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Abstract: This paper presents a new control strategy for isolated micro-grids including wind 
turbines (WT), fuel cells (FC), photo-voltaic (PV) and battery energy storage systems (BESS). FC 
have been used in parallel with BESSs in order to increase their lifetime and efficiency. The changes 
in some parameters such as wind speed, sunlight, and consumption, lead to improper performance 
of droop. To overcome this challenge, a new intelligent method using a combination of fuzzy 
controller and cuckoo optimization algorithm (COA) techniques for active power controllers in 
isolated networks is proposed. In this paper, COA is compared with genetic algorithm (GA) and 
particles swarm optimization algorithm (PSO). In order to show efficiency of the proposed controller, 
this optimal controller has been compared with droop, optimized droop, and conventional fuzzy 
methods, the dynamic analysis of the island is implemented to assess the behavior of isolated 
generations accurately and simulation results are reported. 

Keywords: battery energy storage system; fuel cell; photo-voltaic; active power control; cuckoo 
optimization algorithm; optimal fuzzy logic controller; genetic algorithm; isolated micro-grid 

 

1. Introduction 

In today’s world, the depletion of fossil–fuel resources and also growing concerns about Co2 
emissions and global warming have led to an increasing utilization of renewable energy sources and 
distributed generation (DG) [1,2]. In this situation, photovoltaic energy conversion is expected to 
have large potential to become an alternative power source especially for small distributed areas [3]. 
Regarding the problems with complexity and financial inefficiency of transmission lines for 
supplying rural and remote areas with electrical power, DG is usually preferred for stand-alone 
operations [4]. Wind and solar energy systems are taking the biggest share from this trend [5], so 
photovoltaic (PV) and wind turbine (WT) power generations, as clean electric power supplies, play 
an important role among renewable power generators. To increase energy reliability, WT and PV 
systems are used together in isolated networks [6,7]. Storage energy system plays an important role 
in establishing a balance between production and consumption in isolated networks. Among storage 
systems, battery and fuel cells (FC) store energy during a long time, whereas super-conductor and 
ultra-capacitor (UC) do it in a short time [6]. The energy storage systems discussed in this paper are 
UCs which significantly offer better performance especially during acceleration and braking manner 
due to charge time and discharge time of UCs can change broadly [8–10]. The management and 
control of isolated networks deploying WT/PV/FC/UC is one of the most important issues in such 
networks. Heretofore, many methods have been utilized for the management of isolated and micro-
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grid networks. Optimal management of these networks maximizes the efficiency of these networks 
[11,12]. One of the fundamental approaches for controlling the output active power of the DGs in 
micro-grids and isolated networks is frequency droop characteristics [13]. Also, improved droop 
control method is one of the best methods for voltage and frequency control in micro-grids and 
isolated networks [14]. Employing fuzzy logic controllers (FLCs) for solving control problems has 
also increased in various power system control applications [15]. Some of the fuzzy controller 
applications include excitation control, voltage and frequency control, power system stabilizers, etc. 
Regarding its efficiency and flexibility, the fuzzy controller is utilized for power management and 
frequency control in isolated micro-grids. Because of the uncertainty in system structure and also 
changes between production and consumption, droop controllers and fuzzy controllers cannot fulfill 
expectations. Also, isolated micro-grid systems are independent from the main net; this issue makes 
the control of the produced and consumed power even more difficult. In order to make the maximum 
benefit from these controllers, coefficients of the controllers have been optimized using COA. 

2. Modeling Isolated Micro-Grid 

Figure 1 illustrates the system configuration for the recommended method (hybrid alternative 
energy system). In this scheme, it is clear that battery energy storage system (BESS) is used for storing 
energy; both WT and PV technologies are primary energy producers and finally FC is issued as the 
energy supporter (backup). A mathematical model is applied to the proposed hybrid power 
technology. In simulation of hybrid systems, the dynamic response of each DG is individually 
considered in the dynamic model [16]. 

 
Figure 1. The block diagram of the proposed hybrid isolated micro-grids. 

