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Abstract: Lithium-ion batteries (LIBs) have been widely used for electric vehicles owing to their high
energy density, light weight, and no memory effect. However, their health management problems
remain unsolved in actual application. Therefore, this paper focuses on battery capacity as the key
health indicator and proposes a data-driven method for capacity prediction. Specifically, this method
mainly utilizes Convolutional Neural Network (CNN) for automatic feature extraction from raw data
and combines it with the Bidirectional Long Short-Term Memory (BiLSTM) algorithm to realize the
capacity prediction of LIBs. In addition, the sparrow search algorithm (SSA) is used to optimize the
hyper-parameters of the neural network to further improve the prediction performance of original
network structures. Ultimately, experiments with a public dataset of batteries are carried out to verify
and evaluate the effectiveness of capacity prediction under two temperature conditions. The results
show that the SSA-CNN-BiLSTM framework for capacity prediction of LIBs has higher accuracy
compared with other original network structures during the multi-battery cycle experiments.

Keywords: lithium battery; sparrow search optimization algorithm; CNN; BiLSTM; capacity prediction

1. Introduction

LIBs are widely used in energy storage systems in various industries and electric
vehicles due to their high energy density, light weight, and no memory effect [1-3]. Never-
theless, LIBs in operation are inevitably accompanied by irreversible side reactions, such as
the structural degradation of the cathode material [4], the oxidative decomposition and
interfacial reaction of the electrolyte [5], the dissolution of the active substance, and the
precipitation of the lithium metal [6], which results in a decline in the storage capacity.
In these cases, effective and accurate estimation of battery health status can provide ref-
erence information for battery users to maintain the normal operation of the system [7].
Particularly, it has high guiding value for prolonging battery life, reducing equipment
maintenance costs, and executing efficient battery system management (BMS). For this
reason, capacity estimation of LIBs is a critical research topic in the current BMS [8].

A large number of scholars have conducted in-depth research on capacity estima-
tion of LIBs, which can be broadly divided into model-based methods and data-driven
methods [9]. The model-based method is to predict the battery capacity degradation trend
by establishing a battery physical model and identifying the corresponding relationship
between observable quantities and various indicators. For instance, the co-estimation of
SOC, capacity, and resistance of lithium-ion batteries was realized in [10] by establishing
a high-fidelity electrochemical model. In addition, considering the formation of the solid
electrolyte interface (SEI) layer and the crack propagation caused by the volume expansion
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of the particles in the active material, a simplified single-particle model was established
to achieve high-precision and rapid prediction of capacity attenuation and voltage curve
changes with the number of cycles [11]. Although electrochemical models have advan-
tages in providing physical mechanisms, their complex model construction and coupling
algorithms pose great challenges for researchers to achieve on-board and efficient battery
capacity estimation in BMS.

