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Abstract: Considering the diversity of battery data under dynamic test conditions, the stability of
battery working data is affected due to the diversity of charge and discharge rates, variability of
operating temperature, and randomness of the current state of charge, and the data types are multi-
sourced, which increases the difficulty of estimating battery SOH based on data-driven methods.
In this paper, a lithium-ion battery state of health estimation method with sample transfer learning
under dynamic test conditions is proposed. Through the Tradaboost.R2 method, the weight of the
source domain sample data is adjusted to complete the update of the sample data distribution. At
the same time, considering the division methods of the six auxiliary and the source domain data set,
aging features from different state of charge ranges are selected. It is verified that while the aging
feature dimension and the demand for target domain label data are reduced, the estimation accuracy
of the lithium-ion battery state of health is not affected by the initial value of the state of charge. By
considering the mean absolute error, mean square error and root mean square error, the estimated
error results do not exceed 1.2% on the experiment battery data, which highlights the advantages of
the proposed methods.

Keywords: lithium-ion battery; state of health; transfer learning; current pulse test; aging feature

1. Introduction

Lithium-ion batteries have the advantages of high operating voltage, high energy
density, long cycle life, no memory effect, and environmental friendliness. They have been
widely used in portable electronic devices such as mobile phones and notebook computers,
and are gradually expanding into the fields of electric vehicles and large battery energy
storage. As one of the important energy storage technologies, lithium-ion batteries play an
important role in changing the energy consumption structure and electrifying traditional
energy sources [1–4]. However, the storage capacity of lithium-ion batteries will continue
to decline as they age, which shows a decrease in power, causing the battery capacity to
decay and the internal resistance to increase. In existing research, battery state of health
(SOH) is usually used as a quantitative indicator to evaluate battery aging. Nevertheless,
the battery SOH will be affected by many factors, such as temperature, discharge depth
and state of charge (SOC), etc., which further increases the difficulty of estimating the
battery SOH. Therefore, in order to avoid safety hazards caused by battery capacity fading
and maximum available power reduction, it is crucial to select an appropriate estimation
method to complete battery SOH identification.
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Generally speaking, these methods are mainly divided into two categories: traditional
estimation methods and data-driven estimation methods.

Traditional methods focus on identifying and analyzing important external character-
istic parameters in lithium-ion batteries. They usually analyze the collected experimental
data such as battery current, voltage, temperature, etc., and relatively directly obtain the
characteristic parameters that can reflect battery degradation and estimate battery SOH.
The method includes experimental analysis method [5], electrochemical model method [6]
and equivalent circuit model method [7].

The experimental analysis method evaluates the battery SOH by directly measuring
certain characteristic parameters of the battery, mainly including capacity measurement,
ohmic internal resistance measurement and impedance measurement. Although the experi-
mental analysis method can accurately calibrate the battery SOH, the limitations of battery
experimental equipment, experimental sites, and experimental test plans will increase the
difficulty of implementing this method [8]. The electrochemical model is a first-principle
model that can not only accurately simulate the external characteristics of the battery, but
also simulate the distribution and changes in the internal characteristics [9]. The elec-
trochemical model can deeply describe the microscopic reactions inside the battery and
has very clear physical meanings. However, the electrochemical model contains complex
partial differential equations and numerous electrochemical parameters, which not only
brings accuracy advantages but also greatly increases the complexity and computational
load of the model. A large number of unmeasured parameters in the model affect the
application of the model in battery management systems, and its ability to dynamically
track changes in environmental conditions is limited. The equivalent circuit model method
usually uses traditional circuit components (such as capacitors, internal resistances, voltage
sources, etc.) to form a circuit network to describe the external characteristics of the battery.
The equivalent circuit model has good applicability to various working states of the battery.
The state equation of the model can be easily derived, and the dynamic response and atten-
uation behavior of the battery can be constructed by identifying the model parameters [10].
However, the estimation results under this method usually depend on the structure of the
equivalent circuit, resulting in increasing model errors.

Since the aging process of a lithium-ion battery is a dynamic coupling process and
its internal electrochemical mechanism is very complex, traditional battery SOH estima-
tion methods have problems such as model complexity and limited robustness, dynamic
adaptability and accuracy. They also have limited ability to describe the dynamic and
static comprehensive characteristics of lithium-ion batteries, which is not conducive to
practical application. The data-driven method provides another solution for estimating
battery SOH. By collecting a large amount of historical data and analyzing the original
data, we can only establish the relationship between battery capacity and external features
from the perspective of data information, without deeply exploring the complex internal
mechanism changes in lithium-ion batteries. Relying on the data-driven method’s ability
to autonomously learn data information, this method has received widespread attention in
battery SOH estimation [11–14].

Data-driven methods include the optimization algorithm method, sample entropy
method, performance characteristics method, and machine learning method [15–20]. The
optimization algorithm method used is to identify the battery model parameters through
a suitable algorithm and then use the model parameters to estimate the battery SOH. A
multi-time joint framework for predicting the battery SOC, SOH and SOP (state of power)
has been established in [18]. The sample entropy method is a useful tool for assessing the
predictability of time series, while also quantifying the regularity of the data series. For
example, in [21], Sun et al. have established a battery capacity model through the sample
entropy of voltage and temperature sequences, and then have estimated the battery SOH.
In addition, the data-driven method can also complete the battery SOH estimation by ana-
lyzing the aging characteristics related to the degradation process of lithium-ion batteries,
that is, the performance characteristics method. This method is to establish a mapping
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relationship between these parameters and the lithium-ion battery capacity through the
evolution of dominant characteristics during the degradation process [22,23]. These domi-
nant parameters are usually named aging features. Most of the current research focuses
on the aging features that are obtained in a relatively stable working environment with a
single working mode. The aging features obtained in this way are time-consuming and
unfavorable for practical development. Machine learning only relies on battery historical
data and uses advanced algorithms to train complex non-linear degradation behaviors
of battery to achieve accurate estimation of the battery SOH [24–28]. Commonly used
methods include neural networks (NN), support vector machines (SVM), Monte Carlo,
Gaussian process regression (GPR) and long short-term memory networks (LSTM), etc. Al-
though the data-driven method is easy to implement, the implementability of this method
is based on sufficient aging data, and it usually takes several months or even longer to
obtain aging data. That is to say, there are several issues with these methods, which have
to be overcome: (1) Most references that extract the battery feature need to consider the
battery’s entire working condition, which increases the computing burden and lab force.
(2) Different working conditions will affect the performance of the lithium-ion battery in
reality, but most research has extracted features from one single stable working condition
(e.g., 1 C charging/discharging rate), and the performance of these features under dynamic
working conditions is doubtful.

