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Abstract: Carbon plays a critical role in improving the electronic conductivity of cathodes in lithium
ion batteries. Particularly, the characteristics of carbon and its composite with electrode material
strongly affect battery properties, governed by electron as well as Li+ ion transport. We have reviewed
here various types of carbon materials and organic carbon sources in the production of conductive
composites of nano-LiMnPO4 and LiCoO2. Various processes of making these composites with
carbon or organic carbon sources and their characterization have been reviewed. Finally, the type
and amount of carbon and the preparation methods of composites are summarized along with their
battery performances and cathode materials. Among the different processes of making a composite,
ball milling provided the benefit of dense and homogeneous nanostructured composites, leading to
higher tap-density and thus increasing the volumetric energy densities of cathodes.
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1. Introduction

Nowadays, lithium ion batteries are expanding their market and are used in electric vehicles
and large energy storage systems. Large scale lithium ion batteries require higher energy density,
longer lifetime and better safety compared to their small scale counterparts [1]. Lithium ion battery
materials require both ionic and electronic conductivity for storing and providing electrical energy
via redox electrochemical reactions during charge and discharge [2,3]. During charging, typically the
active cathode material is oxidized at transition metal ions so as to release electrons and lithium ions.
During discharging, the transition metal ion is reduced, based on the reverse reaction [4–6]. Because
the active cathode material (LiMxOy, M = transition metals) is often lacking electronic conductivity,
conductive carbon is added with the help of a binder (Figure 1) [7–16]. This carbon in a cathode does
not involve the electrochemical reaction but solely supports the transport of electrons through the
redox-active material. The microscopic structure of a cathode should furthermore be porous to allow a
liquid electrolyte to penetrate inside, in order to ensure lithium ion transport (Figure 1 right). Hence,
there is an electrolyte solid–liquid interface (marked in orange in Figure 1) where any solid surface is
in contact with the liquid non-aqueous electrolyte [17]. The binder (grey in Figure 1) holds the particles
together and provides a good adhesion to the current collector [18,19]. Among these components
(redox material, carbon and binder) in the electrode, the composite made from the redox-active material
and carbon is very important because it is directly related to the transport of electrons and lithium
ions, responsible for the battery properties [20]. Carbon coating on the redox active material also
protects the redox-active particles from dissolution of the transition metal ions into the electrolyte [15].
Therefore, prior to making a slurry with a binder and a solvent, the formation of composite is a crucial
step to improve the cyclability and rate-capability of batteries [21–25].
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Figure 1. A schematic diagram of a cathode, consisting of an active material, carbon and a binder.
The transport directions of electrons and lithium ions are shown as well.

The electronic conductivity of the composite varies depending on the composite structure,
which itself depends on the preparation process and the type and morphology of both the carbon
additive and the redox-active material. To obtain a sufficiently high electronic conductivity, the mixing
homogeneity of carbon with the active material is one of the important parameters, which is also related
to the preparation process to generate the electrode. The mixed composite can be prepared by various
methods such as in-situ carbon coating via thermal heating [26–29], carbon deposition on the surface
of active material via chemical vapor deposition (CVD) [28,30–34], mechanical milling [14,35–40]
or hand/slurry mixing [10,41,42]. Another method of making a composite of carbon/redox active
material is using a template to form a porous carbon network via thermal treatment [43,44]. Although
using a template provides a 3D carbon network, improving the electronic conductivity of the composite,
such highly porous carbon network reduces dramatically the volumetric energy density of lithium ion
batteries because it leads to a low packing density of the redox active material.

This review focuses on efficient carbon coating methods in detail, physicochemical properties
of the composites and battery performances of LiMnPO4 and LiCoO2 cathodes prepared by different
mixing/coating methods.

2. Effect of Carbon Coating in LiMnPO4 Electrodes on Battery Performance

Carbon coating on LiMnPO4 particles provides two main advantages. The bare LiMnPO4 has
a relatively low electronic conductivity of 10−9–10−13 S cm−1 [45–47] compared to other cathode
materials, thus lowering capacity and rate-capabilities. Therefore, adding carbon improves the
electronic conductivity of LiMnPO4 electrode as shown in Figure 2a,b [15,48]. The electronic
conductivity of C-LiMnPO4 powder increased with the amount of acetylene carbon black until
30 wt% was above which no further improvement was observed (Figure 2a). Thus, such an amount
of carbon-coated on LiMnPO4 exhibited the best electrochemical properties, delivering 158 and
126 mAh g−1 of discharge capacities at C/20 and 1C, respectively [15]. Kumar et al. studied bare
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and carbon-coated LiMnPO4 nanorods prepared by a modified polyol method and resin coating
process. A resin was transformed to carbon after heating twice at 353 K and 623 K. They explained
that carbon-coated LiMnPO4 lowered the impedance compared to the pure one (Figure 2b). In the
end, carbon-coated LiMnPO4 exhibited 120–100 mAh g−1 at 1C, while the bare LiMnPO4 nanorods
exhibited 95–70 mAh g−1 at the same C-rate as shown in Figure 2c [48,49]. Barpanda et al. reported
also that while pure LiMnPO4 gave only 35 mAh g−1 of reversible capacity, sucrose and Ketjen black
carbon-coated LiMnPO4 delivered 95 mAh g−1 of discharge capacity at C/20 in CC (constant current)
mode [50]. Figure 2d shows the morphology of C-LiMnPO4 composite. High surface area, porous
Ketjen black has been coated on the surface of LiMnPO4 nanoparticles, enhancing charge transfer and
lithium ion transport in the composite structure [14,15,36,51].
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Figure 2. (a) Conductivity of C-LiMnPO4 composite powder with different amounts of acetylene
black carbon [15]. (b) conductivities and (c) discharge capacities at 1C of bare and C-LiMnPO4

nanorods [48]. (d) TEM image of LiMnPO4 and Ketjen black carbon composite prepared by ball
milling [14]. (e) Mn dissolution of the composite C-LiMnPO4 electrode with different amounts of
acetylene black carbon [15].

In order to obtain a high-performance of cathode, the Li+ ion conductivity must be also high in
combination with high electronic conductivity. The ionic conductivity of LiMnPO4 can be enhanced by
reducing the path length of Li+ ions in a particle in which Li+ ions are diffusing [52–55].