Data-driven methods, such as artificial neural network (ANN) [12,13], support vector
machines (SVM) [14], and Gaussian process regression (GPR) [15], have been widely used
and have achieved great success in the battery health management fields. In fact, this
method regards the battery as a black box model and relies on experimental data collected
to train models that can make predictions about battery aging behavior [16]. Superior to
model-based methods, there is no need to explore complex capacity attenuation mecha-
nisms and establish a physical model of LIBs [16]. On the contrary, the feature indicators
for aging characterization are only selected to obtain real-time data, which can achieve high
estimation accuracy of battery capacity. Among them, CNN technology has achieved great
success in the field of battery health estimation because it accommodates more layers with
the same number of parameters [16]. For example, based on the method of CNN, Ref. [17]
used impedance spectrum as input to achieve high-precision estimation of capacity degra-
dation, but the cost of impedance spectrum acquisition was high in practice. Ref. [18] uses
a backpropagation (BP) neural network for SOH estimation, achieving higher estimation
accuracy. However, due to the BP network’s limited capability in feature extraction, which
necessitates manual extraction of certain features, CNN offers significant advantages in
this context. In [19], the CNN method was used to estimate the state of health (SOH) of
lithium-ion batteries from the voltage, current, and temperature measurements during
charging, and good estimation results were obtained. Additionally, the long short-term
memory (LSTM) neural network avoiding gradient vanishing and exploding problems has
also begun to be applied in battery health estimation in recent years. In Ref. [20], based
on the data of the optimal voltage part, the LSTM neural network was used for realizing
LIB capacity estimation, and the correlation between the health factor of the voltage part
and the complete capacity was analyzed to achieve higher estimation accuracy. In [21], the
bidirectional LSTM (BiLSTM) method based on attention mechanisms is used in lithium
battery capacity estimation and achieves good results. Gradually, the CNN-LSTM neural
network appeared and was utilized for investigating the remaining service life of LIBs, and
its life judgment was still based on capacity [22]. Ref. [23] has enhanced the CNN-LSTM
algorithm, resulting in improved accuracy for SOH estimation. Ref. [24] employs a BILSTM
network combined with an attention mechanism to estimate SOH. This approach allows the
attention mechanism to enhance the BiLSTM network’s efficiency, resulting in improved
accuracy for SOH estimation. Similarly, Ref. [25] applied the CNN with an additional LSTM
layer to predict the remaining useful life (RUL) of LIBs, which extracted the characteristics
of the relaxed voltage curve to achieve battery capacity estimation without additional cyclic
information. In Ref. [26], a CNN-BiLSTM approach was employed for estimating lithium
battery capacity. However, the hyperparameters of neural networks typically require
manual tuning, which can be subject to subjective human bias. To mitigate this, swarm
intelligence optimization methods have been applied for network optimization. Ref. [27] re-
ported the use of the Particle Swarm Optimization (PSO) algorithm to enhance the Bi-LSTM
network, achieving a network with higher accuracy. Similarly, Ref. [28] utilized the PSO
algorithm to optimize key parameters of the LSTM, resulting in improved performance in
state of charge (SOC) prediction for LIBs. Unfortunately, traditional intelligent optimization
algorithms often face challenges such as slow convergence, poor stability, and a tendency
to become trapped in local optima. More importantly, in terms of evaluating prediction
results, current methods predominantly rely on one or multiple metrics like Mean Absolute
Percentage Error (MAPE) and Root Mean Square Error (RMSE). However, these methods
lack a comprehensive description of curve-following scenarios, as discussed and evaluated
in Ref. [29].
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In summary, the current research progress, whether it be the estimation of battery
health status or remaining life, essentially revolves around the issue of capacity estimation.
Despite the extensive application of deep learning methods in LIB state estimation, there
are still shortcomings that need addressing, which includes the need for further improve-
ment in prediction accuracy, reliance on manual expertise for network parameter tuning,
difficulties in feature extraction, and the singularity of evaluation methods. To address
these issues, this paper carries out an accurate capacity prediction and evaluation with
advanced SSA-CNN-BiLSTM framework for LIBs. Firstly, this method mainly utilizes CNN
for automatic extraction of input parameter features, enabling autonomous feature acquisi-
tion. Furthermore, the bidirectional mechanism of neural networks is used to enhance the
predictive capability of the LSTM network. More innovatively, the SSA is employed for
optimizing network parameters, thus overcoming the limitations of traditional intelligent
optimization algorithms and achieving an optimal selection method for neural parameters
that reduces dependence on manual expertise. Ultimately, an SSA-CNN-BiLSTM network
is constructed to achieve higher prediction accuracy. To evaluate the prediction results,
four composite assessment metrics are introduced along with an error-based multi-criteria
evaluation methodology. Two groups of experiments with distinct capacity degradation
patterns under 24 °C and 4 °C are conducted to further validate the performance of SSA-
CNN-BiLSTM for capacity prediction of LIBs. And the main contributions and innovations
in this paper can be attributed to the following aspects.

1.  The LSTM network’s performance is augmented through a bidirectional network
mechanism. Combining the CNN approach with the BiLSTM algorithm, a CNN-
BiLSTM method for estimating lithium battery capacity has been proposed and
experimentally validated, proving its feasibility and effectiveness.

2. The SSA optimization algorithm optimizes the CNN-BiLSTM network without human
intervention, achieving automated selection of optimal network model parameters.

3. Four composite evaluation metrics are introduced along with an error-based multi-
criteria assessment methodology. Comprehensive algorithm performance benchmark-
ing is conducted on experimental data under different temperature conditions.

