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Abstract: Despite the variety of solid electrolytes available, no single solid electrolyte has been found
that meets all the requirements of the successor technology of lithium-ion batteries in an optimum
way. However, composite hybrid electrolytes that combine the desired properties such as high ionic
conductivity or stability against lithium are promising. The addition of conductive oxide fillers
to sulfide solid electrolytes has been reported to increase ionic conductivity and improve stability
relative to the individual electrolytes, but the influence of the mixing process to create composite
electrolytes has not been investigated. Here, we investigate Li3PS4 (LPS) and Li7La3Zr2O12 (LLZO)
composite electrolytes using electrochemical impedance spectroscopy and distribution of relaxation
times. The distinction between sulfide bulk and grain boundary polarization processes is possible
with the methods used at temperatures below 10 ◦C. We propose lithium transport through the space-
charge layer within the sulfide electrolyte, which increases the conductivity. With increasing mixing
intensities in a high-energy ball mill, we show an overlay of the enhanced lithium-ion transport with
the structural change of the sulfide matrix component, which increases the ionic conductivity of LPS
from 4.1 × 10−5 S cm−1 to 1.7 × 10−4 S cm−1.

Keywords: solid-state battery; hybrid solid electrolyte; space-charge layer; distribution of relaxation
times; LPS; LLZO

1. Introduction

All-solid-state batteries (ASSBs) offer the potential for enhanced safety and energy
density in comparison to the current state-of-the-art liquid electrolyte lithium-ion batteries
(LIBs) [1]. LIBs, which are commonly used to power portable electronic devices and
electric vehicles, are reaching their limits in meeting the requirements for energy and
power density, as well as safety concerns [2]. ASSBs aim to utilize metallic lithium as an
anode material, thereby increasing the energy density when compared to conventional
graphite anodes [3]. This is achieved by replacing the liquid electrolyte with a solid
electrolyte (SE) and utilizing high-voltage cathode materials [4]. SEs demonstrate low
self-discharge, excellent thermal stability, high ionic conductivities, and favorable chemical
properties [5–7]. Two categories of SEs are being investigated for their application in ASSBs:
solid polymer materials and inorganic materials. The most important organic SEs are
sulfide (e.g., thiophosphate) and oxide electrolytes. These distinct material classes exhibit
various advantages and disadvantages. Sulfide electrolytes such as Li3PS4 (LPS) possess
high ionic conductivity, a good electrochemical stability, and easy processability, but form
H2S when exposed to moisture and suffer from an unstable interface with the lithium
anode [8–10]. Oxide electrolytes, such as the garnet Li7La3Zr2O12 (LLZO), exhibit high
ionic conductivity and electrochemical stability, but have poor interfacial compatibility
with metallic lithium and require high processing temperatures (sintering). Consequently,
oxide SEs are disadvantageous for use in cathodes due to the degradation of the active
material at elevated temperatures [11–13]. The mechanical flexibility of SEs, as determined
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by their elastic modulus, is crucial for their performance, as the volume expansion during
cycling can lead to electrode cracking [14]. While a single type of SE that possesses all the
necessary properties to address current challenges has not been discovered, the focus on
hybrid systems is increasing [15,16].

Inorganic solid electrolytes facilitate ion migration through crystal defects or special
crystal structures. Excitation of ordered lattice ions leads to their movement to disordered
neighboring sites, enabling collective diffusion through the electrolyte [17]. In glass–
ceramic sulfide solid electrolytes, the replacement of oxygen elements with sulfur expands
the original ion radius, thus enhancing the ion transport channels for lithium [18]. Li3PS4
is a glassy sulfide solid electrolyte with relatively high ionic conductivity, depending on
the synthesis method. Mechanical synthesis has shown competitive conductivities ranging
from 2 × 10−4 S cm−1 [19] to 3 × 10−3 S cm−1 [20] at room temperature. 70Li2S-30P2S2
glasses, prepared by milling or cold-pressing followed by treatment to reach the glass
transition temperature, exhibit high ionic conductivities of up to 3 × 10−3 S cm−1 [21] and
1.7 × 10−2 S cm−1 [22]. The improvement of lithium conduction in Li2S-P2S2 glasses can
be achieved on a microscopic level by reducing the grain boundary resistance between
particles and on a macroscopic level by decreasing the pellet density [23,24].