Another benefit of the carbon coating is to prevent the dissolution of manganese ions from
LiMnPO4 into the electrolyte. Oh et al. studied the manganese ion dissolution of the charged LiMnPO4

electrode at 4.5 V with an amount of acetylene carbon black of 10 to 40 wt%. After four weeks at
55 ◦C in a commercial electrolyte, the dissolved amount of manganese ion with 30 wt% carbon was
only 1/3 of that with 10 wt% of carbon as shown in Figure 2e. They explained that the homogeneous
carbon coating protected the surface of LiMnPO4 against HF attack, suppressing the dissolution of
manganese as well as improving the electronic conductivity of the electrode [15]. Marth et al. reported
that a LiMnPO4/C composite was much less surface reactive with the organic electrolyte compared to
transition metal oxide cathodes such as LiCoO2, LiNiO2, LiMn2O4, Li(NiMnCo)O2 and LixV2O5. This
low surface reactivity of LiMnPO4/C has been attributed to both the uniform carbon coating and the
low basicity of PO4

3− [56].
The amount of conductive carbon is an important parameter, which is related to not only electron

transfer but also loading of redox active material on a current collector. High amounts of carbon
increase the electronic conductivity of the composite as mentioned [11,15,20] on one hand, but, on
the other hand, decrease the energy density of LiMnPO4 because of the lower amount of LiMnPO4

in the composite [39,57,58]. This phenomenon is even more pronounced when both LiMnPO4 and
carbon particles are in the nanoscale because the packing density/tap density of nano-LiMnPO4 with
nano-carbon is low. The packing density also varies depending on the shape of nanoparticles of
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LiMnPO4. High aspect ratio particles such as needle-shaped ones have low tap density, while round
or elongated-shaped nanoparticles have higher tap density [58]. Ni et al. calculated the gravimetric
and volumetric capacities of 12 and 30 wt% of carbon containing electrodes. The packing density of
LiMnPO4 was 1.8 and 1.4 g cm−3 for the electrodes with 12 and 30 wt% carbon, respectively, and the
corresponding volumetric capacity was 176 and 130 mAh cm−3 [39]. Aware of this aspect of decreased
amount of active mass with increasing of carbon percentage in the electrode, Kwon et al. tested
LiMnPO4 electrodes with only 10 wt% of Ketjen black carbon obtained via ball milling. They provided
the full capacity at C/20 when LiMnPO4 is nano-rod-shaped and 20 × 30~100 nm in size. However,
the rate capability was not satisfying at high current densities (>1C). The discharge capacity at 1C
was 66 mAh g−1 with 10 wt% of Ketjen black carbon mixed with nano-LiMnPO4 [59]. When the
quantity of Ketjen black was increased to 30 wt%, the capacity of nano-LiMnPO4 also increased
to 80 mAh g−1 at the same current density of 1C [58]. Generating a dense agglomeration via ball
milling and coprecipitation can increase the packing density/tap density of the composites [58,60].
Figure 3 shows the morphologies of composites C-LiMnPO4, C-LiFePO4 and C-LiMn0.85Fe0.15PO4

prepared by ball milling (a) and coprecipitations (c) and (e), respectively. Their volumetric capacities
are also shown in (b), (d) and (f), respectively. Increasing the packing densities of the C-LiMnPO4 [58],
C-LiFePO4 [60] and C-LiMn0.85Fe0.15PO4 [61] composites provided 3.5, 2.5 and 1.5 times higher
volumetric capacities, respectively.
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In summary, a carbon coating is essential to improve the electronic conductivity and specific
capacities of LiMnPO4 and to prevent transition metal ion dissolution in the electrolyte. However,
as carbon is not electrochemically active in the cathode, the carbon amount should be minimized
without decreasing the electronic conductivity in order to maximize the mass of redox-active cathode
material in the electrode.

Yet, the electrode properties can vary not only depending on the types of carbonaceous materials
or organic precursors, but also on the composite preparation process [39,49,62,63]. Two methods
have been most widely studied for the preparation of the composite of LiMnPO4 and carbon: (i) the
thermal treatment of organic carbon precursors on LiMnPO4 particles, and (ii) the mechanical milling
of carbonaceous material and LiMnPO4. The details of those two methods are reviewed in the
next sections.

3. Organic Carbon Sources in the Composite of LiMnPO4/C

In order to reduce the amount of carbon without sacrificing the electronic conductivity
of the composite, organic carbon precursors have been considered to form a thin layer of
carbon on the LiMnPO4 particles. The reported carbon precursors are acrylic acid [48,49],
L-ascorbic acid, sucrose [63,64], polyethylene oxide (PEO) and carboxymethyl cellulose (CMC) [65],
cetyltrimethylammonium bromide (CTAB) [63], glucose [66], dextrose [67] and vapor grown carbon
fibers (VGCF) [68]. Those have been dissolved in solution together with LiMnPO4, then dried and
thermal decomposition was carried out at temperature above 600 ◦C under an inert atmosphere.
Zhao et al. prepared a LiMnPO4/C composite by pyrolysis of sucrose. Sucrose was added in several
steps while adding each of the LiMnPO4 precursors sequentially. The pyrolysis was carried out at
relatively low temperature of 550 ◦C for 2h in Ar atmosphere in order to suppress the grain growth
during the thermal decomposition. This composite of LiMnPO4/C achieved 142, 110, and 75 mAh g−1

at C/10, 1C and 5C, respectively [64]. Mizuno et al. studied four different types of organic carbon
sources such as L-ascorbic acid, sucrose, polyethylene oxide (PEO) and CMC on LiMnPO4. They were
mixed with the precursor solution of LiMnPO4 in an autoclave. The powder was collected, then carbon
was created after thermal decomposition at 700 ◦C under 3% H2/Ar flow. The structure and the
amount of formed carbon varied depending on the carbon source. Thermal decomposition of the PEO
sample did not show any carbon characteristic bands in Raman spectroscopy while the other carbon
precursors were transformed to graphitic carbon as shown in Figure 4a. Thus, PEO was hardly coated
on LiMnPO4 while sucrose, CMC and ascorbic acid were transformed to 5.5 (the highest amount of
carbon coating), 2.4 and 2.8 wt% of carbon coating, respectively. Although the highest amount of
carbon coating on LiMnPO4 was obtained with sucrose, the specific capacities of LiMnPO4 with CMC
showed the best performance as shown in Figure 4b, which was explained as CMC being converted to
graphitic carbon more easily than other carbon sources. The authors mentioned that the presence of
hydroxyl groups in the carbon precursor plays an important role in the formation of a carbon layer on
the surface of the LiMnPO4 particles [65].Batteries 2018, 4, x FOR PEER REVIEW  6 of 25 
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Kim et al. studied carbon coatings formed with sucrose and cetyltrimethylammonium bromide
(CTAB) after the precipitation of LiMnPO4. They found no carbon content on LiMnPO4 with CTAB as
a carbon precursor after thermal treatment, while 8.5 wt% carbon was obtained with sucrose. They also
reported that this coating behavior on LiMnPO4 is different from that of LiFePO4 and LiMn0.5Fe0.5PO4,
for which 2–4 wt% and 1.5 wt% of carbon were detected, respectively, using CTAB prepared by the
same method as for LiMnPO4 [63]. They claimed that this is due to the presence of Cr, Fe, Co, Ni and
Cu that can act as catalysts for carbonization [69,70], while Mn is not catalytically active in this respect.

