Hypothesis

It is assumed that the parameters, on which the battery impedance characteristics depend stay
invariant over the measurement process. Consequently, the battery can be regarded as a linear and
time-invariant (LTI) system during the measurement time. Therefore, the estimated battery impedance
Ẑk( f ) can be determinde by Equation (1) [54,55].

Ẑk( f ) =
Ŝuik ( f )
Ŝiik ( f )

(1)

2.2. Coherence

To be able to apply this new impedance estimation method, the battery needs to be considered as
an LTI system during the measurement time. To check this assumption, a statistical tool, called the
squared spectral coherence, is used to ensure that the battery can be treated as an LTI system [56].
The estimated squared spectral coherence Ĉuik ( f ) between the current i(t) and the voltage u(t) is
provided in Equation (2) where Ŝuuk ( f ) is the estimated power spectral density (PSD) of the voltage.

Ĉuik ( f ) =

∣∣Ŝuik ( f )
∣∣2

Ŝuuk ( f )Ŝiik ( f )
(2)

∣∣Ĉuik ( f )
∣∣2 belongs to [0, 1]. If

∣∣Ĉuik ( f )
∣∣2 is equal to one for a given frequency band, the system

can be treated as LTI for this frequency band, and, consequently, the impedance can be computed
using Equation (1). Conversely, if

∣∣Ĉuik ( f )
∣∣2 tends toward 0, either measurements are highly polluted

by noises or the system cannot be regarded as LTI. Therefore, the impedance cannot be calculated by
Equation (1). In reality, the squared spectral coherence is never equal to one, but it can be very close.
For the purpose of this manuscript, it has been decided that the battery is considered as an LTI system
for a given frequency and during the measurement time, if the squared spectral coherence is superior
to 0.99.

2.3. Impedance Estimation in Frequency Domain

To estimate Ẑk( f ) and
∣∣Ĉuik ( f )

∣∣2, we first calculate the PSD Ŝiik ( f ), Ŝuuk ( f ) and the coherence
power spectral density (CPSD) Ŝuik ( f ).

Using a time window, the data are seperated into blocks, and the Fast Fourier transform algorithm
is used to calculate their discrete Fourier transform (DFT). The different steps of this method are
provided in Figure 1. The block length has to be large enough for evaluating Ẑk( f ) on the widest
frequency band as possible, and short enough for considering the battery as an LTI system during the
measurement time. In this study, a hamming window of 1024 points has been selected.

After an initialization step, a recursive equation, implementing an exponential averaging approach
using a forgetting factor α = 0.9, enable the battery impedance and the coherence to be revised at each
new data block. Such strategy has been selected because it allows to set the trade-off between estimation
performance and implementation complexity through the forgetting factor. Moreover, the forgetting
factor also allows us to set the trade-off between the convergence time and the final estimation error:
the smaller the convergence time is, the higher the final estimation error is and conversely. Equations (3)
and (4) provide the algorithm necessary to evaluate the CPSD Ŝuik ( f ) recursively.

P̂uik ( f ) = AVk( f ) I∗k ( f ) (3)

Ŝuik ( f ) = αŜuik−1( f ) + (1− α) P̂uik ( f ) (4)

where A is a normalization factor, * denotes complex conjugation, and Vk(f ) (Ik(f ) respectively) is the
DFT of the kth block of voltage (current respectively) sample, and α is the forgetting factor, that belongs
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to [0, 1]. In this equation, the estimated cross periodogram between the kth blocks of voltage and
current samples is noted P̂uik ( f ). Finally, the battery impedance is evaluated by dividing the estimated
CPSD by the PSD of the current (Equation (1)).
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2.4. Impedance Estimation in Time Domain

To estimate Ẑk(t), we need first to select an impedance battery model order. For automotive
application, an n order Resistance/Capacitor network, as shown in Figure 2, is commonly used to
model the battery impedance [57–59].
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The equation of such impedance is described by Equation (5)

Ẑn(s) =
∑n

m=0 b̂n(i)sn−m

∑n
m=0 ân(i)sn−m (5)
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where Ẑn(s) is the estimated impedance in the Laplace domain, s = 2πf, f is the frequency in Hz,
n is the order of the battery model, b̂n and ân are the estimated real coefficient of the numerator and
denominator, respectively. To estimate such coefficients, the Matlab function ‘invfreqs’ is used [60],
as shown in Equation (6). [

b̂n, ân]= inv f reqs[Ẑn(s), f , n, n
]

(6)

Then, to estimate the value of the RC network parameters, a partial fraction decomposition is
computed by using the Matlab function ‘residue’ [61].[

r̂n, p̂n, d̂n]= residue[b̂n, ân
]

(7)

The computation of r̂n, p̂n often provides complex conjugate numbers, which are not desirable
values because the parameters of the RC networks should be real values. To overcome this issue,
the modulus value of those complex numbers is taken. As those complex numbers are necessarily
complex conjugate because the original quotient polynomial provided in Equation (5) uses real
coefficient only, many RC branches have the same parameters values, which lead to a reduction of the
battery model order.