The addition of filler particles to a thiophosphate SE can lead to an increase in con-
ductivity due to the formation of space-charge layers, increased dislocation density, or the
formation of new phases [25]. The theory of space-charge layer formation proposed by
Maier [26] is considered “generally acceptable” [17]: The interface or grain boundary of
two materials is charged due to the different electrochemical potentials of both sides. While
the bulk is charge neutral due to locally equal cation and anion defects (even with different
formation enthalpies), the concentration of cation and anion defects at the two-material
interface can be different, resulting in a space-charge layer. The addition of oxide fillers such
as Li7La3Zr2O12 (LLZO), Al2O3, SiO2, or Li6ZnNb4O14 to β-Li3PS4 (LPS) could increase
the conductivity of the thiophosphate SE [27,28]. Depending on the filler and particle
size, the concentration to improve lithium-ion conductivity varies between 2 and 30 wt.-%.
Composite electrolytes also refine the interfacial resistance with the metallic lithium anode
and avoid sintering processes.

2. Materials and Methods

Handling of materials was performed in an argon-filled glovebox to prevent reaction
with oxygen and water. All materials were used as received. The solid electrolytes Li3PS4
(LPS) from NEI Corporation, Somerset, NJ, USA, with a medium particle size of 3 to 5 µm
and Li7La3Zr2O12 (LLZO) from SCHOTT AG, Mainz, Germany, with a medium particle
size of 1 µm were mixed in different ratios in a high-energy ball mill (Emax, Retsch GmbH,
Haan, Germany) combined with an external cooling aggregate (10 ◦C working temperature).
Powders were processed in ZrO2-lined jars with 125 mL volume and ZrO2 grinding media
(Tosoh Europe B.V., Amsterdam, The Netherlands) with 1 mm and 10 mm diameter at
400 rpm and 600 rpm rotational speed at 0.3 media-filling ratio for varying process times.
The manufacturer specifies the conductivity of LPS as 10−4 to 10−5 S cm−1, where the wide
range is due to the different compaction and measurement parameters of the samples.

Raman spectroscopy (Alpha 300R, WITec GmbH, Kroppach, Germany) was conducted
according to the method described by Hofer and Grube et al. [20] exciting samples at 532 nm
in the range of 55 to 1555 cm−1 and calculating a relative phase ratio of PS4, P2S6, and P2S7.
XRD was obtained using a diffractometer with a Cu Kα (λ = 0.154 nm) monochromatic
source (Empyrean, Malvern Panalytical, Kassel, Germany) using an angular range of 5◦

to 120◦ 2θ with a step size of 0.05◦ 2θ. The samples were prepared in argon atmosphere
and covered with Kapton foil to prevent exposure to air. All XRD measurement data are
corrected by means of a reference spectrum of an unloaded sample holder. The reflexes
were assigned to reference pattern 98-003-5018 of the ICSD database. The morphology of
the samples was analyzed using a Desktop-SEM (Phenom XL, ThermoFisher Scientific Inc.,
Waltham, MA, USA).
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The electrochemical tests were carried out in a measuring cell using two stainless steel
plungers with a diameter of 16 mm as ion-blocking electrodes inserted into a Teflon cell as
described in detail in [29]. The ball-milled powders forming the composite separator were
processed into pellets by uniaxial pressing at 200 MPa in a two-column laboratory press
(PW 10, P/O/Weber Laborpresstechnik, Remshalden, Germany). EIS was conducted at
40 MPa uniaxial pressure using a potentiostat (Zennium, Zahner-Elektrik GmbH & Co. KG,
Kronach, Germany) at frequencies from 4 MHz to 10 Hz with an amplitude of 30 to 50 mV.
The ionic conductivity is calculated by σion = l/(R A), with l being the sample thickness,
R the resistance determined by EIS modeling, and A the sample area. With a minimum
of three cells, EIS spectra were evaluated by distribution of relaxation times (DRT) by the
method described at length by Heins et al. [30] with DRTtools software provided by Wan
et al. [31]. With a minimum of three cells, the critical current density (CCD) was determined
using a CTS LAB system (BaSyTec GmbH, Asselfingen, Germany) with symmetrical Li-
SE-Li cells by stripping and depositioning lithium at current densities ranging from 10 to
350 µA cm−2 followed by an optional procedure ranging from 100 to 800 µA cm−2 at a
pressure of 20 MPa, where the failure step is indicating the CCD.