The rest of this article is organized as follows. Section 2 provides a detailed discussion
of the relevant basic background theories. Section 3 describes basic issues such as experi-
mental settings, data sources, and evaluation methods. Section 4 gives the experimental
results and discusses the proposed method of capacity prediction. Section 5 gives the
conclusions.

2. Methodology
2.1. Algorithm

SSA [30], proposed in 2020, is a group intelligence optimization algorithm inspired
by the predation characteristics of sparrows. This method is based on sparrows observing
their group members while foraging. Sparrows will observe other individuals in the
group at the same time when they carry out predation activities. Based on individual
predatory behavior, members of the sparrow group can be categorized into discoverers
and followers. The followers obtain food resources under the guidance of the discoverers,
and some sparrow individuals compete with other sparrows for quality food resources,
replacing their position. The sparrow search algorithm, developed from the predation
characteristics of sparrows, boasts advantages such as excellent global performance and
rapid convergence, making it a novel swarm intelligence algorithm. Its basic principles are
as follows:

(1) The energy level of the individual in the population depends on the fitness of the indi-
vidual. The discoverer, with higher fitness and more substantial energy, plays a critical
role in providing optimization directions for other individuals in the population by
finding food sources. This role is significant in population optimization.



Batteries 2024, 10, 71

4 0f 20

(2) When the sparrow encounters a dangerous situation during the predation process,
it will send an alarm to other individuals in the population. If the alarm value
exceeds the safety threshold, the discoverer will lead the population to a safe area to
escape quickly.

(3) In the sparrow population, the ratio of followers to discoverers remains constant, but
the identity of individual sparrows can change. When a follower has sufficient energy,
it will transform into a discoverer. Similarly, if a discoverer no longer ranks high in
energy, it will become a follower to access better food resources, following the lead of
other discoverers.

(4) When a follower’s fitness level is too low, there is a certain probability that the follower
will leave the discoverer and move to other areas to achieve a higher fitness level.

(5) Followers constantly observe the movements of the discoverer, tracking their foot-
prints and approaching them according to specific rules. They either follow the
discoverer’s path or search for food in the nearby vicinity.

(6) Individuals on the periphery of the population are more susceptible to attacks by
natural predators. Therefore, these peripheral individuals must continuously change
and update their positions to avoid such attacks and to test the fitness of various
locations.

The SSA algorithm updates the position information of food finders, followers, and
alerters through iteration based on individual fitness, ultimately leading to the identifi-
cation of the global optimizers’ position information. The solution process of the SSA
algorithm is shown in Figure 1. Initially, the algorithm initializes the population according
to optimization variables, subsequently segregating them into discoverers and followers. It
then updates their positions based on individual fitness scores. A subset of individuals is
randomly chosen as vigilant, with their positions also being updated. The process iterates
until a termination criterion is met. If criteria are not met, iterations proceed; otherwise, the
algorithm halts and delivers the optimal solution. The specific description of the individual
position update method is illustrated in Equations (1)—(3).

The discoverer’s location update status is as follows:

K X{+Q-LifRy > ST

where ijl represents the position of the i-th sparrow in the j dimension in the f + 1
iteration; R; is the vigilance value and both « and R, are a random number from 0 to 1;
Tynax is the maximum number of iterations of the population; Q is a random number from a
standard normal distribution; L is a unit vector of 1 x d; ST is the alert threshold, which
represents the safe range. When the vigilance value R is less than the vigilance threshold
ST, it means that the feeding environment is safe, the sparrow population is not threatened,
and the finder can search extensively. When the vigilance value R; is greater than or equal
to the vigilance threshold ST, it means that some sparrows in the population have sensed
the presence of danger in the surrounding area and warned the remaining sparrows, and
then they will immediately move to a safe area to forage.
The follower’s location update status is as follows:

