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2.6. Battery Assembly
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Figure S1: Parts of the CR2032 coin cell assembly and cross section of cathode/SSE/Li metal interface
with thin layer of ionic liquids.

Figure S1 shows the essential parts of a CR2032 battery used to assemble QSSEB and
the cross-sectional view of the QSSEB cathode/SSE/Li metal interface in the presence of
ILs at cathode/SSE and Li/SSE interfaces.



3.2. Electrochemical Testing
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Figure S2: Performance of QSSEB with ionic liquid LiTFSI(1M) in PYR.
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Figure S2 (a) & (b) show the performance of QSSEB with the ionic liquid LiTFSI (1M)
dissolved in PYR at C/20 rate for 100 cycles. Voltage profile is shown during charging and
discharging at cycles 1, 10, and 20.
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Figure S3: Performance of QSSEB with ionic liquid LiTFSI (1M) in PYR:DOL (1:1).

Figure S3 (a) & (b) show the performance of QSSEB with the ionic liquid LiTFSI(1M)
dissolved in PYR:DOL(1:1) at C/20 rate for 100 cycles. Voltage profile is shown during
charging and discharging at cycles 1, 10, and 20.
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Figure S4: C rate dependent cyclic performance at (a) C/20, (b) C/10, (c) C/5 rates and charge dis-
charge curves at (d) C/20, (e) C/10, (f) C/5 for batteries consist of SP-S/SSE/Li with 40 pl of IL
LiTFSI(2M) PYR:DOL(1:1).

Figure 54 (a), (b) & (c) show the C rate dependent Capacity (left axis) and coulombic
efficiency (right axis) versus cycle number while Figure S3 (d), (e) & (f) show the discharge
and charge profiles (at cycles 1, 10 and 20. Batteries charged/discharged at C/20 (Figure S4
(a) & (d)) and C/10 (Figure S4 (b) & (e)) showed initial discharge capacity of ~ 1100 mAh/g.
They both seem to retain the capacity > 300 mAh/g after 100 cycles but the battery tested
at C/10 showed better coulombic efficiency. However, the battery tested at C/5 showed
initial capacity of ~800 mAh/g and retained above 60% of initial capacity of ~500 mAh/g
after 100 cycles with stable coulombic efficiency (Figure 54 (c) &(f)).



T T T — T
Liquid electrolyte
4L No ionic liquid
—— 1M LiTFSI in PYR
—— 2M LiTFSI in PYR:DOL(1:1)

< 2r 1
E
5
= O 4
S x50
X20
2E i

1.0 5 2 . 3.0
Voltage (V)

Figure S5: Cyclic voltammogram for batteries with and without ionic liquids.

Figure S5 shows the cyclic voltammograms recorded for batteries consisting of SP-
S/SSE/Li (i) without ionic liquid (orange line), (ii) with IL 1M LiTFSI in PYR (dark blue
line) and (iii) with 2M LiTFSI in PYR:DOL(1:1) (Green line) in comparison to liquid elec-
trolyte Li-S battery (light blue line). Third cycle of cyclic voltammograms for each battery
is plotted with the magnifications indicated.

3.3. XPX Analysis
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Figure S6: XPS S2p high BE peak of the cathode-SSE interface of 2 batteries containing (a)
LiTFSI(IM) in PYR and (b) LiTESI(2M) in PYR:DOL (1:1) after discharge of 100 cycles.

Figure S6 shows the XPS S2p high BE peak of the cathode-SSE interface of 2 batteries
containing (a) LiTFSI (1 M) in PYR and (b) LiTFSI (2 M) in PYR:DOL(1:1) after 100 cycle
discharge. Both spectra could be fitted with three peaks with each peak consisting, both
S2p12 and S2ps2 components due to spin-orbit splitting (energy spacing, A=1.16eV, inten-
sity ratio=0.511). Both samples show dominant peaks corresponding to TFSI anion from
LiTFSI and PYR14-TFSI. Peaks corresponding to SOz were detected presumably due to the
decomposition of TFSI anions in both LiTFSI and PYR14-TFSI. There are additional peaks



related to sulfates (SO4%) presumably due to the reaction of sulfides with any residual
oxygen.

3.4. AIMD Simulation Results
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Figure S7: Structural evolution of DOL:DME (1:1) interface with (a) LisPSsFosClos, (b) Ss, and (c) Li2S
obtained from ab initio molecular dynamics simulations under ambient conditions.
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Figure S8: The decomposition sequence of (a) [TFSI]- and (b) DME molecules for DOL:DME (1:1)
interface with Li2S obtained from ab initio molecular dynamics simulations under ambient condi-
tions (*represents the complexes), and (c) discharge curve of DOL:DME (1:1) IL based battery which
did not charge back.

Figure S8 shows the decomposition sequence of (a) [TFSI]- and (b) DME molecules
for DOL:DME (1:1) interface with Li2S obtained from AIMD simulations under ambient
conditions (" represents the complexes), and (c) discharge curve of DOL:DME (1:1) IL
based battery which did not charge back.