3. Results and Discussion
3.1. Quantification of the Polarization Processes within the Hybrid Separator

The ionic conductivity of solid electrolytes is characterized by transport processes
within the bulk SE particles and across the particle interface between SE particles (com-
monly referred to as the grain boundary). For Li3PS4, these two transport pathways are not
easily separated by means of impedance spectroscopy [32]. EIS measures the overall reac-
tion of a complex electrochemical system, with each process contributing to the resulting
spectrum. Describing this reaction with an appropriate electrochemical model can be chal-
lenging when the different processes have similar time constants. However, DRT allows the
estimation of time characteristics of an electrochemical system, typically using the Tikhonov
regularization [30,31]. After pre-processing of the experimental impedance data according
to Heins et al. [30], a regularization parameter λ of 10−5 was used to deconvolute the EIS
spectra, resulting in the DRT spectra shown in Figure 1a. The corresponding Nyquist plots
are displayed in Figure S1a of the Supplementary Materials. In comparison to Li3PS4, for
70Li2S-30P2S5 samples [22], Li10SnP2S12 [33], or Li10Si0.3Sn0.7P2S12 [34], it is typically easier
to distinguish between two semicircles at low temperatures in high and low frequency
regions that can be matched with bulk and grain boundary responses, respectively. The
impedance spectra and the corresponding DRT plot of LPS show a single polarization
process above 10 ◦C that can be attributed to both the bulk as well as the grain boundary
transport (total). The process resistance corresponds to the area under the curve. The
activation energy Ea from the Arrhenius plots shown in Figure 1b for the total polarization
process is 0.45 eV above 10 ◦C and 0.5 eV below 10 ◦C, this minor deviation is caused
by the limited data points. At lower temperatures, DRT analysis shows two polarization
processes: here, we can separate the bulk and grain boundary process with an Ea of 0.34 eV
and 0.58 eV, respectively. The similarity of the grain boundary activation energy below
10 ◦C and the total activation energy above 10 ◦C of 0.5 eV suggests that the transport
process at higher temperatures is determined by the quality of the particle–particle contact
in the pellet. The Ea for the total resistance of β-Li3PS4 is comparable to values found in
the literature, varying from 0.29 eV [35] to 0.41 eV [36] and 0.47 eV [37].
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Figure 1. Transport properties of β-Li3PS4: (a) DRT plots of impedance and corresponding Arrhenius
plots measured at different temperatures; (b) Arrhenius plot extracted from impedance data measured
between −10 and 25 ◦C, separated into bulk and grain boundary transport process as well as total
transport below 10 ◦C.

In order to evaluate the transport processes in an LPS–LLZO hybrid solid electrolyte,
EIS measurements of the varying filler contents of LLZO in LPS were analyzed via DRT
method. The results of 0 wt.-%, 30 wt.-%, and 60 wt.-% LLZO after 5 min milling time
are shown in Figure 2. The corresponding Nyquist plots are displayed in Figure S1b of
the Supplementary Materials. All samples up to 30 wt.-% filler are characterized by one
process at 20 ◦C and two processes at 10 ◦C, suggesting that the hybrid inhibits the same
characteristic lithium transport pathways as the sulfide electrolyte. The corresponding Ea
of 0.3 eV and 0.6 eV in both systems proposes bulk as well as grain boundary transport.
With more than 40 wt.-% LLZO (results not shown), additional processes are quantifiable,
i.e., three polarization processes appear for a 60 wt.-% hybrid electrolyte in Figure 2. The
time constants as well as activation energies of these processes suggest bulk and grain
boundary resistances as well as a third process. In the Supplementary Materials, Figure S2
shows the Arrhenius plots for a hybrid electrolyte with 60 wt.-% filler mixed for 30 min.
Here, the attributed activation energies of 0.34 eV, 0.6 eV, and 0.47 eV corresponding,
respectively, to the bulk and grain boundary processes of LPS and the LPS-LLZO interface,
as described by Hüttl et al. [35], can be identified (Figure 3). Therefore, the ceramic
electrolyte filler is adding an additional polarization process within the electrolyte pellet
highly dependent on the system temperature and the filler content. The temperature
dependence of the transportation processes is not visible at sufficiently high temperatures
due to low activation barriers. Although low filler amounts show the same characteristic
transportation processes as the sulfide matrix material, the hybrid electrolyte inhibits a
lower resistance (corresponding to the peak area) than the sulfide electrolyte, suggesting
the formation of a space-charge layer at the oxide–sulfide boundary.