This thermal decomposition process can however lead e.g., to impurities due to the creation of
a reducing environment [48,49], to partial carbon coating on the surface of LiMnPO4 particles, and
to the growth of the LiMnPO4 particles due to the high temperature process [63,65,67]. The particle
growth of LiMnPO4 slows down the Li+ diffusion kinetics because the Li+ diffusion length increases
as particles grow, hence lowering the specific capacity and rate capability. In this respect, the high
temperature carbon coating method is not suitable to maintain a high Li+ and e− conductivity in the
LiMnPO4/C composites. Thus, several groups added extra carbon and mixed it into the composite by
ball milling after preparing in-situ carbon coatings on LiMnPO4 at high temperature [50,71,72].

Choi et al. prepared C-nanoplatelet LiMnPO4 by using the molten hydrocarbon method and ball
milling. The precursors of LiMnPO4 were high-energy ball-milled (SPEX mill) with oleic acid and then
further ball-milled with paraffin wax. After ball milling, the viscous slurry was heated to 550 ◦C for 8 h
under 3% H2/Ar atmosphere. This LiMnPO4 was then planetary ball-milled with 25 wt% Ketjen black
for 4 h. A discharge capacity of 54 mAh g−1 was delivered at 1C, but 117 mAh g−1 was attained at
the same discharge rate after charging at C/25. This study showed that the practical discharge power
density of LiMnPO4 is close to that of LiFePO4 when the charge rate is C/25 and the practical energy
density of LiMnPO4 (630 Wh kg−1) is comparable to or even higher than that of LiFePO4 at lower
power (<30 W kg−1) [71].

Bakenov et al. prepared C-LiMnPO4 by spray pyrolysis and wet ball milling with 10 wt% acetylene
black. The composite was fired then at 500 ◦C for 4 h in a N2 + 3% H2 atmosphere. The discharge
capacities were 130 and 70 mAh g−1 at C/10 and 1C, respectively in a relatively higher voltage window
between 2.5 and 4.9 V [72].

The thermal process with carbon and/or carbon precursors has two aims: one is to form carbon
on the surface of LiMnPO4 via thermal decomposition of organic precursors such as ascorbic acid,
sucrose, polymers etc. [48,49,63,65,67,71]. The purpose of the second thermal treatment after ball
milling is probably to recover the damaged carbon structure of carbonaceous materials. This treatment
occurs between 500 and 600 ◦C under Ar or Ar/3% H2 for 1–4 h and may improve the specific
capacities [14,15,68,72–74].

In summary, using an organic precursor can create a thin and homogeneous carbon layer on the
electrode materials. In this process, the type and amount of the organic source, the surface of active
material and the annealing temperature should be considered. However, the electronic conductivity
after the carbon coating via an organic precursor does not seem sufficiently increased.

4. Carbonaceous Materials in the Composite of LiMnPO4/C

Another method to make a composite is to add the carbonaceous material directly to
LiMnPO4. In this case, several parameters should be considered to maximize the battery properties.
Firstly, the amounts of carbon in a cathode should be kept to an as low as possible (depending on the
morphology and the surface area of the active material) amount to achieve an ideal electrochemical
reaction. Secondly, the physicochemical properties influence the structure of composite such as the
morphology, electronic conductivity, surface area, powder density, packing density, defect density
etc. [20,27]. Various carbonaceous materials have been studied to make a composite of carbon
and LiMnPO4: carbon black [14,15,36,37,39,50,65,71,73,75], carbon nanotubes (CNT) [76–81] and
graphene [82–85]. Bakenov et al. studied three different types of nanosized carbon black in composites
prepared by wet ball milling. Those carbonaceous materials were acetylene black with 68 m2 g−1
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surface area and Ketjen black with two different surface areas of 800 and 1400 m2 g−1. Using the
highest surface area of Ketjen black exhibited the highest surface area of the composite with LiMnPO4.
A large specific surface area can provide high ability to absorb the electrolyte, delivering an initial
discharge capacity of 166 mAh g−1 at C/20. It then decreased rapidly to 100 mAh g−1 at 50th cycle
with 20 wt% of Ketjen black. This may be influenced by a high upper potential of 4.9 V vs. Li+/Li,
causing a difficulty of Li+ penetration into LiMnPO4 particles due to a thick SEI layer. When the cut-off
upper voltage was reduced to 4.4 V vs. Li+/Li in constant current and constant voltage (CC-CV) mode,
discharge capacity was decreased to 138 mAh g−1 at C/20 but higher C-rate capacities improved
to 100 and 70 mAh g−1 at 1C and 5C, respectively [14]. Wang et al. prepared platelet-shaped thin
LiMnPO4 with 20 wt% of acetylene black by dry ball milling. The composite electrode exhibited
a specific capacity of 145 and 113 mAh g−1 at C/20 and 1C, respectively. Thanks to the enhanced
conductivities of Li+ and e− in the composite by reducing the Li+ diffusion path length in a single
particle and a homogeneous structure, the cut-off voltage was lowered to 4.4 V vs. Li+/Li [37].