Then the final parameters are computed through those following equations:

R̂s(n) = d̂n (8)

R̂m(n) = |r̂n(m)|/| p̂n(m)| (9)

Ĉm(n) = 1/
(

R̂m(n) | p̂n(m)|
)

(10)

Ẑn( f ) = R̂s +
n

∑
i=0

R̂i(n)
1 + R̂m(n) Ĉm(n)2π j f

(11)

In this manuscript, this process is repeated for every positive natural number n lower than 40.
The number 40 is large enough to cover different order of impedance battery model for an automotive
application [57–59]. However, it can be selected as need be. Then, a decision to select the battery model
order is made based of the Root Mean Square Error (RMSE) between the modulus and phase of Ẑn( f )
and Ẑk( f ) are calculated in Equations (12) and (13).

RMSEPi =

√
∑l

i=1
(
arg
[
Ẑk( f )

]
− arg

[
Ẑi( f )

])2

l
(12)

RMSEMi =

√
∑l

i=1
(∣∣Ẑk( f )

∣∣− ∣∣Ẑi( f )
∣∣)2

l
(13)

where RMSEPi and RMSEMi are respectively the phase and modulus RMSE of the “i” order impedance
battery model, m is the number of sample of the estimated impedance Ẑk( f ).

Once the choice of the battery model is made, Ẑk(t) is computed as follow.

V̂m(t) = Ts

[
ik(t− Ts)

Ĉm
− Vm(t− Ts)

R̂mĈm

]
+ V̂m(t− Ts) (14)

Ẑk(t) = R̂S +
∑n

m=1 V̂m(t)
Ik(t)

(15)

where TS stands for the sampling period.

2.5. Experimental Protocol

The vehicle shown in Figure 3 has been already described in [62–65]. It is a series PHEV and its
powertrain is composed of an electric generator, an Energy Storage System (ESS) made of a lithium
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iron phosphate battery, and an electric motor connected to a DC bus. The schematic and specifications
of the vehicle model are given in Figure 4 and Table 1.Batteries 2018 7 of 19 
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Table 1. Specification of power-train components of the plug-in hybrid electric vehicle (PHEV).

Power-Train
Components Name Characteristics

Energy Storage
System (ESS)

Lithium iron phosphate (LFP)
prismatic cells from A123

Capacity = 39.2 Ah; nominal voltage = 340 V;
nominal energy = 13.3 kWh;

configuration: 7 × 15s2p.

Internal Combustion
Engine (ICE) Model MPE850 from Weber 41 kW, 2 cylinders, 850 cc.

Electric Generator Model YASA-400 93 kW, axial flux permanent magnet.

Electric Motors Unit Model GVK210-100L6 from
Linamar 2 × 80 kW, unit ratio = 8.49.

Vehicle dynamics 2015 Subaru BRZ Limited Drag coefficient = 0.28; frontal area = 1.9695 m2;
PHEV mass = 1300 kg; wheel radius = 0.3 m.

The car has been run through repetition of many HWFET (highway) and UDDS (urban) drive
cycles from full battery charge (respectively, 96% and 100% of SoC) to its complete depletion (5% of
SoC) on a dynamometer. During the experiment, the speed of the car was controlled by a human driver
operating an accelerator and brake pedal. The driver tried to follow the UDDS and HWFET drive cycle
as closely as possible, but pedal sensitivity limitation and small interruption between some drive cycles
repetition makes it difficult. Moreover, the tests may have been stopped before finishing a complete
cycle because the battery was depleted. However, the vehicle speed profile does not have to exactly
follow the drive cycle to test accurately the battery impedance estimation algorithm. Those experiments
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aim at providing the passive voltage and current profile of the battery while the vehicle is running.
Even if the sampling frequency for this test looks small (only 20 Hz), previous literature [66–69]
supports that this sampling frequency is adequate for estimating the battery impedance for automotive
applications. Furthermore, the identified battery bandwidth for the impedance model described in [18]
is between 0.0008799 Hz and 0.02134 Hz. Consequently, it can be concluded the sampling frequency of
20 Hz is large enough.