3.2. Impact of Filler Particles on Ionic Conductivity

As LLZO is an oxide crystal, the high ionic conductivities of dense pellets above
0.1 mS/cm for 100 wt.-% LLZO are achieved by sintering at temperatures exceeding
1000 ◦C (Supplementary Materials Figure S3) [38,39]. The LPS–LLZO hybrid electrolytes on
the other hand can be processed at room temperature, similar to the pure sulfide based solid
electrolytes, due to the soft and dense character of the sulfide matrix in which the LLZO
particles are embedded. For low mixing times of 5 min, Figure 4 shows that compared
to the LPS electrolyte, embedding LLZO filler particles enhances the ionic conductivity
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slightly. At a measuring temperature of 20 ◦C the conductivity exhibits a maximum at
30 wt.-% filler in LPS.
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Figure 2. The polarization processes of a hybrid electrolyte validated via DRT at different filler
contents of LLZO in an LPS electrolyte (mixing time of 5 min). In the hybrid electrolyte, the process at
a lower relaxation time is characterized by an activation energy of 0.35 eV, while the second process
at a higher relaxation time inhibits an activation energy of 0.85 eV.
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Figure 3. Lithium-ion transport processes in LPS–LLZO hybrid solid electrolyte with increasing time
constants. (A) LPS bulk transport, (B) LPS grain boundary transport, (C) LPS-LLZO interface.

In consideration of the polarization processes analyzed by DRT, the lithium transport
within the hybrid electrolyte is strongly affected by the LPS–LLZO interface at high filler
contents. Increasing the amount of filler particles increases the interface between both
materials and inhibits the pathways in the LPS matrix. This behavior is attributed to the
blocking behavior of particles within a matrix as discussed by Hood et al. [28]. At lower filler
contents, the space-charge effect exceeds the blocking effect resulting in an enhancement
of ionic conductivity. Gao et al. stated that the conductivity is enhanced by space-charge
effects at surfaces or internal boundaries as long as neighboring space-charge zones are well
separated [17]. Derived from Maier’s percolation model, agglomeration of filler particles or
a high filler content will enable situations of space-charge layers overlapping or interfaces
perceiving each other [26] resulting in a reduced conductivity of hybrid electrolytes at high
filler contents.
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processed by high-energy ball milling for 5 min with ZrO2 grinding media with 10 mm diameter at
400 rpm rotational speed. EIS measuring temperature varied between −10 ◦C and 20 ◦C. Lithium-ion
transport shows optimal filler content in LPS of 30 wt.-% at elevated measuring temperature.

Rangasamy et al. reported the same optimum filler content of 30 wt.-% for a con-
ductivity enhancement from 1.6 × 10−4 S cm−1 to 5.36 × 10−4 S cm−1 [27]. However,
the effect of the filler was greater than the impact measured at for 5 min mixing time
in this study. Specifically, the ionic conductivity increased from 2.3 × 10−5 S cm−1 in
LPS to 3.6 × 10−5 S cm−1 with 30 wt.-% LLZO in LPS. The lithium-ion conduction in the
space-charge layer is highly dependent on the charge-carrier concentration as well as the
specific atomic configuration [40]. When two different materials (i.e., sulfide and oxide)
are in contact, the space-charge layer is dependent on the chemical potential difference
between them [41–45]. The contact area inhibits a large interfacial resistance, making the
effect unfavorable when using oxide cathode active materials and sulfide solid electrolytes.
For example, for Li6PS5Cl and LiCoO2, the interface is in Li+ equilibrium because of the
formation of a deficiency region on the sulfide electrolyte side and a Li+ enriched positive
charge density region on the oxide electrode [41,42]. While the Li+ deficiency region in
sulfides is unfavorable for interfaces between electrolyte and electrode materials, it en-
hances the lithium conductivity in the hybrid electrolytes investigated here. Space-charge
layers also occur at the grain boundaries of particles made of the same material (such as
solid electrolytes). In this case, the grain boundary core carries a negative charge, which
generates nearby regions that are rich in lithium [40].