In summary, considering that in actual scenarios, batteries usually work in complex
and changeable environments, it is often necessary to obtain useful battery aging features
in a very short time to perform battery SOH calibration. At the same time, considering the
practical factors of the high cost of obtaining label data in the battery field, the insufficient
amount of data is directly related to the effect of data information analysis and mining and
affects the accuracy of the battery SOH estimation. Therefore, this paper considers how to
obtain effective battery data information from the current pulse test stage, extract battery
aging features in a short time, and complete accurate battery SOH estimation under small
sample data.

Based on the above analysis, this paper addresses the issues discussed above from
three aspects. First, the response voltage curve characteristics of the pulse test current at
four rates are analyzed, and the aging features in a very short time that can reflect the
battery capacity decay are extracted. Then, the proposed method in this paper is verified
in two cases. The first case is based on the complete current pulse test data and considers
using the aging features under all SOC intervals as the battery SOH estimation model
input while verifying the universality of the proposed method in this paper. The second
case is to assume that the current pulse test process is incomplete while ensuring that the
auxiliary data and the source domain data set come from aging feature data in different SOC
intervals. Six ways of dividing the auxiliary and the source domain data set are considered
to verify the mapping relationship for battery SOH estimation model of the proposed
method under different SOC intervals is not affected. Finally, it is also verified that the
proposed method can still ensure the accuracy of lithium-ion battery SOH estimation in
the above two application modes, whether in a single-temperature operating mode or in
different temperature operating modes.

In detail, the main contributions of this paper are summarized as follows:

(1) This paper analyzes the voltage response curve characteristics under pulse current,
and aging features are extracted over a very short time, which provides a basis for
establishing the nonlinear relationship between the battery SOH and the aging feature.

(2) In the case of inconsistent initial SOC values, the proposed method can still ensure
that the estimation accuracy of the battery SOH under different SOC interval is
not affected.

(3) The proposed method in this paper can still ensure the battery SOH estimation
accuracy while reducing the model feature dimension and the demand for target
domain label data.
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This paper is organized as follows: Section 2 introduces the method of extracting the
aging feature. The related algorithms Tradaboost.R2 are introduced in Section 3. It also
still introduces the battery SOH estimation under the complete SOC range. Battery SOH
estimations under different SOC ranges are presented in Section 4. The conclusions and
future work are given in Section 5. The specific framework for the proposed method is
shown in Figure 1.
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Figure 1. Battery state of health monitoring framework.

2. Aging Feature under Pulse Current

In this work, lithium iron phosphate battery cells (LFP/C) are considered, while Table 1
describing the cell’s basic electric parameters. Five LFP/C cells are aged at two different
temperatures, i.e., 35 ◦C and 25 ◦C, which is divided into two modes and summarised in
Table 1. The capacity variations in the five LFP/C cells are presented in Figure 2. During
the non-constant charging and discharging stage, three SOC and pulse currents at four
rates are considered. The whole battery testing process are shown in Figure 3. First, the
battery is charged to SOC = 20%, SOC = 50% and SOC = 80% with a constant current of 1 C
rate. And in each SOC stage, pulse charge and discharge currents of 4 C, 2 C, 1 C and 0.5 C
are applied to the battery. A negative current indicates a charging process and a positive
current indicates a discharging process. Figure 4 shows the current changes in the battery
under the pulse test.

Figure 2. The capacity variation in the five LFP/C cells based on different mode.
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Table 1. The working mode condition for battery data.

Test Mode LFP/C Battery Temperature Average SOC

B1 No.1, No.2, No.3 35 ◦C 50%
B2 No.4, No.5 25 ◦C 50% (arbitrary)
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Figure 3. The battery testing process.

The test process is divided into three parts, namely reference performance test (RPT),
which is also called capacity test, pulse test and aging test. RPT test is used for capacity
calibration. The aging features extracted in this paper come from the battery data in the
pulse test stage, while the aging test is used to accelerate the aging of the battery. This
paper considers two temperature modes, that is, accelerated aging modes with different
temperatures selected during the aging test stage.

Figures 4 and 5 show the current/voltage changes in the lithium-ion battery under
three SOC during the pulse current test. It can be seen that the response voltage value
changes significantly in different SOC stages, for example, in the charging stage where
the SOC changes in the range of 20% to 80%, compared with the two stages of SOC = 20%
and SOC = 50%, the response voltage value of the corresponding point is the largest at
the stage of SOC = 80%, and the response voltage value of SOC = 50% is larger than that
of SOC = 20%. It can be said that when the SOC is in the charging stage belonging to this
area, the response voltage value of the corresponding point increases with the increase
in the initial SOC value. Under the same conditions, the same results can be obtained in
the discharging stage as in the charging stage.

HPPC at 20%,50% and 80% SOC

Figure 4. Current change curve under RPT tests and pulse tests of batteries.



Batteries 2024, 10, 156 6 of 19

Since the pulse current value is always at a stable value, this paper only considers
the changing characteristics of the response voltage under the current pulse test. Now,
we analyze the specific changing trend of the current pulse test response voltage curve in
detail, taking the response voltage curve at the SOC= 20% stage as an example. During the
charging stage, Figure 6 shows the lithium-ion battery at SOC= 20% at different rates. From
the response voltage change curve, it can be seen that the overall trend of the response
voltage curve is downward (showing a “red–green–blue” color change); similarly, the
discharge stage under this condition also shows the same trend, as shown in Figure 7.