2.6. Results and Discussion

The voltage and current profile and their associated spectrogram during UDDS are showed in
Figure 5. The coherence spectrogram during UDDS is provided in Figure 6. It has been defined that
the coherence has to be greater than 0.99 to consider the battery as an LTI system and so to update the
prior the battery impedance estimation. As expected with a sampling frequency of 20 Hz, the voltage
and coherence spectrograms suggest that the frequency content of the signal is mainly contained from
0 to 2 Hz. The same conclusion is achieved during HWFET.

As the Figures 5 and 6 show that the signal content is included up to a maximum frequency
of 2 Hz, Ẑk( f ) is estimated from 0 to 2 Hz during UDDS and HWFET. Then, the different Ẑn( f )
depending the order “n” of the impedance battery model is computed, and the modulus and phase
RMSE are plotted in Figure 7.
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From Figure 7, it can be observed that for “n” lower than 21, the modulus and phase RMSE are
quite constant and lower than for “n” higher than 21. In fact, as this method estimates impedance in
a discrete frequency domain, above a certain order, too many resistance and capacitance needs to be
computed for the number of available frequency points estimated. This is why any impedance battery
model order lower than 21 can be selected. In this manuscript, n has been selected so as the battery
model order is the same as the model developed in [18]. As during the partial fraction decomposition,
complex conjugate numbers are derived, the absolute values of those numbers lead to a reduction of
the impedance battery model order. This is why ns equal to three has been selected. Table 2 provides
the different capacitance and resistance values of the battery impedance model estimated through
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the passive UDDS and HWFET current and voltage profiles. Figure 8 shows, respectively, the Bode
diagrams of Ẑk( f ) and Ẑ3( f ).

From Table 2, it can be noticed that R̂s values are close to each other. Moreover, the sum of each
resistance in each case is a similar value (around 0.34 Ω), and also the time constant R̂1Ĉ1 is about the
same value (0.6 s) for UDDS and HWFET testing.

Concerning the battery impedance estimation during both drive cycles, it has been realized on
the same battery, and it can be considered that its aging between both experiments has not changed.
Nevertheless, the external battery temperature has changed during the testing: from 26.5 ◦C to 38.5 ◦C
for UDDS and from 25 ◦C to 38.5 ◦C for HWFET. Furthermore, durations of the drive cycles tests are
different: 7381 s for the UDDS for only 3056 s for the HWFET. Therefore, during the UDDS drive
cycle, more data have been gathered to update more precisely the battery impedance potentially.
Consequently, both estimated impedances are not identical, but still very similar as shown in Figure 8
and Table 2.
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Table 2. Characteristics of the battery impedance.

Parameter UDDS HWFET

R̂s 0.0873 Ω 0.0865 Ω
R̂1 0.0014 Ω 0.0026 Ω
Ĉ1 0.4187 kF 0.2467 kF
R̂2 0.2743 Ω 0.2621 Ω
Ĉ2 0.410 kF 2.065 kF
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3. SoC Estimation through EKF and UKF

3.1. Overview

For the nonlinear model, the EKF and UKF methods are proposed, respectively, in [42–44,51–53,70–72].
The nonlinear model can be linearized by Taylor expansion to the first order for EKF and the third
order for the UKF, and then SoC estimation can be estimated by using the original Kalman filter. Linear
discrete state-space equations are provided in Equations (16) and (17).

xk+1 = g(xk, uk+1) + wk (16)

yk = h(xk, uk) + vk (17)

Here, xk and uk are respectively the system status vector and the input vector at time k,
g corresponds to the linearized transfer function matrix of the nonlinear status and h corresponds to
the linearized matrix of the nonlinear measurement function, wk and vk are, respectively, the system
noise and the measurement noise, whose covariances are Qk and Rk.

E
{

wk × wT
k

}
= Qk (18)

E
{

vk × vT
k

}
= Rk (19)

In the case of battery SoC estimation, the linear discrete state space equation can be expressed by
the following equations.