Xzfuorstix;,' .
g Q-exp(——1),i> % o)
ij t+1 to_xtHl| . a4+ .1 j<n
X5+ |Xt - X[ At L i <
where X;,H denotes the optimal position of the discoverer at the f + 1 iteration; n represents
the number of sparrows in the population; A represents a vector of 1 x d and the random
value of the element is 1 or —1; and A™ = AT (AAT) — 1. When i > n/2, it indicates that
the sparrow with lower fitness is the i-th follower of the hungry state and does not need to
obtain food. Therefore, it is necessary to move the position to find food.
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Initializing the population
| Divide the population finder and the follower
Update finder and follower location information
The vigilant is randomly selected and the location
information is updated
optimal solution?
Figure 1. SSA algorithm solving process.
The vigilant’s location update status is as follows:
t t t .
Xbest + :B ’ ’Xi,j - Xbest ’fl > fg
1 t et
1,] Xt ) + K ) ’Xi,]'*Xworst f _ f (3)
ij (fifo)te |7/t /8

where X}, represents the global optimal position in the -th generation; X! ., represents
the global worst position in the ¢ generation, and § is a random number that obeys the
standard normal distribution; K is a random number from —1 to 1; f; is the individual
fitness value; and f; and f, are the current optimal and worst fitness values, respectively.
is a constant that prevents the denominator from being zero. When f; > f,, the sparrow
is located at the edge of the population and is vulnerable to threats. And when f; = f,,
it means that the sparrow is aware of the danger and approaches the sparrow in a safe
position to escape the danger.

2.2. CNN Layer

CNN [31] is a widely used neural network architecture in the field of deep learning,
primarily designed for extracting deep-level features without relying heavily on prior
knowledge for validation. A typical CNN usually consists of layers such as the input layer,
convolutional layer, activation layer, pooling layer, fully connected layer, and output layer.
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Input layer

Convolutional layer

Specifically, the convolutional layer is one of the core components of CNN. Its primary
function is feature extraction. The convolution operation involves sliding a convolutional
kernel over the input data, multiplying and summing the features of local regions with
the kernel, thereby generating new feature maps. This process effectively captures local
patterns and features within the input data. The computational formula can be described as:

Ol:f(Zf\ilX*Ki-l—bf) )

where the input data are represented as X, K; is the i-th convolutional kernel, f(-) represents
activation function, N is the number of convolutional kernels used in the convolutional
layer, bzl« is the i-th deviation of the feature mapping of layer 1, and * is the convolution
operation. The activation function is the Relu function.

However, with the addition of more data, the computational burden escalates, necessi-
tating the incorporation of a pooling layer. This layer serves to diminish the computational
load and further reduces the parameter count by discarding non-essential samples from
the dataset. The model can be efficiently trained using a backpropagation algorithm. Com-
pared to other shallow or deep neural networks, CNNs are distinguished by their reduced
parameter requirements, making them a compelling choice in deep learning architectures,
as illustrated in Figure 2. The formula for computing CNN feature extraction can be
articulated as follows:

o'() = max_{x(n} ()

(j-Dw<t<jw
where O'(j) is the output of the j-th pooled region of the I layer, w denotes the width of the
pooled region, and X'~1(t) is the pooled region.

Fully connected layer
output layer

Pooling layer

Figure 2. Schematic diagram of CNN structure.

2.3. BiLSTM Layer

The feature map extracted by the CNN from the original data is fed into a subsequent
BiLSTM to achieve capacity prediction. It is widely recognized that Recurrent Neural Net-
works (RNNSs) struggle to establish dependable long-term dependencies during training,
which limits their performance on long sequential data. These difficulties include problems
associated with long-range dependencies, gradient vanishing, and gradient exploding.
LSTM aims to overcome these problems by being capable of learning both short-term and
long-term dependencies. The structure of the base unit of an LSTM is shown in Figure 3.
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Figure 3. Schematic diagram of LSTM structure.

In the LSTM neural network, information is transmitted through the utilization of
forgetting gates, input gates, and output gates. These gates work together synergistically
to regulate the level of memory and forgetting of both previous and current information.
The specific process of information transmission in the LSTM network can be delineated
as follows:

(1) The forgetting and memory of information. The input information and storage
information are multiplied by the weight matrix, respectively, and the bias is added.

After the sigmoid function is normalized, the final input information is obtained.

fr = sigmoid(Wf,xxt + Wf,hhtfl + bf) (6)

where h; 1 is the output of the storage unit, Wy, and Wy , are the weight matrix, Wy, is
the input of this round, and Wy, is the offset of the forgetting gate.

(2) New information input. The process of information input requires the input data to
be filtered through the weight matrix and then multiplied with the activation matrix
to obtain the information input to the memory unit.