HPPC at 20%,50% and 80% SOC

Figure 5. Voltage change curve under RPT tests and pulse tests of batteries.

Figure 6. Charging voltage variation curve of the battery under pulse test SOC = 20%. (a) 4 C process;
(b) 2 C process; (c) 1 C process; (d) 0.5 C process.

Figure 7. Disharging voltage variation curve of the battery under pulse test SOC = 20%. (a) 4 C
process; (b) 2 C process; (c) 1 C process; (d) 0.5 C process.

Let us analyze the specific changing trends of the response voltage curves under
different initial SOC stages. Taking the charging response voltage curve at a rate of 4 C
as an example, Figure 8 shows the response voltage change curve of lithium-ion battery
under different initial SOC stages. It can be seen that as the initial value of SOC changes,
the voltage response curve changes. When SOC = 20%, the overall trend is downward,
but when SOC = 50% and SOC = 80%, the overall trend of the response voltage curve is
upward. In the discharging stage under the same conditions, no matter which SOC stage it
is in, the overall trend of the response voltage curve is downward, as shown in Figure 9.
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Figure 8. Charging voltage variation curve of the battery under a pulse test rate of 4 C. (a) SOC = 20%;
(b) SOC = 50%; (c) SOC = 80%.

Figure 9. Discharging voltage variation curve of the battery under pulse test rate of 4 C. (a) SOC = 20%;
(b) SOC = 50%; (c) SOC = 80%.

The aging features selected in this paper come from the data in the pulse test stage.
The purpose of extracting the aging features is to find features that are highly correlated
with battery SOH as model input. According to Figures 6–9, the battery voltage shows an
obvious downward or upward trend, and it is feasible to perform feature extraction based
on this phenomenon.

According to Figure 10, the four voltage values V1, V2, V3, V4 on the response voltage
curve and the integrated area S between the response voltage values V2 and V3 are selected
as the battery aging features. Based on the above analysis, ten aging features can be obtained
at each charging/discharging rate of each SOC stage. For example, during the charging
period at a rate of 4 C, there are four response voltage values and one integration area, and
there are a total of five aging features. Similarly, there are five aging features during the
discharge stage, so there are a total of ten aging features at a rate of 4 C. Therefore, in each
SOC stage, there are a total of forty aging features, and by analogy, in the three SOC stages,
a total of one hundred and twenty aging features can be obtained.

Figure 10. Voltage response curve based on pulse test. (a) Charging process; (b) discharging process.

3. Lithium-Ion Battery SOH Estimation under Complete SOC Range

Due to the diversity of dynamic working conditions in the battery aging experiment
test process, such as differences in charge and discharge rates, variability in operating
temperature, and randomness of the current SOC, which increases the types of source
domain data and affects the effectiveness of the lithium-ion battery SOH estimation model.
On the other hand, the dynamic working conditions of the battery are changing, and the
previous battery aging data information is not necessarily applicable to the current new
application scenarios. Considering how to select data relevant to the current scenario from
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diverse source domain data is a prerequisite to ensure accurate estimation of the battery
SOH under multiple working conditions.

This paper selects five lithium-ion batteries in two temperature modes as shown
in Table 1. First, the battery aging features are extracted from the current pulse test
data. Secondly, considering the impact of differences in different battery data on model
estimation accuracy, a battery SOH estimation framework based on the sample transfer
learning method is established. Then, by constructing an auxiliary data set to enhance the
learning ability of the battery SOH model, it can obtain an accurate estimation of the battery
SOH under dynamic testing conditions. Finally, comparative experiments are designed
and combined with multiple error index methods to verify the effectiveness of the method.

3.1. Lithium-Ion Battery SOH Estimation Framework Based on the Tradaboost.R2 Algorithm

The Tradaboost.R2 algorithm is evolved from the Adaboost.R2 algorithm, which is
essentially a machine learning method based on the concept of ensemble learning. The
purpose of the Adaboost.R2 algorithm is to update and iterate two weight parameters; one
is the weight parameter for the sample data, and the other is the weight parameter for the
weak learner. The significance of updating the sample data weight parameters is to adjust
the distribution of the training data set for the next iteration based on the previous round
for the source domain. In other words, in each iteration process, the weight coefficient for
the source domain sample data that makes the estimation result error of the target domain
smaller is reduced in the next iteration. And for the source domain sample data that makes
the prediction result of the target domain have a larger error, its weight coefficient will be
increased in the next iteration, because in the next iteration, these sample data that make
the error result larger may make the error result smaller in this iteration, but if the error
result does not decrease in this iteration, then it continues to increase the weight of the
sample data and proceeds to the next round of iteration. On the other hand, the purpose of
updating the weight parameters for the weak learner is to increase the weight coefficient
for the weak learner with a smaller overall error result.

Tradaboost.R2 is based on the Adaboost.R2 algorithm, adding the original source
domain data and target domain data to the source domain, target domain and auxiliary
data set. The auxiliary data set comes from a small amount of labeled data in the target
domain. At this time, the training set consists of the source domain data and the auxiliary
data. The goal of the Tradaboost.R2 algorithm is to reduce the sample data in the auxiliary
data set that makes the prediction result error larger, so that after several iterations, the
sample data in the auxiliary set related to the source domain data will have a larger weight
coefficient, and the weight coefficient of sample data in the auxiliary data set that is not
related to the source domain will be reduced.

This paper chooses extreme learning machines (ELMs) as the weak learner; an ELM
is actually a single hidden layer feedforward neural network method. Compared with
the traditional feedforward neural network, the structure still includes an input layer, a
hidden layer and an output layer. However, in terms of training effect, since the ELM does
not require the backpropagation method based on gradient descent to adjust the weight
coefficients, its network training speed is fast and it has good generalization ability, while it
does not easily fall into local minimum points. Therefore, this paper will use an ELM as the
weak learner to establish a lithium-ion battery SOH estimation framework based on the
Tradaboost.R2 method.