Since the optimum amount of filler particles shows no interface transport from LPS
into LLZO in the DRT analysis, we propose an enhanced transport of lithium-ions in
the Li+ deficient negative charge density region on the sulfide side at the sulfide–oxide
material boundary, presented in Figure 5a. Since an ion distribution occurs due to the
different lithium chemical potentials [46], filler particles are usually ion-conducting (i.e.,
solid electrolytes) or allow lithium transport within their atomic structure (i.e., Al2O3,
SiO2) [28]. The chemical potential is strongly affected by the dopants and the filler surface
condition (i.e., carbonate layers on LLZO), explaining the differences in conductivity
enhancement when comparing hybrid electrolyte literature. In hybrid electrolytes, the
choice of filler for each matrix material should, therefore, be selected by its chemical
potential. Figure 5b shows the effect of filler content on hybrid electrolyte conductivity,
with the proposed transport mechanism in the region where the filler content is low enough
for the space-charge layer to enhance lithium-ion transport. As the filler content increases,
the system transitions to blocking conditions. Here, the carbonate layer on the LLZO
particles may be responsible for the lower ion conduction when the ion is transported
across the particle boundary [47,48].
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Reducing the measuring temperature lowers the positive effect of the filler parti-
cles resulting in only a slight increase in ionic conductivity below 0 ◦C. The thickness
of the space-charge layer is proportional to the temperature [49], requiring a minimum
temperature to take advantage of these hybrid systems.

The quantification of polarization processes and the ionic conductivity of LPS–LLZO
hybrid electrolytes show that although the space-charge layer enhances the ion transport
within the hybrid electrolyte, it has no polarization process detectable in DRT analysis.
Instead, merely the transition to the ion transport across the particle boundary of LPS and
LLZO can be detected by DRT. Nevertheless, this has an effect on the conductivity due to
the increased resistance at the boundary of the two materials.

3.3. Impact of Optimized Mixing Parameters on Ionic Conductivity

Since the amount of energy introduced into the material by ball milling is highly de-
pendent on the parameters, up to the point of chemical reactions through mechanochemical
activation [50], we investigated the impact of the process parameters on the composite
hybrid electrolyte powder. LPS as well as LPS with 30 wt.-% LLZO were processed with
different rotational speeds, grinding media diameters, and milling times. The ionic conduc-
tivity of the process conducted at 600 rpm is presented in Figure 6a, while the results at
400 rpm rotational speed are shown in the Supplementary Materials in Figure S4. The ionic
conductivities are also bundled in Table S1. The lithium conduction in the hybrid oxide–
sulfide electrolyte is strongly dependent on the energy input during the process. Since the
Emax high-energy mill has no measurement of the stressing conditions in the grinding
chamber, Burmeister et al. described the increase in stressing energy with increasing media
size diameter using the discrete element method [51]. Furthermore, longer milling times
increase the number of stress events [52].

The use of small grinding media (diameter of 1 mm) at a low rotational speed of
400 rpm decreases the conductivity probably by creating a non-homogeneous composite,
indicated by the high standard deviations. This is confirmed by the LLZO agglomerates
visible in Figure S5 of the Supplementary Materials.