S = t(li’lh(Wg,xxt + Wg,hht—l + bg) )

iy = sigmoid(Wj yxt + Wi phy—1 + b;) ®)

where bs and b; represent the bias, W x,W; ;,W; 5, and W, j, represent the weight matrix, s;
is the new information candidate value, and i; is the activation matrix of the input gate.

(3) Unit status update and information output. The updated unit state is obtained by
adding the results of the first and second steps. Subsequently, this unit state is
multiplied by the output matrix to obtain the updated information output.

St = fr-sp—1 +itst )
o = sigmoid(Wo xxt + W, ph—1 + b,) (10)

hy = or x tanh(sy) (11)
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Hidden
layer
- e - - - ——
/
/
/

where b, is the bias vector, W, ;, and W, j, represent the weight matrix, o; is the output gate
activation matrix, and s; is the unit state. The information input is achieved by performing
the above operation for each moment of information, and the output value of the sequence
is obtained after all the moments of information have been processed.

However, in dealing with many complex modeling aspects, BILSTM is an improvement
on LSTM. Since the performance of LSTM depends heavily on the temporal order of the
data, interfering with the time step or temporal order will seriously affect the feature
extraction and data learning of LSMT. Therefore, BILSTM is chosen as the prediction model
for battery capacity. As shown in Figure 4, the BILSTM layer integrates forward and reverse
LSTM components. By evaluating current time values in each direction, these contribute
to the ultimate output. Such an arrangement bolsters network resilience and broadens
applicability, proving adept at managing extensive and fluctuating datasets. The sequence
of generating network outputs is outlined below:

— —
hy = f(xt/ htl) (12)
— —
hy = f(xt, ht—l) (13)
— —
hy = wihy+ wihy + by (14)

where w; and w; represent the weights of the forward and reverse LSTM hidden layer out-
puts, respectively; h; is a linear combination of the forward and reverse hidden layer states.

ht+1 ht+2

\ \
\ Forward LSTM /\\ f\\

[
-

X1

Figure 4. Schematic diagram of BiLSTM structure.

2.4. SSA-CNN-BiLSTM Optimized Framework

The overall framework of the algorithm is illustrated in Figure 5, which uses battery
capacity as the input data. The data are preprocessed using sliding window techniques
and normalization methods, after which they are divided into training and testing datasets.
The CNN layer is used to automatically extract features, which are then processed by
the main network, BiLSTM, to compute the prediction results. The SSA algorithm is
employed to optimize the hyperparameters of the BILSTM network. Finally, the optimal
hyperparameters are output, resulting in the optimized SSA-CNN-BiLSTM algorithm. This
optimized algorithm is then applied to the test dataset for experimentation. The specific
process is as follows:
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Initialize the population parameters
and individual positions

Normalized and Sliding window
¢ technique
The initial fitness values are ¢

calculated and sorted

Training and testing samples

|
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value and update the sparrow BiLSTM prediction with :
position optimal parameters? !
|
v i
De-normalization |
of data? |
No - Yes i
Are the conditions met? i
End 1
|
I

Figure 5. SSA-CNN-BiLSTM optimized framework.

Step 1: Data preprocessing.

Initially, the input data are transformed into multidimensional data using the sliding
window method. Subsequently, Formula (15) is applied to standardize the original dataset,
converting data values into the [0, 1] range, which facilitates more effective training.
Following this, the dataset is partitioned into two subsets: a training set and a testing set,
to be utilized for model training and evaluation. This step is instrumental in enhancing the
convergence speed and stability of the model.

Xt = - omin (15)

where x refers to the input dataset, with x,,;, indicating the minimum value in this collection
of data, and x4, highlighting the maximum value found within it.

Step 2: Feature extraction layer.

The CNN layer is alternately arranged by convolution operation and pooling layer to
extract feature vectors from the input data. These feature vectors will be used as inputs to
the subsequent BILSTM network for training the model. The goal of CNN is to efficiently
capture spatial features in the data.

Step 3: Initialize search algorithm parameters.