Consider a large amount of labeled source domain data Ds = {(xs1, ys1), . . . , (xsn, ysn)},
where xsi ∈ Xs is input data and ysi ∈ Ys is output data. Dividing the target domain data
into two parts, the auxiliary data set Xt f and the testing set Xtt , where the auxiliary data set
Xt f is a small amount of labeled data in the target domain, and the corresponding sample
label is Yt f , while the test data set Xtt is a large amount of unlabeled data in the target
domain. Now the entire training data consist of the source domain data set and auxiliary
data set, that is X = Xs ∪ Xt f , and the corresponding sample label is Y = Ys ∪ Yt f . Assume
that the amount of sample data in the source domain is ns and the number of samples in
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the auxiliary data set is n f . For simplicity of writing, the test data in the target domain
are written as Xu. Therefore, the current goal is to predict the output of the corresponding
sample through the trained model when the model has a new test sample input x∗i ∈ Xu.
The specific process of the Tradaboost.R2 method is shown in Algorithm 1.

3.2. Battery SOH Estimation Based on Complete SOC Range

Based on the research and analysis of battery aging features in Section 2, it can be
seen that 40 battery aging features can be extracted from each SOC interval, and a total
of 120 aging features are obtained. In order to establish a battery SOH estimation model
under different temperature modes, all the aging features of the three SOC intervals are
used as the input of the model, and the application scenarios in single-temperature mode
and multi-temperature mode are considered, respectively. Next, considering that the
source domain and the target domain come from two different battery data sets, the entire
data set is divided into source domain, auxiliary and target domain data sets. By using
a small amount of target domain label sample data to establish an auxiliary data set,
the impact of insufficient source domain information on the model estimation accuracy
is reduced. Table 2 shows the division of source domain, auxiliary and target domain
data sets under the complete SOC interval, where Ts represents source domain data, Tf
represents auxiliary data and Tt represents target domain data. At the same time, in order
to verify the effectiveness of the battery SOH estimation model under different temperature
modes, six scenarios are considered and represented by the symbol Si, where S1–S3 are
single-temperature scenarios, that is, the source domain and the target domain have the
same temperatures, and S4–S6 are multi-temperature scenarios, that is, battery data from
the source domain and target domain at different temperatures.

Algorithm 1: Tradaboost.R2 algorithm.
Input: training input data setxi ∈ X = Xs ∪ Xt f (i = 1, 2, . . . , ns, ns + 1, . . . , ns + n f ),

corresponding label data set Y = Ys ∪ Yt f , unlabeled target domain test
data set Xu, weak learner f , number of iterations N, the maximum number
of iterations Nmax.

Output: SOH estimated value for test data y = ∑Nmax
l=1 βl f (X, θl).

1 Parameter initialization: weight coefficient of source domain and auxiliary set
sample are, respectively, wi

s =
1
ns

, wi
t f
= 1

n f
(i = 1, 2, . . . , ns, ns + 1, . . . , ns + n f );

weight coefficient of weak learner β = 1
1+
√

2ln ns
N

;

2 for t=1 to T do
3 The training model based on ELM needs to meet the following conditions

minθN ∑
ns+n f
p=1 w||yp − f (xp, θN)||22;

4 Compute model error Ep =
(yp− f (xp ,θN))2

max|yp− f (xp ,θN)| (p = 1, 2, . . . , ns + n f );

5 Update sample weights wi
s, wj

t f
and sub-model weights βN . if N ≤ Nmax then

6 Update sub-model weights: βN = σ
1−σ , where

σ =

∑
ns+n f
p=1 Epw, ∑

ns+n f
p=1 Epw < 0.5,

0.5, ∑
ns+n f
p=1 Epw ≥ 0.5.

;

7 Update sample weights: wi
s = wi

sβ
Ei
N , wj

t f
= wj

t f
β
−Ej
N , where

(i = 1, 2, . . . , ns; j = 1, 2, . . . , n f ; N = N + 1)

Furthermore, in order to verify the effectiveness of the battery SOH estimated model,
the mean absolute error (MAE), mean square error (MSE) and root mean square error
(RMSE) analysis methods are used, which are expressed in Equation (1)–(3). Finally, the
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coefficient of determination R2 is used to verify the performance of the estimated model,
where the larger the R2 value, the better the model fitting effect.

EMAE =
1
N

N

∑
i=1

|Yi,true − Ȳi| (1)

EMSE =
1
N

N

∑
i=1

(Yi,true − Ȳi)
2 (2)

ERMSE =

√√√√ 1
N

N

∑
i=1

|Yi,true − Ȳi| (3)

R2 = 1 − ∑N
i=1(Yi,true − Ȳi)

2

∑N
i=1(Yi,true − Ymean)2

(4)

where N is the number of samples, and Yi,true is the true value for battery SOH, Ȳi is the
estimated value for battery SOH, and the Ymean is the mean value for battery SOH.

Table 2. Division of source domain, auxiliary and target domain data sets under complete SOC intervals.

Data
Single Temperature Multiple Temperature

S1 S2 S3 S4 S5 S6

Ts No.1 No.2 No.5 No.1 No.2 No.3
Tf No.3 (15%) No.3 (15%) No.4 (30%) No.4 (15%) No.4 (15%) No.4 (15%)
Tt No.3 (85%) No.3 (85%) No.4 (70%) No.4 (85%) No.4 (85%) No.4 (85%)

This paper selects the Adaboost method, GPR, SVM and CNN-LSTM, as well as the
case where the auxiliary set is not considered in the proposed method as the comparison
methods. The symbol Adaboost represents the estimated results based on the Adaboost.R2
method, the symbol GPR represents the estimated results based on the GPR method, the
symbol SVM represents the estimated results based on the SVM method, the symbol
CNN-LSTM represents the estimated results based on the CNN-LSTM method, the symbol
No-Trans f er represents the estimated results without the transfer learning step (that is, the
proposed method does not include the auxiliary data), and the symbol Trans f er represent
the estimated results of the method which proposed in this paper.