ˆSoCk+1 = ˆSoCk +
IkTs

Cn
+ wk (20)

V̂k = Voc
( ˆSoCk

)
+ Ẑk Ik + vk (21)

3.2. EKF Algorithm

Recursive steps of the EKF algorithm can be summarized as follows:

(1) Initialize the original parameters
x0 = E{x(0)} (22)

P0 = E
{
[x(0)− E{x(0)}][x(0)− E{x(0)}]T

}
(23)

(2) Estimate the predicted state
xk+1 = g(xk, uk+1) (24)

(3) Update the estimated covariance

Pk+1 = Fk+1PkFT
k+1 + Qk+1 (25)

(4) Compute the near-optimal Kalman gain

Kk = Pk+1HT
k (Rk + HkPk HT

k )
−1

(26)

(5) Update the estimated state

xk+1 = xk+1 + Kk+1(yk+1 − h(xk+1, uk+1)) (27)

(6) Predict the estimated covariance

Pk+1 = (I − Kk+1Hk+1)Pk+1 (28)
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(7) Repeat the recursive filter calculation from step 2 to 6.

For this manuscript the following parameters values have been selected: P0 =

 10−6 0 0
0 1 0
0 0 1

,

Qk =

 10−8 0 0
0 1 0
0 0 1

, Rk = 10, Hk =
[

d(Voc)
dSoC 1 1

]
.

3.3. UKF Algorithm

Recursive steps of UKF algorithm can be summarized as follows:

(1) Initialize the original parameters are the same as Equations (22) and (23).
(2) For k ∈ [|1;+∞|], calculate the sigma points for the state model

σk =

[
xk, xk +

√
(L + λ)Pk, xk −

√
(L + λ)Pk

]
(29)

λ = 3γ2 − L (30)

where L is the length of xk and γ is a scaling parameter that determines the spread of the sigma
points around xk.

(3) Propagate the sigma points through the state model

σ′k+1 = g(σk, uk+1) (31)

(4) Calculate the propagated mean

xk+1 =
2n

∑
i=0

ωm(i)σ′k+1(i) (32)

(5) Calculate the propagated covariance

Pk+1 =
2n

∑
i=0

ωc(i)
[
σ′k+1(i)− xk+1

][
σ′k+1(i)− xk+1

]T
+ Qk+1 (33)

(6) For k ∈ [|1;+∞|], calculate the sigma points for the measurement function

σk+1 =

[
xk+1, xk+1 +

√
(L + λ)Pk+1, xk+1 −

√
(L + λ)Pk+1

]
(34)

(7) Propagate sigma points through the measurement function

yk+1 = h(σk+1, uk+1) (35)

(8) Calculate the propagated mean

ŷk+1 =
2n

∑
i=0

ωm(i)yk+1(i) (36)

ωm(0) =
λ

L + λ
(37)
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ωm(i) =
1

2(L + λ)
i ∈ [|1; 2n|] (38)

(9) Calculate the estimated covariance

Sk+1 =
2n

∑
i=0

ωc(i)
[
yk+1(i)− ŷk+1

][
yk+1(i)− ŷk+1

]T
+ Rk+1 (39)

Pσ,y
k+1 =

2n

∑
i=0

ωc(i)[σk+1(i)− xk+1]
[
yk+1(i)− ŷk+1

]T (40)

ωm(0) =
λ

L + λ
+ 1 + γ2 + β (41)

ωc(i) =
1

2(L + λ)
i ∈ [|1; 2n|] (42)

where β is used to incorporating prior knowledge of the distribution of x. For Gaussian
distributions, β = 2 is optimal.

(10) Compute the Near-Optimal Kalman gain

Kk+1 = Pσ,y
k+1S−1

k+1 (43)

(11) Update the estimated state

xk+1 = xk+1 + Kk+1(yk+1 − ŷk+1) (44)

(12) Predict the estimated covariance

Pk+1 =
(

Pk+1 − Kk+1Sk+1KT
k+1

)
(45)

(13) D the recursive filter calculation from step 2 to 12.

For this manuscript the following parameters values have been selected: P0 =

 10−7 0 0
0 1 0
0 0 1

,

Qk =

 10−8 0 0
0 1 0
0 0 1

, Rk = 7, γ = 10−2.

3.4. Results and Discussion

Using different resistance and capacitance values for the battery impedance presented in Table 2,
the battery SoC is estimated during the HWFET and UDDS. Figure 9 provides the comparison of SoC
estimation using EKF and UKF on a UDDS using the impedance model estimated on UDDS.

Figure 9 shows the high capability of the EKF and UKF to estimate the battery SoC precisely when
there is no error for initial SoC. The SoC estimated by UKF is slightly better than the SoC estimated
by EKF. Both estimation errors are always inferior to 4%. The reference SoC quantization causes the
high-frequency oscillation of the absolute error. In fact, the SoC provide by the BMS has a precision
of 0.5%.