2.1. Photovoltaic 

Using PVs is a totally renewable and natural way for clean power generation. As presented in 
[17], the main factors affecting output power of PVs are namely sun irradiances, solar cell 
temperature, and PV array zone. The equivalent circuit of PV model mainly consists of a current 
source IL whose magnitude can be influenced by temperature and irradiance of sun, diode D, and 
internal shunt and series resistances RSh and RS. V-I characteristic can be given by (1): 
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Voltage of each cell is denoted by PVV  with IPV being the current. Moreover, Io, q, A , K , and T  
are the reverse saturation current of diode, electron load, desirable p-n conjunction coefficient, 
Boltzmann constant, and temperature of cells, respectively [18]. The factors on which the outputs of 
PV panels depend are sun radiations, cellular temperature, and the system ingredient performances. 
Therefore, it is expected that the acceptable output power should avail in various criteria. To achieve 
this task, multiple types of techniques are discussed in the literatures [19–21]. The model parameters 
used in this research are summarized in Table 1. These parameters are presented according to the 
data given in [22]. 

Table 1. Photovoltaic parameters [22]. 

Parameters Value Unitܫ௅,௥௘௙ 2.664  A ௥ܹ௘௙ 5.472  V ܴ௦ 1.324  Ω ܷை஼,௥௘௙ 87.72  V ܷ௠௣,௥௘௙ 70.731  V ܫ௠௣,௥௘௙ 2.448  A ߔ௥௘௙ 1000  W/m2 ௖ܶ,௥௘௙ 25  °C ܥ௉௏ 5 × 104  J/(°C·m2) 
A 1.5 m2 ܭ௜௡,௉௏ 0.9  ܭ௟௢௦௦ 30  W/(°C·m2) 

2.2. Wind Turbine 

For blade pitch regulation variable-speed operation is necessary [23]. The extracted power that 
is produced by WT is as follows: 

( )30 .5 ,m w w p w wP A V Cρ ψ β=  (2) 

where 
wV , ρ  and Cp are wind velocity, swept area of rotor, and power factor respectively. Cp 

depends on wind velocity ( wV ), the rotatory velocity of the turbine, and blade parameters; it can be 
presented as: 
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where RBW is the radius of blades in meters (m), ωbw is the rotational speed of blades in radian per 
second (rad/s) , 

wβ  is the pitch angle of blades, and C1-C9 are the constants. 

2.3. Fuel Cell 

FCs have different structures such as FCs working with polymer electrolyte, solid oxide fuel cell 
(SOFC), and alkaline FC. SOFC has been used in this study, which enjoys high efficiency and thermal 
robustness for high power systems. A perfect model of solid oxide fuel cell described in [24] is utilized 
in this study. The relationships between these parameters are given in [25]. The power supplied by 
SOFC is obtained by: 
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r r rP VI=  (6) 

where 
rV  and 

rI  are the output voltage and output current, respectively. Output voltage of Fuel 
cell is calculated using the following equation: 

2 20 0
0 0

0 22r r
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  
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  (7) 

Fuel utilization ( )fU  is the ratio between the reacted and supplied hydrogen as follows: 
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Ratio between hydrogen and oxygen flow rate ( _ )RH O  is defined as: 
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Boost DC/DC Converter 

Due to its slow dynamics, FC is usually unable to satisfactorily supply the energy demand 
during the start-up period or abrupt load accelerations. In order to link an FC to an external system, 
FC voltage or the number of its cells should be increased. DC/DC boost converter in order to control 
the FC power, and to regulate the voltage increases the FC voltage. The boost converter is described 
by two non-linear state space averaged equations [25]. 

2.4. Battery Energy Storage System 

Dynamic model of battery is illustrated in Figure 2. Batteries are among the most important 
energy storage devices in power systems. Although batteries have a slow dynamic response, their 
robustness and low price make them very practical. The BESS model consists of a controlled voltage 
source E and an internal resistor R. Moreover, the state of charge (SOC) depends on the capacity of 
battery and is calculated using (16) and (17) [18]. 