CNT as a conductive additive has been also applied in various electrode materials [76–81,86] as
well as LiMnPO4 electrodes [38,87,88]. Dettlaff-Weglikowska et al. reported that 1 wt% of single-walled
carbon CNT (SWCNT) increased the electrical conductivity of LiMnPO4 composite up to 5 orders of
magnitude. However, the capacity of this composite cathode remained only 20 mAh g−1 at C/10,
which is very low compared with other carbon containing LiMnPO4 composite electrodes. CNT bucky
paper as a self-supporting film combined with only 40 wt% of LiMnPO4 provided an increased specific
capacity of 125–148 mAh g−1 at C/10. However, the charge and discharge curves were rather sluggish
instead of the typical plateau of LiMnPO4 [38]. Vadivel Murugan et al. prepared olivine materials
(LiMPO4, M = Mn, Fe, Co and Ni) with multi-walled CNT (MWCNT) nanocomposites by magnetic
stirring. Among four different olivine materials (LiFePO4, LiMnPO4, LiCoPO4 and LiNiPO4) with
MWCNT, LiMnPO4 showed the lowest rate capability as well as the largest particle size from the
same synthesis [87], which hinders Li+ diffusion. Kavan et al. prepared a solution of 1–10 wt%
of MWCNT with LiMnPO4 nanoparticles (SSA: 35 m2 g−1), LiFePO4 (SSA: 9 m2 g−1) and TiO2 as
electrode materials. They reported that MWCNT with LiMnPO4 showed an enhanced electrochemical
charge/discharge performance but performed significantly lower with considerable irreversibility
than MWCNT with LiFePO4 under the same procedure. The specific capacity of LiMnPO4 with 10 wt%
of MWCNT exhibited only 72 mAh g−1 at C/10 while that of LiFePO4 with the same amount of
MWCNT reached 140 mAh g−1 even at 1C. They functionalized the surface of MWCNT by oxidation
with HNO3, which improved the reversibility of the LiMnPO4 charge/discharge processes. However,
the functional group of MWCNT mediated the parasitic breakdown reaction of organic electrolyte
(EC:DMC, 1M LiPF6) above 4.2 V, which is near the operating potential condition of LiMnPO4 in
Li-ion batteries [88]. Thus, although using CNT improved the electrical conductivity of LiMnPO4

electrode with relatively a small amount compared to other carbonaceous materials, the capacity and
rate capability of LiMnPO4 did not improve as much as when using carbon black.

Graphene is also an attractive conductive additive because of the high in plane conductivity and it
has high mechanical strength and structural stability [82–85,89,90]. The properties of graphene and its
electrochemical behavior have been summarized and compared with other carbonaceous materials by
Raccichini et al. [90] and Kucinskis et al. [89]. LiMnPO4 electrodes with graphene have been prepared
by many groups [40,91–93]. Zong et al. prepared a composite of LiMnPO4 with graphene nanoplates
by slurry and planetary milling using the sol-gel synthesis for LiMnPO4 and chemically exfoliated
graphene. They compared the impedance and the rate capability of this material with that of the
acetylene black/LiMnPO4 composite (Figure 5a,b). The capacities at low C-rates did not show much
difference, but the composite of graphene/LiMnPO4 provided superior rate capability at higher C-rates
(0.5C and 1C) as shown in Figure 5b. They explained that 3D conducting network with graphene,
small nanoparticles of LiMnPO4, and reduced agglomeration of graphene/LiMnPO4 provided the
capacity of 139 and 119 mAh g−1 at 0.05 C and 1 C, respectively with the total amount of carbon
of about 26 wt% in the electrode [40]. As another example with graphene, Wang et al. synthesized
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LiMn0.75Fe0.25PO4 nanorods on reduced graphene oxide (rGO) sheets. GO was reduced at the same
time when the nanorods LiMn0.75Fe0.25PO4 were formed on rGO sheets by the solvothermal method,
shown in Figure 5c. The oxygen content of rGO was lower than that prepared by the Hummers
method [94]. The combination of LiMn0.75Fe0.25PO4 nanorods and rGO sheets yielded a superior
rate capability of 153, 140 and 100 mAh g−1 at C/2, 10C (discharge in 6 min) and 100C (discharge
in 36 s) as shown in Figure 5d,e [91]. Such a high rate capability was achieved under the condition
of the fixed charging rate of C/20 with constant current -constant voltage. On the other hand, it has
been also reported that the planar graphene sheets can block Li+ mobility and decrease the battery
performance [95–97].
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Figure 5. (a) AC impedance spectra and (b) rate capabilities of two composites LiMnPO4 electrodes.
AB is acetylene black and GNP is graphene nanoplates [40]. (c) TEM image of LiMn0.75Fe0.25PO4 with
graphene. (d) Discharge curves of LiMn0.75Fe0.25PO4 nanorods on reduced graphene at various C-rates.
(e) Specific capacities at different C-rates of LiMn0.75Fe0.25PO4 and reduced graphene composite
electrode [91].

In summary, a choice of carbonaceous material in a composite and a procedure of making a
composite are very critical to reach the theoretical capacity of LiMnPO4. In addition, the testing
procedure is another parameter to maximize the specific capacities.

5. Ball Milling of Nanomaterials and LiMnPO4/C Composite

This section focuses on the ball milling process to produce a composite because it is one of effective
ways to generate a homogeneous mixture and mesoporous structure with nanoparticles. Ball milling
or mechanical milling has several aims: reducing the particle size [98], mixing of powders [99–104]
and synthesizing nanoparticles [105–107]. There are also several types of mechanical mills such
as tumbler, vibration, planetary and attrition mills [108,109]. Depending on a type of ball milling,
the energy and force (either shear or shock) vary and the degree of grinding or mixing varies as
well [35,108,110,111]. The milling of nanomaterials rather forms agglomerations instead of breaking
single particles, reducing the surface area of nanoparticles [39]. The size and volume of pores are
reduced, and those agglomerated micron sized particles become denser upon milling. The milling
time should be optimized [112] in order to avoid any side effects. A prolonged milling time may
deform the surface and shape of the particles, and create an amorphous phase [111,113,114]. It can also
deform the structure of materials [35,114] and set free iron ions, ZrO2, and/or Al2O3 contaminations
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from the milling balls by a rupture of the balls themselves and grinding of the balls instead of
materials [115–117].

Ni et al. reported the effect of ball milling on LiMnPO4. They prepared LiMnPO4 with sucrose
as a carbon source at two heating steps of 300 and 650 ◦C for 2 and 5 h respectively under Ar flow.
Then the LiMnPO4 was furthered high-energy ball-milled and high-speed planetary milled with 8 wt%
of acetylene black. This ball-milled LiMnPO4/C delivered capacities in the range of 120–130 and
96–100 mAh g−1 at C/10 and 1C, respectively at 30 ◦C while the non-ball-milled LiMnPO4 delivered
only 80 mAh g−1 at C/10 shown in Figure 6a. When high surface area carbon such as acetylene black
is milled with nano-LiMnPO4, the carbon acts as a buffer to avoid too much agglomeration. It was also
reported that acetylene black minimizes the damage of the carbon coating during the ball milling [39].