Moreover, EKF and UKF provides robustness to the SoC estimation, even if the initial SoC is
greatly different from the truth, and the estimated SoC converges to the reference value over time.
Figure 10 shows this ability with an initial SoC error of 50%. Moreover, Figure 10 shows that the SoC
estimation converges faster to the reference SoC when using UKF than EKF.
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Figure 10. SoC estimated on UDDS drive cycle using impedance model estimated on UDDS with 46%
initial SoC error.

With the same parameters for EKF and UKF, similar conclusions are obtained when selecting the
impedance model estimated on HWFET or both impedance models on the HWFET drive cycle.

The accuracy and robustness of the SoC estimation through an EKF or UKF can be adjust
through two parameters: the measurement and model covariance noise. Those parameters symbolize,
respectively, the confidence in the voltage measurement and the state equation that computes SoC.
By selecting a high confidence in the measurement, the robustness is boosted at the cost of SoC
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estimation precision and vice versa. By choosing a high confidence in the model, the SoC estimation
precision is increased, but the robustness is decreased and vice versa.

4. Conclusions

The main contribution of this manuscript is the development of a more robust and accurate
mathematical battery impedance model capable of updating its impedance over the battery lifetime
by using a passive impedance estimation approach. Compared to the original idea presented in the
published conference paper [61], this manuscript explains, in detail, the previously developed method
of transforming the battery impedance from a frequency domain to a time domain. This battery
impedance estimation is validated by obtaining similar results for the same battery with different
passive voltage and current profile. Furthermore, using those estimated impedances, accurate and
robust battery SoC estimations through Kalman filters are achieved. In the original contribution
of the published conference paper [19], only an EKF was applied. However, in this manuscript,
the contribution has been extended by using an EKF and UKF, and comparing their performance
regarding battery SoC estimation. Results show that the error between SoC estimated through
EKF or UKF and SoC measured by the battery management system is less than 4%. Moreover,
SoC estimated through EKF and UKF can converge to an accurate SoC even if the initial SoC error is
large (50%). Furthermore, unlike paper [61], this manuscript shows that SoC estimation through UKF
is more accurate and converges faster to the reference value than SoC estimated through EKF. Finally,
those results are reproducible using both estimated impedance on both drive cycles.

5. Future Work

More meticulous tests, in which temperature would be kept constant, could be completed.
A detailed comparison between the results of those experiments and an EIS might be mandatory
to justify the precision of the new battery impedance estimation method. Furthermore, testing this
methodology on a different battery chemistry needs to be done to prove that this method can be
adapted to different battery technologies.
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Nomenclature

Symbol Name Units
f Frequency domain -
s Laplace domain -
t Continuous time domain -
k Discrete-time domain -
m mth element of a vector -
n Order of the battery impedance model -
ns Selected order of the battery impedance model -
ˆ Estimate -
* Complex conjugate -

Impedance estimation notation Units
Suik

Cross power spectral density (W)
Siik

Power spectral density of the current (W)
Suuk Power spectral density of the voltage (W)
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Z Battery impedance (Ω)
Cuik

Spectral coherence -
Uk Battery voltage (V)

Vm
Voltage of the mth RC node of the battery
model

(V)

Ik Battery current (A)

Puik

Cross periodogram between the current and
voltage

-

A Normalization factor -
α Forgetting factor -
b Numerator coefficient of the battery impedance -

a
Denominator coefficient of the battery
impedance

-

r Residues of the partial fraction expansion -
p Poles of the partial fraction expansion -
d Direct term of the partial fraction expansion -

Rs
Series resistance of the battery impedance
model

(Ω)

Rm mth resistance of the battery impedance model (Ω)
Cm mth capacity of the battery impedance model (F)

l Dimension of the estimated impedance -
RMSEP Phase root mean square error (◦)
RMSEM Modulus root mean square error (Ω)

Ts Sampling time (s)
Kalman filter notation

xk State variable
yk Measured variable
uk Input variable

g(xk, uk) State function
h(xk, uk) Measurement function

wk System noise
vk Measurement noise
Qk System noise covariance matrix
Rk Measurement noise covariance matrix
Pk State estimation error covariance matrix
Fk State function matrix
Hk Jacobian matrix
Kk Kalman gain matrix
σk Sigma points vector
L Dimension of x
λ Scaling parameter

ωm Mean sigma points weights
ωc Covariance sigma points weights
β Scaling parameter
γ Scaling parameter determining the spread of sigma points
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