 
Figure 2. Dynamic model of a battery. 
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0 exp( )
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(10) 
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3. Controller System 

Controlling isolated networks and designing a controller for them are the most important issues 
about these networks. There are various applicable schemes for controlling isolated networks, 
including classic controllers, fuzzy controllers, adaptive and neural methods. Each one has its 
particular advantages and disadvantages like precision, speed, complexity, and resistivity in various 
dynamical conditions, implementation considerations, and so on. In this article, we use fuzzy and 
droop controllers because of their suitable features like simplicity, flexibility and high precision in a 
network consisting of WT/FC/BESS/PV. The duty of main controller is to determine the reference 
power of each unit by gathering the voltage and current data from network lines. This section 
describes the control system which is able to control the parallel operation of FC and BESS systems. 
Section 3.1 explains the basic concept of the frequency controller. Section 3.2 describes controller 
configuration of the droop control system and evaluates its performance and limitations of 
performance improvement. In the third subsection, the fuzzy controller design is discussed in order 
to determine the reference power produced by the FC and BESS. In the fourth section, the COA and 
its implementation for the optimization of droop and fuzzy controllers will be discussed. 

3.1. Frequency Control Concept 

When weather conditions change, power generations of WT and PV are affected. Also load 
variations during a day should not be neglected. So imbalances between production and 
consumption arise and therefore a suitable controller is needed for suitable power adjustment. In the 
studied parallel energy system, the electrical energy supplied by PV and WT are added through FC 
and BESS to assure the load demand. The total power of all generation units or Ptotal is given by: 

total WT PV FC BESSP P P P P= + + ±  (12) 

The power balance equation can be written as: 

total LoadP P PΔ = −  (13) 

The transfer function from power balance to frequency deviation can be written as: 

( )
1 1

1
sys

sys

f
G

P D MsK sT

Δ= = =
Δ ++

 (14) 

where M and D are positive constant which indicate the equivalent inertia and damping of the hybrid 
isolated Micro-grids and K is the hybrid system frequency characteristic constant [26]. 

3.2. Design of the Droop Controller 

Figure 3 shows the droop characteristic of each unit. Appropriate load sharing between each 
unit can be obtained by suitable droop coefficients mFC and mBESS. 
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Figure 3. The droop characteristics of each unit. 

3.3. Fuzzy Logic Strategies 

Owing to its low computational burden and stability, fuzzy controller is really appealing as an 
option. Some advantages of using FLC are sorted by numerous researchers who have placed their 
attention mainly on this issue [27,28]. Fuzzy logic displays distinctions conforming to various shapes 
of membership functions (MFs) in system experiences. Fuzzification, rule base, inference engine, and 
defuzzification are four main components of a Mamdani fuzzy logic controller. The Fuzzy controller 
duty is to satisfy the power demand by managing the power flow obtained by different power 
sources. Since frequency deviation is in the range of (+0.1, −0.1), the control input is also in this 
interval. The second input is the derivative of these deviations. The structure of frequency FLC of the 
proposed hybrid isolated Micro-grid is shown in Figure 4. 

 
Figure 4. Employing fuzzy logic controller (FLC) structure of the proposed isolated Micro-grids. 

3.3.1. Design of a Controller for Fuel Cells System 

Fuzzy Logic Cintroller is intended to determine the power set-point for frequency control. This 
part fully explains the fuzzy controller design. The input variables of fuzzy system are frequency 
changes and derivative of frequency changes. The complete, consistent and normal membership 
functions are chosen as NB, NS, Z, PS and PB in the normalized interval for each of the input 
variables. Figure 5 shows the membership functions related to fuzzy controller input variables. The 
fuzzy controller determines the reference power of FC. FC controller output also has five MFs. In 
Table 2 the rule bases are designed based on system condition and designer’s experience to control 

 [ ]f Hz

[ ]P pu

,maxFCP ,maxBESSP,minFCP,minBESSP

0.1f HzΔ =
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the FC. In this Table, the error corresponds to frequency deviation and error change corresponds to 
derivative of frequency deviation. 

 
Figure 5. Membership functions for the input and output signals of fuzzy controller. 

Table 2. Input and output rule bases of fuel cells (FC) fuzzy controller. 