Batteries 2018, 4, x FOR PEER REVIEW  9 of 25 

 

[99–104] and synthesizing nanoparticles [105–107]. There are also several types of mechanical mills 

such as tumbler, vibration, planetary and attrition mills [108,109]. Depending on a type of ball milling, 

the energy and force (either shear or shock) vary and the degree of grinding or mixing varies as well 

[35,108,110,111]. The milling of nanomaterials rather forms agglomerations instead of breaking single 

particles, reducing the surface area of nanoparticles [39]. The size and volume of pores are reduced, 

and those agglomerated micron sized particles become denser upon milling. The milling time should 

be optimized [112] in order to avoid any side effects. A prolonged milling time may deform the 

surface and shape of the particles, and create an amorphous phase [111,113,114]. It can also deform 

the structure of materials [35,114] and set free iron ions, ZrO2, and/or Al2O3 contaminations from the 

milling balls by a rupture of the balls themselves and grinding of the balls instead of materials [115–

117].  

Ni et al. reported the effect of ball milling on LiMnPO4. They prepared LiMnPO4 with sucrose as 

a carbon source at two heating steps of 300 and 650 °C for 2 and 5 h respectively under Ar flow. Then 

the LiMnPO4 was furthered high-energy ball-milled and high-speed planetary milled with 8 wt% of 

acetylene black. This ball-milled LiMnPO4/C delivered capacities in the range of 120–130 and 96–100 

mAh g−1 at C/10 and 1C, respectively at 30 °C while the non-ball-milled LiMnPO4 delivered only 80 

mAh g−1 at C/10 shown in Figure 6a. When high surface area carbon such as acetylene black is milled 

with nano-LiMnPO4, the carbon acts as a buffer to avoid too much agglomeration. It was also reported 

that acetylene black minimizes the damage of the carbon coating during the ball milling [39].  

 

Figure 6. (a) The charge and discharge curves of the non-ball-milled and ball-milled LiMnPO4 without 

(HG1) and with acetylene black (HG2) electrode [39]. (b) The reversible and irreversible capacities 

with the surface area of graphite as a function of milling time [35]. 

Kwon et al. prepared composites consisting of various shaped nano-LiMnPO4 in particle sizes 

between 30–100 nm (SSA = 18–100 m2 g−1) with high surface area of Ketjen black carbon (SSA = 1400 

m2 g−1) via ball milling [59]. Ketjen black carbon is rather more suitable than large particles (>1 μm) 

of graphite to cover the high surface area nano-LiMnPO4 particles [118]. An optimization of the ball 

milling time was carried out with 20 wt% of Ketjen black carbon in 10 ml of stainless steel with 3 mm 

in diameter of 30 stainless steel balls. It showed that 1 h of milling with a frequency of 30/s provided 

a better homogeneity than the same duration but with a low frequency of 15/s [119].  

The structures and the morphologies of SWCNT and graphitic carbon have been extensively 

studied as anode materials upon milling [35,120,121]. A short ball milling of CNT for 10 min increased 

(a)

(b)

Figure 6. (a) The charge and discharge curves of the non-ball-milled and ball-milled LiMnPO4 without
(HG1) and with acetylene black (HG2) electrode [39]. (b) The reversible and irreversible capacities with
the surface area of graphite as a function of milling time [35].

Kwon et al. prepared composites consisting of various shaped nano-LiMnPO4 in particle
sizes between 30–100 nm (SSA = 18–100 m2 g−1) with high surface area of Ketjen black carbon
(SSA = 1400 m2 g−1) via ball milling [59]. Ketjen black carbon is rather more suitable than
large particles (>1 µm) of graphite to cover the high surface area nano-LiMnPO4 particles [118].
An optimization of the ball milling time was carried out with 20 wt% of Ketjen black carbon in 10 mL
of stainless steel with 3 mm in diameter of 30 stainless steel balls. It showed that 1 h of milling with a
frequency of 30/s provided a better homogeneity than the same duration but with a low frequency of
15/s [119].

The structures and the morphologies of SWCNT and graphitic carbon have been extensively
studied as anode materials upon milling [35,120,121]. A short ball milling of CNT for 10 min increased
the insertion of lithium ions into CNT, thus increasing the reversible capacity [121]. On the other hand,
further milling increased the amount of disordered/amorphous carbon [35,121]. Disma et al. reported
that the specific capacity of a mesocarbon microbead (MCMB) graphite anode was improved by up
to 150% by ball milling with the increase of the surface area. A further milling of graphite lead to a
decrease of the specific surface area and the capacity became saturated, as shown in Figure 6b [35].

Hence, the duration, force, type and amount of material/balls should be considered in ball milling
in order to obtain a desired composite structure and morphology. The key advantages of ball-milled
nanocomposites are their specific surface area, pore size and volume, appropriate agglomerated size,
appropriate defects and surface modification in order to facilitate Li+ and electron transport [122–126].
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6. Summary of LiMnPO4 Electrodes

Table 1 shows the summary of LiMnPO4 electrodes prepared by different types of carbon, the
total amount of carbon including the mass % of carbon within the composite, and different preparation
methods to generate the carbon coating with their respective capacities. Figure 7 resumes the rate
capabilities of LiMnPO4 and LiMn1−xFexPO4 electrodes. At the same C-rates for both charge and
discharge, one of the highest discharge capacities of LiMnPO4 reported up to date is 140, 113 and
70 mAh g−1 at C/10, 1C and 5C, respectively [37]. Zong et al. reported 139 and 119 mAh g−1 at
C/20 and 1C with graphene nanoplates, but they did not show the values at higher C-rates [40].
The discharge rate capability can be increased by using a constant slow charging rate. Yoshida et al.
obtained LiMnPO4 discharge capacities of 150, 140 and 136 mAh g−1 at C/10, 1C and 5C, respectively
when the charging rate was fixed to C/20 up to 4.8 V in constant current-constant voltage (CC-CV) for
35 h [73]. Other groups also obtained higher discharge capacities with constant slow charging rates
(C/25 or C/10) than those obtained at the same charge and discharge rate [15,36,64,71]. The capacities
and rate capability have been further increased by adding Fe in the structure of LiMn1-xFexPO4 [91,127].
Wang et al. reported nanorods of LiMn0.75Fe0.25PO4 grown on reduced graphene oxide that provided
the discharge capacities of 153, 132, 65 mAh g−1 at 2C, 20C, 100C (charging for 36 s), respectively.
These Fe doped LiMnxPO4 cathodes showed rate properties comparable to the other best performing
cathode materials such as LiCoO2, LiFePO4 and LiMn2O4 [91].
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Table 1. The summary of LiMnPO4 cathode properties with carbon type, amount of carbon and composite preparation methods.