Due to the different temperatures of lithium-ion batteries, the entire battery data can
be divided into two modes, namely mode 1 and mode 2. Regarding the division of data
sets in single-temperature mode, take the three battery data sets in mode 1 as an example.
There are three battery data sets in mode 1, namely No.1, No.2 and No.3. Choose one
of these three data sets as the target domain, and the other two data sets as the source
domain, such as scenario 1 (S1) and scenario 2 (S2). In the multi-temperature mode, select
the data set in one mode as the source domain, such as No.1 in mode 1, and the data set in
another temperature mode as the target domain, such as No.4 in mode 2, and divide it into
scenarios 4, 5 and 6 (S4, S5, S6). In these two modes, in order to improve the estimation
accuracy of the model and verify the necessity of transfer learning, the construction of
auxiliary data sets is considered, as shown in Table 2.

3.3. Analysis and Discussion of Experimental Results

In this part, based on the previous aging feature extraction and model optimization,
the battery SOH estimation under single-temperature and multi-temperature modes are
analyzed. First, the estimation results under single-temperature mode are analyzed, and
the experimental results based on different models are considered to verify the necessity of
transfer learning.

Figures 11 and 12 show the battery SOH estimation results for scenario 1 (S1)–scenario 3
(S3) under the single-temperature mode. It can be found that in the three scenarios, the
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battery SOH estimation based on the Trans f er method are closer to the reference value, and
its effect of tracking the reference value is more obvious, while the battery SOH estimation
based on theNo-Trans f er method obviously does not accurately track the true value. In
addition, considering that the Tradaboost.R2 algorithm is improved from the Adaboost.R2
algorithm, the battery SOH estimation based on the basic algorithm Adaboost is also
unsatisfactory. At the same time, regardless of the scenario, the trend of estimation results
based on CNN-LSTM, GPR and SVM is not ideal.

Figure 11. Battery SOH estimation in single-temperature mode. (a) Scenario 1; (b) scenario 2.

Tables 3 and 4 give three error values and coefficients of determination for S1–S3.
It can be seen from these two tables that the MAE of the estimated value based on the
Trans f er method does not exceed 1.5%, which is significantly smaller than the MAE of
other comparison methods; in terms of MSE, the MSE based on the Trans f er method is
lower than 0.015% and the corresponding RMSE is less than 1.5%, which also shows that the
estimation accuracy based on the Trans f er method is higher than the other methods. On the
other hand, in terms of verifying the model fitting effect, the coefficient of determination R2

based on the Trans f er method is not less than 88% in the three scenarios. Compared with
the corresponding coefficient of determination values of other methods, the model fitting
effect based on the Trans f er method is better. Therefore, it can be seen that the method
after the transfer learning step can improve the accuracy of the estimation results, but
the estimation results without the transfer learning step cannot guarantee the estimation
accuracy, which further illustrates the necessity of transfer learning.

Figure 12. Battery SOH estimation in single-temperature mode under scenario 3. (a) SOH estimation;
(b) relative error.

On the other hand, according to Table 2, it can be seen that when no auxiliary set is
constructed, taking S1 as an example, the MAE is 0.0503, which shows that the estimation
model obtained only with the help of source domain data information is not well adapted
to the test environment of the target domain. When constructing the auxiliary data set, only
the first 15% of the label data information in the target domain can obtain better estimation
results to verify the necessity of transfer learning. It can be seen that lithium-ion battery
SOH estimation can be completed with a small amount of label sample data. Therefore,
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this method verifies that the accuracy of battery SOH estimation based on a small number
of label sample data is not affected.

Table 3. Three error values and coefficients of determination for scenario 1 and scenario 2.

Model
S1 S2

MAE MSE RMSE R2 MAE MSE RMSE R2

Adaboost 0.0211 7.48 × 10−4 0.0273 0.2178 0.0223 6.59 × 10−4 0.0257 0.7780
GPR 0.0229 9 × 10−4 0.03 0.1063 0.0222 8.83 × 10−4 0.0297 0.0268
SVM 0.0186 5.19 × 10−4 0.0228 0.7209 0.0212 7.02 × 10−4 0.0265 0.6753

No-Trans f er 0.0503 0.0051 0.0716 0.522 0.0199 6.89 × 10−4 0.0262 0.6497
CNN-LSTM 0.0158 2.36 × 10−4 0.0154 0.8178 0.0118 3.41 × 10−4 0.0185 0.7523

Trans f er 0.0103 1.5 × 10−4 0.0123 0.8965 0.0079 1.12 × 10−4 0.0106 0.8896

Table 4. Three error values and coefficients of determination for scenario 3 and scenario 4.

Model
S3 S4

MAE MSE RMSE R2 MAE MSE RMSE R2

Adaboost 0.0568 0.0057 0.0754 0.4371 0.0342 0.0018 0.0428 0.2637
GPR 0.0722 0.0073 0.0855 0.4084 0.1045 0.0173 0.1314 0.5953
SVM 0.0329 0.0020 0.0448 0.5383 0.0327 0.0017 0.0410 0.3319

No-Trans f er 0.0371 0.0026 0.0512 0.5959 0.0553 0.0050 0.0706 0.5073
CNN-LSTM 0.01 1.52 × 10−4 0.0123 0.7887 0.0257 0.0011 0.0325 0.7310

Trans f er 0.0051 5.30 × 10−5 0.0073 0.8981 0.0108 2.32 × 10−4 0.0152 0.9045

Besides that, Tables 3 and 4 present the error estimation results of the battery SOH
under different models. These tables also depict the error estimation results of the battery
SOH under different types. In order to analyze the estimated result clearly, we use the
estimated results based on GPR, SVM, CNN-LSTM, Adaboost.R2 and without using the
transfer method under the same conditions to compare with the Tradaboost.R2 algorithm
estimated results.