Error 
Error Changes NB NS Z PS PB 

NB PB PS Z Z NS 
NS PB PS Z NS NS 
Z PS Z NS NS NB 
PS Z NS NB NB NB 
PB NS NB NB NB NB 

3.3.2. Design of a Controller for Battery Energy Storage Systems 

The fuzzy controller for BESS is also includes MFs for its inputs and outputs similar to the 
previous section. Input variables include frequency changes and derivative of frequency changes of 
the hybrid isolated micro-grid and the output is set-point for the generated power. The fuzzy rules 
are summarized in Table 3. Fuzzy rules are designed based on frequency deviation compensation 
gained by BESS and the frequency regulations achieved by FC system. 

Table 3. Input and output rule bases of battery energy storage systems (BESS) fuzzy controller. 

Error
Error Changes NB NS N PS PB 

NB PB PS N N NS 
NS PB PS N NS NS 
N PS N NS NS NS 
PS PS N NS NS NB 
PB N NB NB NB NB 

4. Cuckoo Optimization Algorithm (COA)-Fuzzy Frequency Controller 

Recently, optimization methods have been applied to enhance capabilities of the controllers. 
There are a couple of methods to optimize fuzzy controllers: 

(1) Optimization of membership functions 
(2) Optimization of coefficients of the controller 
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Since membership functions are similar to each other, changing them does not have a substantial 
effect on reducing the system error, and because of the fact that deriving the precise interval of fuzzy 
controllers is difficult, the second method is chosen. Algorithms like genetic, ants’ colony, bees’ 
colony, and so on can be used to optimize controllers [29]. We have used COA because of its 
advantages [30]. The considered system has two fuzzy controllers; each controller has three 
coefficients that must be optimized in inputs and outputs. Figure 6 shows the optimized fuzzy 
controller. The optimized coefficients include: 

(1) Input gain of the controllers that includes error and change error. (Error corresponding to 
frequency deviation and change error corresponding to derivative of frequency deviation). 

(2) The output gain that is related to the optimization of controlling signal. 

The COA is a direct search optimization method based on natural models which can find an 
optimal solution for the optimization problems [30]. The main advantage of the COA in comparison 
with other intelligent methods is the simplicity of implementation. Other outstanding features of the 
COA are pointed out in [31]. 

 
Figure 6. The optimal fuzzy structure of the proposed isolated network. 

Structure of Cuckoo Optimization Algorithm 

COA is a novel evolutionary optimization algorithm which is inspired by cuckoo’s unique 
lifestyle. A brief review of this bird’s survival and reproduction process can help us understand the 
main idea behind this algorithm. Known as “brood parasites”, cuckoos never parent their own eggs, 
they lay eggs in other birds’ nests and let other species take care of them and grow their young. 
Although cuckoos try to mimic hosts’ eggs and improve this mimicry for the next time, there are 
some species that can detect the parasitic eggs and destroy them. This challenge between the parasite 
and host goes on and they both try to out-survive. 

Figure 7 shows the flowchart for COA. This algorithm has an initial population of cuckoos as its 
starting point. Then this population starts laying their eggs in the hosts’ nests. Some of these eggs 
that are similar to the hosts’ ones have the chance to survive and grow up. Others get detected by the 
host and will be killed. The number of the surviving cuckoos can be a measure of the suitability of 
that area as a habitat for cuckoos. In fact, COA is trying to optimize the position, in which more eggs 
will survive and find the best habitat for them. 

In order to use COA, first we have to define an initial habitat. Like “chromosome” in genetic 
algorithm (GA) and “particle position” in particles swarm optimization algorithm (PSO), a habitat is 
an array of 

var1 N×  in which variables are floating point numbers. This array represents cuckoo’s 
current living position: 

[ ]1 2 varx , x ,..., x Nhabitat =  (15) 

Then a profit function should be determined to evaluate each habitat: 

1 2 var( ) (x ,x ,...,x )p p Nf habitat fProfit = =  (16) 
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Figure 7. Flowchart of cuckoo optimization algorithm (COA). 