Morphology of LiMnPO4 Discharge Capacity (mAh g−1) Voltage Window (V) Carbon Type Composite Preparation Carbon Amount (wt%) Reference

Round, monosize 40 nm 140, 1C, 135, 5C, 120, 10C, 40, 20C (charged at C/20) 2.0–4.8 KB + AB BM + thermal treatment 15 + 20 (AB) = 35 [73]

Round, 10–50 nm 155, C/10, 126, 1C, 85, 5C (charged at C/20) 2.7–4.5 Sucrose + AB BM + thermal treatment 25.5 + 7.5 = 33 [15]

Round, 15 nm crystals 142, C/10, 110, 1C, 75, 5C (charged at C/10) 2.5–4.5 Sucrose + Super P BM + pyrolysis 0.376 (Sucrose C) + 20 = 20.4 [64]

70–100 nm (sequential precipitation) 153, C/20, 62, 5C (charged at C/25)
2.5–4.5

Sucrose + Super P Thermal decomposition 5.95 (Sucrose C) + 20 = 25.95
[63]

180–330 nm (co-precipitation) 13, C/20 (charged at C/25) CTAB No carbon coating from CTAB

Round, 50–100 nm
Graphene nanoplates: 139, C/20, 119, 1C

2.2–4.5 Graphene, AB
Slurry + planetary milling +
annealing

21.25 (Graphene) + 5 = 26.25
[40]

AB: 130, C/20, 60, 1C 25

Platelet, 30 nm thickness 141, C/10, 113, 1C, 75, 5C 2.7–4.4 CB + graphite Dry ball milling 18.1 (CB) + 7.5 (graphite) = 25.6 [37]

Round, 140 nm 134, C/10, 81, 1C 160, C/10, 140, 1C, 80, 5C (charged at C/20) 2.7–4.5 CB Dry ball milling 23 [36,51]

Rod, 150–200 × 30–35 nm (27 m2 g−1) Rod: 140, C/20, 98, 1C, 65, 5C, 59, 10C

2.5–4.6 CB Dry ball milling 26.3 [58]Round, 30–35 nm (35 m2 g−1) Round: 80, C/20, 35 1C

Cubic, 200–250 × 50 nm (14 m2 g−1) Cubic: 45, C/20, 17, 1C

Plate, 50 nm
130, C/10, 54, 1C

2.0–4.5 KB + Super P Planetary ball milling 17.5 (KB) + 2.5 = 20 [71]154, C/10, 117, 1C (charged at C/25)

Polyhedral, 200–500 nm

53, C/100 @30 ◦C

3.0–4.5

Ascorbic acid + KB

Hydrothermal + thermal
decomposition

1.875 + 15 = 16.875

[65]72, C/100 @30 ◦C Sucrose + KB 4.125 + 15 = 19.125

94, C/100 @30 ◦C CMC + KB 2.1 + 15 = 17.1

8, C/100 @30 ◦C PEO + KB 0 + 15 = 15

Plate, <100 nm × 20–30 nm (20 m2 g−1) Plate/graphene: 149, C/10, 90, 1C 2.0–4.5 Graphene, glucose,
SP carbon

Spray drying, thermal
decomposition 6 (glucose C) + 15 (SP) = 21 [92]

6 µm (crystals: 27–48 nm)

Non-ball-milled: 83, C/20

2.2–4.5 AB

Non-milling

10 [39]BM w/o C: 135, C/20, 97, 1C High-energy ball milling

BM with C: 127, C/20, 100, 1C

Plate: 35 × 400 nm (23.5 m2 g−1) Plate-CVD: 147, C/20, 110, 1C

2.9–4.9 Methylbenzene + AB

CVD
Plate: 8 + 15 (AB) = 23

[30]
Rod: 90–130 nm × 600 nm (8.8 m2 g−1) Rod-CVD: 126, C/20, 60, 1C Rod: 11 + 15 (AB) = 26

Plate-BM: 126, C/20
Planetary ball milling 20 + 15 (AB) = 35Rod-BM: 92, C/20

LiMn0.75Fe0.25PO4 Rod, 50–100 × 20–30 nm 155, C/2, 153, 2C 100, 100C (charged at C/20) 2.0–4.25 Graphene, Super P Solution + annealing 16 (Graphene) + 10 = 26 [91]

LiMn0.85Fe0.15PO4 100–200 nm Micron-composite: 140, C/10, 123, 1C, 100, 3C (charged at C/20)
2.7–4.5

Sucrose + pitch +
Carbon black Solution + annealing 3 (solution) + 2 + 7.5

[61]

Nano: 163, C/10, 140 1C, 110, 3C (charged at C/20) Sucrose + AB+CB ultrasonic spray pyrolysis+ BM
with carbon+annealing 30 (AB) + 7.5 (CB)

AB: Acetylene black, CB: Carbon black, CMC: carboxymethyl cellulose, CNT: Carbon nanotube, CTAB: cetyltrimethyl ammonium bromide, KB: Ketjen black, PEO: Polyethylene oxide.
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7. Carbonaceous Materials in the Composite of LiCoO2/C

LiCoO2 is the first successful cathode material of Li-ion batteries because of its high electronic
and ionic conductivities, and one of the best preforming cathodes although the practical capacity of
140 mAh g−1 corresponds to only ca. 50% of the theoretical value (274 mAh g−1) due to the structural
changes upon further de-lithiation [2]. Different types of carbon have been studied in composites with
micron-sized LiCoO2 particles: graphite (‘SFG’ [128], ‘SLC’ [128], and ‘KS6’ [10,129]), carbon black
(Ketjen black [128], ‘C65’ or Super P [10,20,23,42,128–130], acetylene black [10,20,22,41,131]), vapor
deposit carbon fibers (VCF) [41], and CNT [41,42,86,129].

The properties of LiCoO2 cathodes with different types and amounts of carbon are summarized
with their capacities in Table 2.

Figure 8a–d show TEM images of various types of carbonaceous materials. While SFG presents
itself as thin plates of graphite, SLC is made of large compact spherical graphite particles. Ketjen black
forms highly porous nanoparticles of the order of ca. 20–30 nm, while C65 has non-porous particles with
a diameter of ca. 100 nm. Kwon et al. prepared composites of each carbon and micron-sized LiCoO2

via ball milling, and Figure 8e,f show the largest difference of the composite structures consisting of
Ketjen black and SFG, respectively. For comparison, the composites were always ball-milled (30 s−1)
with 20 wt% carbon based on round-shaped and micron sized LiCoO2 for 1 h. During the ball milling
process, the highly porous and nano-sized Ketjen black was strongly aggregated, reduced its specific
surface area and segregated from LiCoO2. In the end, the carbon formed a thick and dense layer
on the surface of LiCoO2 (indicated with arrows in Figure 8e). This thick and dense carbon layer
has a low lithium ion permeability, resulting in a lower specific capacity [128]. On the other hand,
the platelet-shaped SFG graphite agglomerated less and formed a thin layer of carbon on the active
material particles, resulting in easier penetration of lithium ions. Thus, large sized graphitic SFG
and SLC were better mixed with micron-sized LiCoO2 while nano-sized spherical-shaped Ketjen
black and C65 were segregated and the carbon coating layer was thicker. The initially micron-sized
LiCoO2 particles were in all cases reduced in size during ball milling (bright color in SEM). Finally,
the agglomerated dense composite were formed, consisting of submicron sized LiCoO2 and carbon as
shown in Figure 8e,f.
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Table 2. The comparison of composite LiCoO2/C cathode with different types and amounts of carbon and their capacities.