After analyzing the battery SOH estimation results in single-temperature mode, this
part starts to analyze the multi-temperature mode. Battery No.5 in mode 2 only has ten
sample points that select battery No.4 in mode 2 as the target domain, and the three batteries
No.1, No.2 and No.3 in mode 1 are used as the source domain to verify the battery SOH
estimation under multi-temperature mode.

Figures 13 and 14 show the battery SOH estimation results for scenario 4 (S4)–scenario 6
(S6) under multiple-temperature mode. It can be found that in the three scenarios, the
battery SOH estimation based on the Trans f er method is closer to the reference value, and
its effect of tracking the reference value is more obvious, while the battery SOH estimation
based on the No-Trans f er method obviously does not accurately track the true value. In
addition, considering that the Tradaboost.R2 algorithm is improved from the Adaboost.R2
algorithm, the battery SOH estimation based on the basic algorithm Adaboost is also
unsatisfactory. At the same time, regardless of the scenario, the trend of estimation results
based on CNN-LSTM, GPR and SVM is not ideal.

Tables 4 and 5 give three error values and coefficients of determination for scenario S4–S6.
It can be seen from these two tables that the MAE of the battery SOH estimated value based
on the Trans f er method does not exceed 1.3%, which is significantly smaller than the MAE
of other comparison methods; in terms of MSE, the MSE based on the Trans f er method
is lower than 0.033% and the corresponding RMSE is less than 1.8%, which also shows
that the estimation accuracy based on the Trans f er method is higher than that of other
methods. On the other hand, in terms of verifying the model fitting effect, the coefficient of
determination R2 based on the Trans f er method is not less than 85% in the three scenarios.
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Compared with the corresponding coefficient of determination values of other methods,
the model fitting effect based on the Trans f er method is better than other methods.

Figure 13. Battery SOH estimation in multiple-temperature mode. (a) Scenario 4; (b) scenario 5.

Figure 14. Battery SOH estimation in multiple-temperature mode under scenario 6. (a) SOH estima-
tion; (b) relative error.

In the three scenarios under multi-temperature mode, taking scenario S4 as an example,
when the auxiliary data set is not constructed, the MAE is 0.0553, compared with the MAE
value (0.0108) under the method proposed in this paper, which shows that the estimation
model obtained only with the help of source domain information has no way to learn the
data information for the target domain, and when the top 15% of the label data in the target
domain is used to build an auxiliary data set, the error value of the prediction results has
dropped significantly. This shows that 15% of labeled data information plays an important
role in model training and verifies the necessity of transferring data information. The same
results are also reflected in scenarios S5 and S6, which means that when the auxiliary data
set only accounts for 15% of the target domain, the accuracy of battery SOH estimation
under multi-temperature mode still can be guaranteed.

Table 5. Three error values and coefficients of determination for scenario 5 and scenario 6.

Model
S5 S6

MAE MSE RMSE R2 MAE MSE RMSE R2

Adaboost 0.0356 0.0017 0.0417 0.3034 0.0240 8.11 × 10−4 0.0285 0.6668
GPR 0.0908 0.0106 0.1028 0.5998 0.0992 0.0156 0.1249 0.6019
SVM 0.0327 0.0017 0.0410 0.3319 0.0313 0.0016 0.0397 0.4618

No-Trans f er 0.0553 0.0050 0.0706 0.5073 0.0666 0.0068 0.0822 0.4413
CNN-LSTM 0.0287 0.0013 0.0364 0.6725 0.0267 0.0015 0.0381 0.6589

Trans f er 0.0123 3.21 × 10−4 0.0179 0.8583 0.0125 2.66 × 10−4 0.0163 0.8872

4. Lithium-Ion Battery SOH Estimation under Different SOC Ranges

In the previous section, we discuss the battery SOH estimation problem under the
complete SOC interval, which means that when establishing the estimation model frame-
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work, all aging features are used as input of the model. However, if there is a lack of aging
features in a certain range, will it make it difficult to estimate the batter SOH? Under labo-
ratory conditions, pulse test data for three complete SOC intervals can be easily obtained.
However, in actual applications, depending on the needs of different application scenarios,
it may not be possible to complete the pulse test under three complete SOC intervals. At
this time, it is necessary to consider whether the battery SOH estimation under different
SOC intervals can be achieved. In other words, comparing with the battery SOH estimation
under the complete SOC interval, can it be ensured that the mapping relationship under
different SOC intervals will not be affected.

4.1. Data Set Division under Different SOC Intervals

In order to illustrate the aging features under different SOC intervals, the symbol I1 is
used to represent the forty aging features at SOC=20%, the symbol I2 is used to represent
the forty aging features at SOC=50% and the symbol I3 is used to represent the forty aging
features at SOC=80%.

In order to verify that the mapping relationship of the battery SOH estimation model
under different SOC intervals is not affected, aging feature data from different initial SOC
is selected when constructing the auxiliary and the source domain data set. For example,
it is now necessary to use the label data information of battery No.1 to estimate SOH of
battery No.3. If battery No.3 only contains pulse test data with SOC=20%, and battery No.1
contains pulse test data with a complete SOC range, then the target domain data set of the
model is the aging features I1 of battery No.3, and source domain data set contains the
aging characteristics I1 ∪ I2 ∪ I3 of battery No.1. Under the assumption of this scenario
condition, the dimensions of the source domain and target domain data of the model are
different. Therefore, the aging feature I1 of battery No.1 can be selected as the auxiliary
data set of the model to learn the data information of I1, and the aging feature I2 or I3
can be used as the source domain data set of the model, thus ensuring the dimensions of
the three data sets are the same, and the selection of the auxiliary data set only requires
aging features from the same SOC interval as the target domain data set. At the same
time, there is no restriction that the auxiliary data must come from the same dataset as the
target domain. Therefore, based on the battery pulse test data in different SOC intervals, in
each scenario, the source domain, auxiliary data and target domain data can be divided as
shown in Table 6.

Table 6. Division of source domain, auxiliary and target domain data sets under different SOC intervals.