By determining the number of the eggs that each cuckoo can lay and variable limits ( varhi  and 
varlow ) and also dedicating an “Egg Laying Radius” (ELR) to them, optimization algorithm sets out to 
maximize the profit:  

Number of current cuckoo's eggs
(var var )

Total number of eggs hi lowELR α= × × −  (17) 

By adjusting the coefficient α we can alter the maximum ELR as we desire. Note that cuckoo 
grouping is done by using K-means clustering method. The optimization process uses K-means 
clustering method for grouping the cuckoos. Then, by calculating the mean profit value and pointing 
out the best habitat with maximum profit, the cuckoos will move toward the best habitat as much as 
they can. Obviously, cuckoos cannot fly all the way to the best habitat; they fly a percentage of 
distance ( %λ ) and they have deviations from the point (φ ). This reproduction and immigration cycle 
will continue till most cuckoos are gathered in a particular area (optimum point). Clearly, the two 
parameters λ and φ  are defined as: 

( )1,0~ Uλ  (18) 
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( )ωωφ ,~ −U  (19) 

COA uses all the aforementioned parameters and finds new habitats for each generation of 
cuckoos. In several iterations, the optimum point with maximum profit is reached. 

5. Cuckoo Optimization Algorithm Optimized Droop Controller 

As we have discussed in the last section, coefficients related to the droop controllers are derived. 
However, the derived relations are not exact and we would not have a suitable controlling scheme. 
In order to optimize droop coefficients, initial values are obtained by equations of main drop 
controller. Then, by considering nominal value of each generator an interval is chosen for each 
coefficient. The goal is to minimize frequency changes by choosing the optimal coefficients using 
COA. The structure of optimal droop frequency controller of the proposed isolated Micro-grid is 
shown in Figure 8. 

 

Figure 8. Optimal droop characteristics of battery energy storage systems (BESS). 

6. Simulation Results 

Simulations are organized in two scenarios. In the simulation studies, the proposed setup system 
has been developed in MATLAB/SIMULINK environment. The system in this paper has been tested 
under the given data from each part of the system (load power demand data, PV data, and WT data). 
The results attained by applying the algorithms are presented in Table 4. In this paper, a comparison 
is made between COA and two other optimization algorithms, namely GA and PSO, and its higher 
efficiency is demonstrated. In this table, the error of frequency deviation has been used as an index 
for evaluating efficiency of these algorithms. The results shown in this table approve that COA is 
more efficient. 

Table 4. Compare between difference optimization algorithms. 

Optimization Algorithm GA PSO COA 
Error of Frequency Deviation 0.1243 0.112 0.089 

6.1. Case Study 1 

The hourly solar radiation data and wind speed during this scenario are presented in Figures 9 
and 10, respectively. It assumed that wind speed is changing between 10 and 13 m/s and irradiation 
energy of sun can be obtained from 6:30 to 18:00 in local time zone. 

 [ ]f Hz

[ ]P pu

,maxBESSP,minBESSP

0.1f HzΔ =
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Figure 9. Irradiance of sun. 

 
Figure 10. Wind speed curve. 

The load demand power curve during 24 h is shown in Figure 11. It can be seen that variations 
of the load demand is between 0.45(p.u.) and 0.95(p.u.) which this behavior is depended on the 
variety of loads and seasons changes during the years. 

 
Figure 11. The load power demand. (Non-Linear load). 

In Figures 12 and 13 the generated power of PV and WT are shown respectively. It has been 
expected that the output of PV power generation has the same behavior as irradiance of sun in Figure 
9 and output power of wind turbine during the time be similar to wind profile. Priorities in this paper 
are benefiting from PV and WT generations in the first place. 
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Figure 12. Output power of photo-voltaic (PV). 

 
Figure 13. Output power of wind turbines (WT). 

The SOFC system power command is achieved according to the values of demanded power 
deviations, BESS power and WT. It can be seen that in the hours from 18:00 to 24:00 there is no solar 
radiation, and high demand is for consumption. It is expected to compensate this demand by SOFC 
and BESS generations. The power produced by SOFC system is shown in Figure 14. The power 
applied by BESS units in this hybrid isolated network for controlling the frequency deviation is 
illustrated in Figure 15. Deviation in the frequency is the result of difference between energy demand 
and the energy provided by WT/FC/PV/BESS systems which is illustrated in Figure 16. By 
coordination of FC and BESS, this deviation can be controlled. Figure 16 compares the proposed 
optimal fuzzy controller method with droop, fuzzy, and optimal droop controllers and the 
superiority of the proposed optimal fuzzy controller can be seen. 