LiCoO2 Capacity (mAh g−1) Voltage Window (V) Carbon Type Composite Preparation Carbon Amount (wt%) Reference

40 µm, platelet 169, C/5, 164, 3C 3–4.5 Super P Slurry mixing 4 [130]
10 µm 145, C/5 2.75–4.2 Super P Wet BM with orotanTM 2 [23]

10 µm
155, C/10, 127, 2C

3–4.3
Super P Slurry mixing 10

[129]155, C/10, 137, 2C Super-aligned CNT Ultrasonication in solvent 5

Micron
136, C/2

3–4.125
Super P/Lonza

Pestle 10 [10]130, C/2 Lonza
125, C/2 Super P

Submicron 125, C/2 2.5–4.35 Super P/AB Mixing with binder 6, 6 [132]

10–20 µm
157, C/10, 148, 1C

3–4.3
Super P Slurry mixing 8 [42]157, C/10, 148, 1C MWCNT

Micron 130, C/10, 120, 1C 3–4.3 Sucrose and AB Planet milling + thermal decomposition 5 [22]
LT-LCO 105, C/5, 93, 1C

2.7–4.2
AB and natural
graphite Pellet 7 + 7 [133]HT-LCO 121. C/5, 75, 1C

Micron, round
140, C/10, 120, 1C

3–4.3
CNT

Agate mortar (slurry mixing)
3

[41]125, C/10, 100, 1C AB 3
135, C/10, 103, 1C Chemical VCF 3

Submicron
220, C/10, 106, 1C

2.7–4.4
SFG

BM
10

[134]156, C/10, 109, 1C KB 10

AB: acetylene black, BM: ball milling, CB: carbon black, CNT: carbon nanotube, LT-LCO: low-temperature LiCoO2, HT-LCO: high-temperature LiCoO2, MWCNT: multi-walled CNT,
KB: Ketjen black, VCF: vapor deposited carbon fibers.
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Figure 8. (a–d) TEM images of various carbon morphologies: (a) SFG platelet-shaped graphite,
(b) SLC spherical graphite, (c) Ketjen black, highly porous and nanosized spherical carbon black
and (d) C65, spherical carbon black [128]. (e–h) SEM images of composites: backscattered images of
the ball-milled composites (e) Ketjen black carbon black-LiCoO2, (f) SFG graphite-LiCoO2 [128],
(g) acetylene black-LiCoO2, (h) CNT-LiCoO2 [41]. (i) Cyclic voltammograms (CVs) of LiCoO2

composite electrodes consisting of Ketjen black or SFG carbon. Inset is CVs of LiCoO2 electrodes
with SFG, SLC, C65 and Ketjen black carbon [128]. (j) The discharge capacities of the composite LiCoO2

with CNT, VCF or acetylene black carbon at various discharge rates [41].

Complementary to this study, Hong et al. [10] reported that the density and particle size of carbon
affected the mixing efficiency with LiCoO2. Lonza KS6 was better mixed with LiCoO2 than carbon
black because the density of the former (2.2 g cm−3) is heavier than that of the latter (1.8 g cm−3) so the
lighter carbon black tends to segregate while the heavier LiCoO2 particles (4.9 g cm−3) settled down in
the mixing step [10]. They also reported that the similar particle sizes between carbon and LiCoO2 are
an important parameter to disperse the electrode components.

Three, yet different types of conductive nano-carbon additives have been reported in a
complementary study by Guoping et al., also in combination with micron-sized LiCoO2. Wire-shaped
CNT, chemical vapor deposited carbon fibers (VCF) and spherical-shaped acetylene black carbon were
mixed with LiCoO2 via the slurry procedure. Spherical nano-sized acetylene black carbon provided a
poor mixing with LiCoO2 particles (Figure 8g) while the CNT additive lead to a continuous conductive
network in the composite (Figure 8h) [41]. The homogeneous composite structure improved the
electronic conductivity, resulting in higher charge/discharge capacity. As CNT are very flexible and
electronically conductive, this material can play a role of both a binder and a current collector, which
can increase mass and volume capacities compared to the cathodes with a binder and Al current
collector [129]. Varzi et al. studied LiNi0.33Mn0.33Co0.33O2 (hereafter referred to as NMC) with 1 wt%
of MWCNT replacing 4 wt% of carbon black in the electrode. The capacity of NMC was increased to
87 mAh/g using MWCNT at 5C in comparison to 58 mAh/g for carbon black. On the other hand,
they reported that CNT showed a large capacity fading at the low voltage range such as <1.0 V vs.
Li+/Li [86].
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Apart from the particle sizes of carbon and LiCoO2 before and after ball milling, another important
parameter characterizing the composite and hence the battery performance is related to the specific
surface area of the composite. For example, using Ketjen black leads to an overall reduced specific
surface area of the composite (SSA = 22.27 m2 g−1), while using SFG in the composite, in spite of its
larger carbon particles (SSA = 16 m2 g−1) to start with, leads to a larger surface area of 35.82 m2 g−1

in the end [128]. A lower surface area of the composite means a reduced number of particles and
smaller pores between them. Hence the contact between the composite and the liquid electrolyte is
reduced, hindering the penetration of liquid electrolyte into the electrode. Therefore, we found that the
electrochemical properties of these four different composites are very different as shown in Figure 8i.
The best property for the LiCoO2 electrodes was obtained using platelet-shaped SFG graphite via dry
ball milling. This study revealed that the change in composite structure depending on the carbon
materials was directly related to the battery properties.

