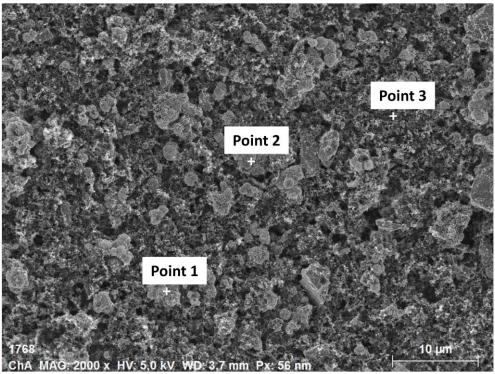


Supplementary Information

Christian Bischoff ^{1,*}, Oliver Fitz ¹, Christian Schiller ¹, Harald Gentischer ¹, Daniel Biro ¹ and Hans-Martin Henning ²

Laser diffraction analysis


The laser diffraction analysis was done with a laser diffraction analyzer of the type LS 13320 of the company Beckmann Coulter.

Sample	d ₁₀ (μm)	d₅₀ (μm)	d ₉₀ (μm)
Mn2O3, original	3.98	8.51	16.4
Mn2O3, ball milled	1.38	3.21	5.79

Table S1 Characteristic particle size distribution values

Energy-dispersive X-ray spectroscopy

By Energy-dispersive X-ray spectroscopy (EDX) three different points in a SEM image were analyzed (s. Figure S1) in order to find out if the bigger particles in the electrode are manganese sesquioxide particles. In the EDX diagram it can be seen that point 1 and point 2 are manganese sesquioxide particles (manganese (Mn) and oxide (O)) whereas point 3 is carbon black (carbon (C)) (s. Figure S2).

 $Figure \,\,S1 \, {\rm Points} \, in \, the \, {\rm SEM} \, image \, of \, the \, cathode \, which \, were \, analyzed \, by \, {\rm Energy-dispersive} \, {\rm X-ray} \, spectroscopy$

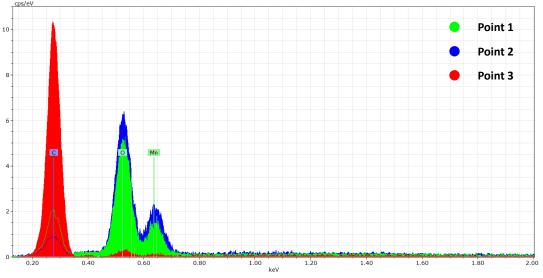


Figure S2 Energy-dispersive X-ray spectroscopy analysis

Equivalent Circuit Modelling

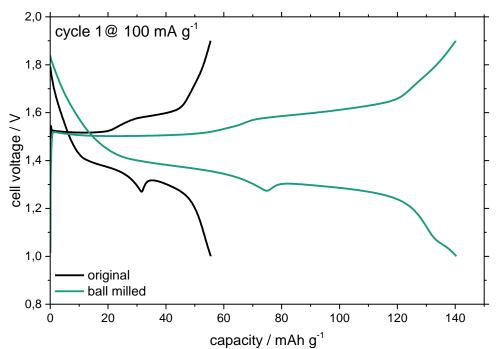
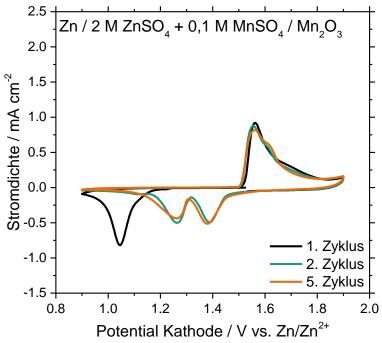

Values of every component in the equivalent circuit modelling. The data was fitted by simplex algorithm using the EC –Lab software of BioLogic Science Instruments.

Table S2. Values of every electric component of the equivalent circuit modelling


	Battery Cell wit	h big particles in the ca	thode (original)	
Component	Cycle 1	Cycle 31	Cycle 97	Unit
Re	3.00	3.00	3.50	Ohm
CPE1	2.00×10^{-5}	2.00×10^{-5}	2.00 × 10 ⁻⁵	F
Rct1	1.03	1.03	1.03	Ohm
CPE ₂	0.61 × 10 ⁻³	0.48×10^{-3}	0.72×10^{-3}	F
Rct2	32.17	16.44	8.55	Ohm
s4 (Warburg				
coefficient)	8.69	5.81	3.56	Ohm•s ^{-1/2}

Battery Cell with small particles in the cathode (ball milled)					
Component	Cycle 1	Cycle 31	Cycle 97	Unit	
Re	0.62	0.60	0.53	Ohm	
CPE1	1.47×10^{-5}	1.47×10^{-5}	1.47×10^{-5}	F	
Rct1	1.96	1.96	1.96	Ohm	
CPE ₂	0.13 × 10 ⁻³	2.14×10^{-5}	0.17 × 10 ⁻³	F	
Rct2	16.52	59.91	83.5	Ohm	
s4 (Warburg					
coefficient)	4.46	10.70	16.19	Ohm•s ^{-1/2}	

Cell voltage curves of the cells with original an ball milled active material of the first cycle at a current density of 100 mA g^{-1}

Figure S3 Cell voltage curves showing the first cycle with an applied current density of 100 mA g⁻¹ of the cell with original (black line) and ball milled active material (green line). Two voltage plateaus each are visible in charge and discharge step (the voltage plateaus of the discharge steps are divided by a significant voltage drop), which can be dedicated to phase transformations effects.

Figure S4 CV measurements (potential sweep rate 0.1 mV s^{-1}) of a battery with ball milled active material. The first cycle shows a sharp single reduction peak at 1.05 V and a broader oxidation peak at 1,56 V. The following cycles show two reduction (1,38 V and 1,26 V) an two oxidation peaks (1,56 V and 1,62 V) each. The broad, single oxidation peak of the first cycle seems to divide into two peaks, with one of the peaks getting formed out of the shoulder of the broad peak.