Increasing the stressing energy by larger zirconia balls or increased rotational speed
leads to a slight but not significant increase in conductivity, probably due to the low
mean stressing energy below 10−6 J [51]. The mean stressing energy can be enhanced to
6 × 10−5 J [51] with 10 mm grinding media size and 600 rpm rotational speed. Here, the
composites show a significant increase in lithium-ion conductivity after 60 min milling
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from 4.1 × 10−5 S cm−1 to 8.9 × 10−5 S cm−1 and 1.7 × 10−4 S cm−1 for 30 wt.-% LLZO
filler in LPS and LPS, respectively.
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Figure 6. The ionic conductivity of LPS hybrid electrolyte pellets with 30 wt.-% LLZO filler content
processed by high-energy ball milling with ZrO2 grinding media varying in size at a rotational speed
of 600 rpm. (a) Increasing the milling time has a significant influence on the lithium-ion transport
within the electrolyte pellets. (b) The addition of LLZO into LPS processed for 60 min and mixing for
an additional 5 min results in the same conductivity as the milling of both, LPS and LLZO, for a time
of 60 min.

The oxide particles within the hybrid electrolyte will affect the energy input into
the LPS particles during the milling process. To eliminate the possibility that the energy
input into the matrix material (LPS) is responsible for the lower conductivity of the hybrid
electrolyte, the filler particles were mixed into the sulfide electrolyte after it had been
exposed to the mill for 60 min and mixed for another 5 min. As shown in Figure 6b, the
addition of the LLZO particles after milling the LPS results in the same conductivity as
milling the hybrid electrolyte for the same time.

The addition of filler in LPS also has an influence on the cycling behavior and critical
current density (CCD) of the sulfide electrolytes [27,28,53]. In Figure 7, the CCD of LPS
and 30 wt.-LLZO filler in LPS is plotted against the ionic conductivity of the electrolytes
at varying milling times. Samples milled for 1 min with low ionic conductivities show a
high CCD standard deviation, suggesting an inhomogeneous pellet structure, affecting the
dendrite growth [54,55]. With sufficient milling time, the CCD shows a correlation with the
ionic conductivity: both increasing with milling time. LPS milled for 60 min shows the best
performance with regard to CCD and conductivity. The cycling data in Figure S6 of the
Supplementary Materials also show a decreased resistance when comparing samples after
15 and 60 min milling time. While the CCD of LPS is in the range of reported values [56,57],
it is not increased by the addition of filler particles.

The pellets exhibit a dense, homogeneous structure without agglomerates (Figure 8).
The morphology of LPS in Figure 8a alters with the milling time suggesting a change in
structure. This is supported by Raman analysis of the impurity phase after 1 min and 60 min
milling as shown in Figure 9a, revealing a slightly increased proportion of the [PS4]3−

phase due to the energy input during milling. At the same time, the X-ray diffraction data
in Figure 9b depicts a broadening and intensity decrease of reflections with milling time,
proving the amorphization of the LPS matrix material within the process. Stöffler et al.
have already established a similar relation, decreasing the crystalline character of the initial
binary compounds Li2S and P2S5 with increasing milling time [58]. Li3PS4 synthesized by
ball milling usually has a higher ionic conductivity compared to the material obtained by
liquid-phase synthesis, dependent on the polarity and crystallinity of the electrolyte [59,60].
Considering this, the increased ionic conductivity is a result of the structural change to
lower crystallinity of the matrix LPS.
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Figure 7. The critical current density and ionic conductivity of LPS hybrid electrolyte pellets with
30 wt.-% LLZO filler content processed by high-energy ball milling with ZrO2 grinding media, with a
size of 10 mm, at a rotational speed of 600 rpm. The corresponding milling times are indicated at the
symbol. After 1 min milling time, the samples show a high CCD standard deviation and low ionic
conductivities. At both the 15 and 60 min milling time, the samples are more homogeneous, and the
CCD increases with increasing ionic conductivity (grey line).
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The conductivity of the hybrid electrolyte remains unaffected by the addition of filler
particles, whether added at the beginning of the process or after amorphization of the
LPS. This suggests that the conductivity occurs solely through the matrix material and
that the oxide particles impede this volumetrically. Upon subtracting the LLZO content of
13.85 vol.-% (30 wt.-%), the theoretical conductivity increases slightly from approximately
0.8 mS cm−1 to a theoretical value of 0.95 mS cm−1. Furthermore, filler particles alter the
tortuosity of the matrix material. According to Kaiser et al. [61], an increase in effective
tortuosity to approximately 1.5 with a sulfide content of 70% is conceivable. This increase,
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in addition to volumetric inhibition, would result in a theoretical conductivity of the
hybrid electrolyte of 1.4 mS cm−1, which falls within the range of the LPS measured with
1.7 mS cm−1. The use of filler particles in modified LPS, which has been amorphized by
ball milling, is simply a geometric obstruction.
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Figure 9. The impact of the milling process (10 mm grinding media, 600 rpm, 60 min) on the hybrid
solid electrolyte. (a) The relative phase ratio of impurity phases in the Li3PS4 phase of LPS and hybrid
electrolytes and (b) the X-ray diffraction spectra of LPS and hybrid electrolytes.