In summary, the segregation and pore closing occurred with lighter and high surface area of
Ketjen black carbon and C65 carbon during ball milling while heavier and large surface area of SFG
and SLC graphitic carbon was better mixed with micron sized LiCoO2. The relation between a high
surface area of Ketjen black carbon (SSA = 1400 m2 g−1) and larger sized LiCoO2 (SSA = 0.52 m2 g−1)
resulted in inhomogeneous mixing due to the large difference of sizes and powder densities between
two materials. The homogeneity and the composite structure can be influenced by the duration of ball
milling. The carbon characteristics before and after ball milling are described in the next section.

8. Characteristics of Carbon in Ball-Milled Composite of LiCoO2/C

The mixing efficiency between the electrode ingredients can be varied by ball milling types such
as planetary, attrition, spex, rotational milling etc. Among those milling methods, one can again
differentiate between wet or dry state milling, depending on the addition of solvent or not. In general,
a wet milling with a solvent provides less segregation/agglomeration than a dry one but it may require
a surface modification of one component to adhere to the other component. In general though, the
mixing efficiency is poorer for wet than for a dry milling [135]. On the other hand, a dry milling
does not contain a solvent and more physical and direct contacts of particle-ball, particle-particle or
particle-wall of the container occur than in a wet milling. For dry milling, the mixing efficiency can be
controlled by an input energy (speed of vibration or movement), ball size, a number of balls, milling
time etc.

The variation of dry ball milling conditions has been investigated in order to maximize the
properties of LiCoO2 electrodes. Figure 9 shows the cyclic voltammograms of LiCoO2 electrodes using
the composites containing SFG, respectively Ketjen black prepared by ball milling for various milling
times at 30 s−1. Each electrode contains this time 10 wt% of carbon. 5 min of ball milling turned out to
be the best condition to obtain the maximum redox reaction of LiCoO2 electrode in both cases, leading
to well-determined redox reactions and high current densities.

However, under the same ball milling condition of 5 min, SFG graphite provided significantly
higher specific capacities of about 230 and 200 mAh g−1 at C/10 and C/5, respectively, while the
specific capacity of LiCoO2 with Ketjen black carbon was about 150 and 140 mAh g−1 at the same
C-rates, respectively. The ionic diffusion analysis also showed the highest diffusion coefficient of Li+

in the composite, which was ball-milled for 5 min. A longer milling time (>30 min) degraded the
electrochemical properties in all types of composites.

Figure 10a shows the Raman spectra of SFG graphite and Ketjen black carbon using various ball
milling times. The signals of amorphous carbon and graphite show a clear difference of intensities,
widths and the intensity ration of I(D)/I(G) between ordered (G) and disordered (D) positions [136–139].
The initial carbon structure of SFG graphite showed much stronger intensity of the ordered C–C band
at 1600 cm−1 than that of the disordered C–C band at 1350 cm−1 before ball milling. When graphite
was ball-milled, the ordered structure is reduced as observed by the decreased intensity of the G band
and the increased disordered position [140]. This indicates that the ordered structure gets damaged
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when ball milling lasts longer than 5 min. On the other hand, Ketjen black carbon has a higher intensity
of the disordered band, D, than that of the ordered band in Figure 10b at the initial state. Upon milling,
the ratio of D and G does not change much but the intensities of both D and G bands are lowered.
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Figure 9. Cyclic voltammograms of LiCoO2 electrodes using (a) the composite of LiCoO2 and SFG
graphite and (b) the composite of LiCoO2 and Ketjen black prepared by a dry ball milling for various
milling times [134].
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Figure 10. Raman spectra of SFG (a) and Ketjen black (b) carbon in the composites prepared in various
ball milling time and (c) electronic conductivities of the composites and LiCoO2 alone in terms of
milling time [134].

The electronic conductivities of those composites decreased upon ball milling in both cases of
SFG graphite and Ketjen black as shown in Figure 10c, which corresponds well to the results of Raman
spectroscopy upon milling. The reasons for the lowered performance of the composites prepared
by a longer milling time revealed (1) the segregation and pore closing of the composite in case of
Ketjen black carbon, and (2) the increase of the disordered D-band structure of sp3-hybridized carbon
atoms after a longer milling time, as found by Raman spectroscopy (Figure 10b), while (3) a 4-point
probe conductivity measurement further confirmed that the electronic conductivity of the composites
decreases upon milling time (Figure 10c) [134].

Therefore, in order to obtain high performance electrodes, several characteristics of the composite,
in particular a homogeneous structure, good electronic conductivity and high enough surface area
(porosity) have to be considered. Those combined characteristics provide the permeability and
electrochemical reaction kinetics of Li+ and e- to store and produce electrical energy of lithium ion
batteries [126].
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9. Conclusions

Cathode performance and properties depend on the structure and morphology of the composite,
related to both the initial and final physicochemical characteristics. In order to achieve high
performance of Li-ion batteries, the major characteristics of the cathode are its high electrical and
ionic conductivities to allow fast transport of a large number of electrons and lithium ions in a certain
time of charge and discharge. These conductivities can be maximized by generating a continuous
network between the composite materials and by obtaining a porous structure to allow access for
the electrolyte into the electrode. Many battery electrode materials require improvement of their
electronic conductivity. Carbon is then added as a conductive material. We reviewed that the carbon
sources, the structure of carbon contained in the composite, and the methods of making the composites
using those carbon composite materials all affected the final battery properties and characterizations.
The properties of a composite depend on the fabrication process of the composite. Among several
methods to make carbon coatings on the redox active materials, we lay special focus on ball milling.
The major advantages of composites prepared by ball milling are the homogeneous mixing, composite
size, appropriate pore size/volume, and appropriate defects of carbon and surface modifications
formed in different atmospheres. Also, the initial characteristics of carbon such as size, shape, porosity
of carbon, and structure of carbon (graphite or carbon black) are affected by the condition of ball
milling. Ball milling can be used to achieve a homogenous and dense mixing via the right choice
of carbon and optimization of the process. As we have shown that SFG graphite is the best for
micron and submicron-LiCoO2 while high surface area carbon such as Ketjen black is the best for
nano-LiMnPO4 in the ball milling process, there is no single type of carbon recommendable to all
electrode materials. Choosing similar particle sizes of carbon and the active material can be one way to
provide better homogeneous mixing and high conductivity in the composite. Also, the amount and
shape of carbon in a composite govern the electronic conductivity and the volumetric capacity of the
electrode. The desired composite structure should allow Li+ and electrons to be transported into the
electrolyte and the current collector, respectively.

Overall, there are many studies on active materials mixed with carbon, but rare are the systematic
studies that allow direct comparisons between the results given in the literature. Yet, it could be seen
that investigating the best conditions for the generation of the electrode composites can make a big
difference in the final properties of the electrodes.
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