M1 M2 M3 M4 M5 M6

Ts I2 I3 I1 I3 I2 I1
Tf I1 I1 I2 I2 I3 I3
Tt I1 I1 I2 I2 I3 I3

4.2. Battery SOH Estimation Based on Different SOC Ranges

When considering the battery SOH estimation based on sample transfer learning
under different SOC intervals, six scenarios are considered and are divided as shown in
Table 7. Scenario 1 (S1)–Scenario 3 (S3) verify the battery SOH estimation based on a single-
temperature mode, that is, although the source domain and the target domain data set
come from different battery data, they remain in the same temperature mode. The battery
SOH estimation under multi-temperature mode is reflected by Scenario 4 (S4)–Scenario 6
(S6), that is, the source domain and the target domain data set are derived from different
temperature modes. The purpose is to verify the performance based on the idea that when
using data in different temperature modes, the battery SOH estimation can still be achieved.
In each scenario of this part, the source domain, auxiliary data and target domain data
set are divided in six ways. Different from the construction method of the auxiliary data
set under the complete SOC interval, here, there is no requirement that the auxiliary data
must come from the same target domain data set. It is only required that the auxiliary
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data set and the target domain data set come from the aging features under the same
SOC interval. This greatly reduces the demand for target domain label data and has more
practical research significance.

Table 7. Division of source domain and target domain data sets under different SOC intervals.

Data
Single Temperature Multiple Temperature

S1 S2 S3 S4 S5 S6

Ts No.1 No.2 No.5 No.1 No.2 No.3
Tt No.3 No.3 No.4 No.4 No.4 No.4

4.3. Analysis and Discussion of Experimental Results

In this section, the battery SOH estimation under single-temperature and multi-
temperature modes are analyzed, respectively. First, the experimental results under the
single-temperature mode are analyzed. Based on Section 3.2, the battery SOH estimation
under the six division methods is verified in each scenario; secondly, compared with the bat-
tery SOH estimation framework under the complete SOC interval, the feature dimension of
the model is not only reduced but also the demand for target domain label data is reduced.
Therefore, in this section, the estimation results under the six partitioning methods will
be compared with the estimation results based on the Trans f er method in the complete
SOC interval of Section 3.2. In addition, since the Tradaboost.R2 algorithm is an ensemble
method, considering the final estimation result is synthesized based on other sub-models,
the relative error between each sub-model and the final result is analyzed. Similarly, the
battery SOH estimation under multi-temperature mode is also analyzed in the same way.

Figures 15 and 16 show the battery SOH estimation results for scenario 1 (S1)–scenario 3
(S3). It can be seen from Figure 15 that in S1 and S2, compared with the estimation results
for the other five methods, the estimation results based on method 6 (M6) are closer to the
reference value, and its effect of tracking the reference value is more obvious. The absolute
error also can reflect the better estimation effect is shown in Figure 16 (b).

Figure 15. Battery SOH estimation in single-temperature mode. (a) Scenario 1; (b) scenario 2.

Figure 16. Battery SOH estimation in single-temperature mode under scenario 3. (a) SOH estimation;
(b) relative error.
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Tables 8 and 9 give three error values and coefficients of determination for S1–S3.
It can be seen from these two tables that the optimal estimation results can be obtained
based on M6 in S1 and S2, while the optimal results in S3 are obtained by M2. In the
optimal estimation results of these three scenarios, the MAE does not exceed 0.75%, which
is significantly smaller than the MAE under the other methods; at the same time, the MSE
is lower than 0.0095% and the corresponding RMSE does not exceed 0.98%; compared with
the complete SOC interval based on Trans f er method, the optimal estimation errors of the
three scenarios are smaller than the estimation errors based on the Trans f er method. On the
other hand, in terms of verifying the model fitting effect, the coefficient of determination
R2 of the optimal result reaches 90% in all three scenarios. Compared with the coefficient
of determination value based on the Trans f er method, it can be seen that the model fitting
effect based on different SOC intervals is better than the model effect based on the complete
SOC interval. This can also show that while the feature dimension and the demand for
label data in the target domain are reduced, the battery SOH estimation accuracy has not
been reduced.

Tables 8 and 9 present the error estimation results of the battery SOH under different
SOC ranges. In order to ensure that the mapping relationship of the lithium-ion battery
SOH estimation model in different SOC intervals is not affected, it adopts the way of
dividing the data set in Tables 6 and 7.

After analyzing the battery SOH estimation results in single-temperature mode, this
part starts to analyze the multi-temperature mode. We select battery No.4 in mode 2 as
the target domain and use the three batteries No.1, No.2 and No.3 in mode 1 as the source
domain to verify the battery SOH estimation under multi-temperature mode.

Figures 17 and 18 show the battery SOH estimation results for scenario 4 (S4)–scenario 6
(S6). It can be seen from Figure 17 that in S4 and S5, comparing with the estimation results
of the other five methods, the estimation results based on method 5 (M5) are closer to
the reference value, and its effect of tracking the reference value is more obvious, which
the absolute error also can reflect the better estimation effect that shown in Figure 18 (b).
Completing the verification of the estimation results of three scenarios under the multi-
temperature mode, which demonstrates that the method proposed in this paper has stronger
generalization ability in estimating battery SOH under different temperature modes.

Table 8. Three error values and coefficients of determination for scenario 1 and scenario 2.

Model
S1 S2

MAE MSE RMSE R2 MAE MSE RMSE R2

M1 0.0123 2.96 × 10−4 0.0172 0.7576 0.0113 2.74 × 10−4 0.0166 0.7524
M2 0.0130 3.32 × 10−4 0.0182 0.6934 0.0119 3.04 × 10−4 0.0174 0.7089
M3 0.0198 4.92 × 10−4 0.0222 0.4473 0.0198 4.97 × 10−4 0.0223 0.4396
M4 0.0238 7.78 × 10−4 0.0279 0.2215 0.0226 6.98 × 10−4 0.0264 0.2618
M5 0.0107 1.77 × 10−4 0.0133 0.8269 0.0096 1.51 × 10−4 0.0123 0.8475
M6 0.0075 9.48 × 10−5 0.0097 0.9143 0.0072 8.78 × 10−5 0.0094 0.9183

Trans f er 0.0103 1.5 × 10−4 0.0123 0.8965 0.0079 1.12 × 10−4 0.0106 0.8896

Table 9. Three error values and coefficients of determination for scenario 3 and scenario 4.