 
Figure 14. Output power of solid oxide fuel cell (SOFC) using the proposed method. 
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Figure 15. Applied power of BESS unit. 

 
Figure 16. The frequency deviation. 

6.2. Case Study 2 

In this scenario it is assumed that wind speed is changing between 7 m/s and 11 m/s. The hourly 
solar radiation data by considering the effects of clouds in the sky and wind speed during this 
simulation process are presented in Figures 17 and 18, respectively. Priorities in this scenario are 
benefiting from PV and WT generations in the first place as like as previous scenario. 

 

Figure 17. Irradiance of sun. 
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Figure 18. Wind speed curve. 

The load demand power in 24 h is shown in Figure 19. The peak hours are between 15:00 and 
23:00 according to local time zone. 

 

Figure 19. The load power demand. 

Figure 20 shows PV power generation in respect to irradiance of sun despite the clouds in the 
sky and Figure 21 shows wind speed during 24 h in respect to wind profile. 

 
Figure 20. Output power of PV. 
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Figure 21. Output power of WT. 

 The SOFC system generation is shown in Figure 22 and Figure 23 shows the BESS generation, 
which consists of the exceeded power of load demand. It can be seen whenever in spite of no SOFC 
generation, the total generation using WT and PV exceeds consumption, BESS can absorb the surplus 
generation, and thus battery power becomes negative. The controlled frequency deviation by 
coordination of FC and BESS is shown in Figure 24. The comparison between the optimal fuzzy 
controller method with droop, fuzzy, and optimal droop controllers is shown in Figure 24 and the 
simulation results show a good performance of the optimal fuzzy controller. 

 

Figure 22. Output power of SOFC using the proposed method. 

 
Figure 23. Applied power of BESS unit. 
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Figure 24. The frequency deviation. 

7. Conclusions 

In this paper, a new control strategy in isolated micro-grids in the presence of BESS/FC/PV/WT 
was implemented and a dynamic response was simulated. The WT and PV system outputs change 
under different weather conditions. In the case of BESS failure, FC is connected to the network. In 
this paper, three optimization algorithms were utilized for optimizing fuzzy controllers. Among 
these three algorithms, it was shown that COA led to better results in setting the fuzzy controller 
coefficients with 59% and 68% fewer errors compared to GA and PSO. The proposed hybrid power 
system combined with the new optimal FLC algorithm reduced the FC system size while satisfying 
the peak power demand. In this study, a controller with droop method was suggested which did not 
show a high efficiency in reducing frequency changes. In order to enhance the efficiency of the 
controllers, each one was optimized by COA. Simulation results showed that the optimal fuzzy 
controller has superior efficiency over the other methods. 
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Nomenclature 

0E  Ideal standard potential OH 2
τ Response time for water flow 

F Faraday’s constant 2Oτ Response time for oxygen flow
 

fcI  Fuel cell current S CI Short circuit current 
Kan Anode valve constant O CV Open circuit voltage 

2HK  Valve molar constant for hydrogen η Conversion efficiency 
OHK

2

 Valve molar constant for water F F Fill factor 

2OK  Valve molar constant for oxygen mP Power at MPP 

rK  Constant (=N0/4F) m pV Voltage at MPP 

2HM  Molecular mass of hydrogen m pI Current at MPP 

2Hn  Number of hydrogen moles in the 
anode channel sR  Series resistance 

0N  Number of cells in series in the stack PR Parallel resistance 

ip  Partial pressure λ Tip speed ratio
in
Hq

2

 Input fuel flow M Blade angular speed (mechanical rad/s) 
o
Hq

2

 Output fuel flow R Blade radius (m) 
r
Hq

2

 Fuel flow that reacts windV Wind speed (m/s) 
R Ohmic loss mP Mechanical power from the wind blade (kW) 
RH-O Ratio of hydrogen to oxygen ρ Air density (kg/m3) 
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R Universal gas constant C ρ Power coefficient 
T Absolute temperature MT Mechanical torque from wind blade (N/m) 
U Fuel Utilization factor anV  Volume of anode 

2Hτ  Response time for hydrogen flow fcV  Fuel cell voltage 
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