The literature indicates that optimal filler proportions vary depending on the sulfides
and filler material used. In Figure 10, the conductivity of the hybrid electrolytes is plotted
against the filler proportions after 60 min mixing time to eliminate the possibility that the
amorphization of the LPS shifts the optimum filler proportion. Nonetheless, the lithium-ion
conductivity of LLZO proportions between 10 and 30 vol.-% is comparable and lower than
that of milled LPS. The design of hybrid electrolytes is crucial for optimized ion transport
as it determines the formation of the space-charge layer. The combination of materials
used plays a significant role in this process. The change in the matrix material (LPS) by
milling may have an impact on the SCL, which should be taken into consideration. The
ionic conductivities of the varying milling times and LLZO filler contents are bundled in
Table S1.
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Figure 10. Ionic conductivity of LPS hybrid electrolyte pellets with different LLZO filler contents
processed by high-energy ball milling for 60 min with ZrO2 grinding media with 10 mm diameter at
600 rpm rotational speed. EIS measuring temperature was kept constant at 25 ◦C. The lithium-ion
transport properties of LPS are improved by milling process compared to LPS used as received
(0 min). The ionic conductivity shows optimally without any LLZO filler addition.
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4. Conclusions

Our study contributes significant insights into the ongoing debate regarding the
efficacy of ceramic fillers in sulfide solid electrolytes. We have demonstrated that while
ceramic fillers like LLZO can enhance the performance of LPS-based composites, the
outcome is highly dependent on the combination of materials and the specific surface
conditions of the fillers. In such hybrid electrolytes, the space-charge effect introduces a
lithium depletion zone on the sulfide side of the interface between the sulfide matrix and
the oxide filler, increasing the transport through the electrolyte. We identified an optimum
filler content of 30 wt.-% for LPS–LLZO hybrid electrolytes at low mixing times. With this
amount of LLZO, the space-charge effect improves the lithium-ion transport within the
hybrid system. Increasing the filler content further will enhance the blocking behavior
by altering the transport, introducing an additional polarization process detectable in EIS
measurements. This process could be associated with the lithium-ion transport across the
LPS–LLZO interface.

Furthermore, our research highlights the significant role of the manufacturing process,
particularly the frequently used ball milling, in determining the ionic conductivity of hybrid
electrolytes. Introducing energy into the Li3PS4 sulfide matrix impacts the crystallinity
of the material. This energy input is dependent on the mixing times and ball-milling
parameters. The structural change of LPS has a significant impact on the lithium-ion
transport in the investigated oxide/sulfide composite electrolytes. At the same time, the
space-charge effect is influenced heavily by the amorphization of the sulfide. Introducing
oxide fillers into a milled and thereby amorphous Li3PS4 sulfide matrix reduces the lithium-
ion conductivity. The space-charge effect is overlaid by the structural change in LPS. The
filler particles now present a geometric obstruction, changing the effective tortuosity.

Considering this, the hybrid electrolyte lithium-ion conductivity is highly dependent
on the complex interplay between the composite components and the manufacturing pro-
cess. In our study, the manufacturing process of the hybrid electrolyte had a considerably
higher impact on the ionic conductivity than the space-charge or blocking effects. Future re-
search should, thus, explore the optimization of the filler materials as well as the processing
conditions to further enhance the performance of hybrid solid electrolytes.
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