Model
S3 S4

MAE MSE RMSE R2 MAE MSE RMSE R2

M1 0.0065 6.66 × 10−5 0.0082 0.8811 0.0174 4.73 × 10−4 0.0217 0.7290
M2 0.0047 3.04 × 10−5 0.0055 0.9397 0.0188 5.59 × 10−4 0.0237 0.7009
M3 0.0092 1.29 × 10−4 0.0114 0.8324 0.0277 0.0013 0.0364 0.4869
M4 0.0142 3.74 × 10−4 0.0193 0.4273 0.0326 0.0016 0.0406 0.2945
M5 0.0073 7.81 × 10−5 0.0088 0.8737 0.0094 2.00 × 10−4 0.0142 0.9094
M6 0.0064 6.18 × 10−5 0.0079 0.9043 0.0102 1.52 × 10−4 0.0124 0.9406

Trans f er 0.0051 5.30 × 10−5 0.0073 0.8981 0.0108 2.32 × 10−4 0.0152 0.9045
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Figure 17. Battery SOH estimation in multiple-temperature mode. (a) Scenario 4; (b) scenario 5.

Figure 18. Battery SOH estimation in multiple-temperature mode under scenario 6. (a) SOH estima-
tion; (b) relative error.

Tables 9 and 10 give three error values and coefficients of determination for S4–S6.
It can be seen from these two tables that the optimal estimation results can be obtained
based on M6 in S4 and S5, while the optimal results in S6 are obtained by M5. In the
optimal estimation results of these three scenarios, the MAE does not exceed 1.2%, which
is significantly smaller than the MAE under other methods; at the same time, the MSE is
lower than 0.02% and the corresponding RMSE does not exceed 1.4%. Compared with the
complete SOC interval based on the Trans f er method, the optimal estimation errors of the
three scenarios are smaller than the estimation errors based on the Trans f er method. On the
other hand, in terms of verifying the model fitting effect, the coefficient of determination
R2 of the optimal result reaches 92% in all three scenarios. Therefore, no matter in terms
of battery SOH estimation accuracy or model fitting effect, the optimal results based on
different SOC intervals are better than complete SOC intervals.

Table 10. Three error values and coefficients of determination for scenario 5 and scenario 6.

Model
S5 S6

MAE MSE RMSE R2 MAE MSE RMSE R2

M1 0.0195 5.66 × 10−4 0.0238 0.6905 0.0165 4.27 × 10−4 0.0207 0.7704
M2 0.0171 4.89 × 10−4 0.0221 0.7365 0.0199 6.40 × 10−4 0.0253 0.6576
M3 0.0285 0.0014 0.0374 0.4889 0.0287 0.0014 0.0371 0.4326
M4 0.0327 0.0016 0.0403 0.3162 0.0328 0.0016 0.0406 0.2835
M5 0.0157 4.38 × 10−4 0.0209 0.8155 0.0090 1.69 × 10−4 0.0130 0.9249
M6 0.0114 1.90 × 10−4 0.0138 0.9294 0.0093 1.73 × 10−4 0.0132 0.9290

Trans f er 0.0123 3.21 × 10−4 0.0179 0.8583 0.0125 2.66 × 10−4 0.0163 0.8872

Based on the above discussion, it can be proved from three aspects that the method
proposed in this paper can achieve higher accuracy in battery SOH estimation:

(1) In the comparison model that combines various errors to depict the performance
of the method, we use the estimated results based on GPR, SVM, CNN-LSTM,
Adaboost and without using the transfer method under the same conditions to
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compare with the Tradaboost.R2 algorithm estimated results. The various error
results show that the estimated results based on the Tradaboost.R2 algorithm are
better than other algorithms.

(2) The performance of model fitting is measured by the coefficient of determination
R2. The better the model fitting performance, the closer its value is to 1. The values
of the coefficient of determination R2 prove that the estimated results based on the
Tradaboost.R2 algorithm are better than other algorithms.

(3) This paper proposes a lithium-ion battery SOH estimation framework based on the
Tradaboost.R2 method under pulse testing. The proposed method can ensure that the
mapping relationship of the lithium-ion battery SOH estimation model in different
SOC intervals is not affected.

(4) By verifying the estimation results based on the complete SOC interval and different
SOC intervals, it can be seen that while the model feature dimension and the demand
for target domain label data is reduced, the estimation accuracy of the model can still
be guaranteed.

5. Conclusions and Future work

In order to estimate the lithium-ion battery SOH under different dynamic working con-
ditions, this paper establishes a battery SOH estimation model based on the Tradaboost.R2
algorithm. Considering the shortened time to obtain aging features under dynamic test
conditions, the aging features that can reflect the attenuation of battery capacity are ex-
tracted from the 18s pulse current. At the same time, five lithium-ion batteries are tested in
two temperature modes. For the cyclic aging test, the weight of the source domain data
samples is adjusted through the Tradaboost.R2 algorithm. Under laboratory conditions,
two verification scenarios for lithium-ion battery SOH estimation are designed, which
verified that while the age feature dimension is reduced and the demand for target domain
label data is reduced, the mapping relationship of the lithium-ion battery SOH estimation
model is not affected by the initial value of the SOC.

Considering the impact of aging features on model estimation results, in future work,
a framework for automatically extracting battery aging features under dynamic conditions
will be established while ensuring that the extracted aging features have a strong correlation
with battery SOH. In addition, adaptive online learning should be considered in the future
such that the battery model can be adjusted adaptively to achieve the best state whenever
new data are available.
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