The initial parameters of the SSA algorithm mainly include the number of iterations,
the population size, the percentage of discoverers, the percentage of the number of joiners,
the percentage of vigilantes, and the warning value. In this paper, the number of iterations
is set to 50, the number of populations to 30, the percentage of discoverers to 30%, the
number of joiners to 70%, the percentage of vigilantes to 10%, and the warning value
to 0.8. In this step, an initialized BiLSTM network is also created for optimization in
subsequent steps.

Step 4: Define the fitness function.

The CNN-BiLSTM method is used to calculate the prediction results, and the Root
Mean Square Error (RMSE) was used as the individual fitness function evaluation value.
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Step 5: Sparrow Search Algorithm Optimization.

In this step, SSA finds the optimal hyperparameters based on the position-updating
mechanisms of different sparrow types. According to the rules of the algorithm, the
positions of the finders, joiners, and warners in the group of sparrows are constantly
updated to find the combination of parameters that optimize the fitness value. Optimization
of the fitness value usually means that the model has the highest prediction accuracy.

Step 6: Determine the iteration termination condition.

Check whether the fitness value reaches the maximum number of iterations. If the
maximum number of times is reached, the iterative process is terminated and the current
BiLSTM optimal hyperparameters are obtained, including the range of the learning rate, the
range of the number of neurons, and the range of the regularization coefficients. Otherwise,
continue with step 5 to keep optimizing the parameters.

Step 7: Model the optimal network model.

Using the obtained optimal hyper-parameters, the optimal CNN-LSTM network model
is established. This optimal model will be used for the battery RUL prediction task with
optimized parameters to provide higher prediction performance.

3. Experimental Design
3.1. Dataset Description

The experimental data used in this study come from the National Aeronautics and
Space Administration Prognostics Center of Excellence (NASA PCoE) [32]. The first group
(B0005, B0O006, BOO07, B0018) and the sixth group (B0053, B0055, B0O055, BO056) batteries
were selected as the subjects of study. The first group of batteries underwent charge-
discharge testing at a room temperature of 24 °C, with their impedance being measured.
The charging process was divided into two steps. The first step involved charging with a
constant current of 1.5 A until the battery voltage reached 4.2 V. The second step involved
charging with a constant voltage, maintaining the battery voltage at 4.2 V, and reducing
the current to 20 mA. The discharge process was carried out with a continuous current of
2 A until the voltage dropped to 2.7 V, 2.5V, 2.2V, and 2.5 V, respectively. The sixth group
was tested under the room temperature of 4 °C, with the same charging and discharging
methods. Due to the different environmental conditions, the degradation curve of the
capacity showed substantial fluctuations. The attenuation curve of the battery capacity is
indicated in Figure 6, where some abnormal data have been removed.
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Figure 6. Battery capacity degradation curves.
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3.2. Optimization Parameter

Some hyper-parameters of the neural network are selected as the optimization param-
eters of the SSA algorithm, as shown in Table 1.

Table 1. Optimization parameters.

Optimized Parameters Parameter Range
number of neurons 10~200
learning rate 0.001~0.01
L2 regularization coefficient 1 x10719~1 x 1072

3.3. Evaluation Indicators

To avoid the singularity of evaluation metrics, we concurrently utilize four metrics:
MAPE, MAE, RMSE, and MSE, as expressed in Formulas (16)—(19).

1 |(Q-Q .

MAPE = — Yo, inkk x 100% (16)

_1¢m (6; — Qg
MAE = — Yo o (17)

1 n —~% 2

RMSE = - Zk:l (Qx — Q) (18)

1 n —~% 2
MSE = — Yo (Q— Q) (19)

o~k

In the above formulas, Qy, Q,, Qx represent the actual, predicted, and average values
of the actual battery capacity, respectively. n represents the total number of predictions. If
the RMSE, MSE, MAPE, and MAE are closer to 0, the prediction results of the proposed
method are more accurate and the prediction performance is more stable.

4. Experiment and Result Analysis

The experiments were conducted on a Hasee laptop (Shenzhen, China) featuring an
Intel i7-10750H quad-core processor, NVIDIA GeForce RTX 3060 Laptop GPU, and 16 GB
RAM. All experiments were carried out in a MATLAB 2022b environment, using a single
GPU setup, with the training period set to 500 rounds. Experimental programs for LSTM,
BiLSTM, CNN-BiLSTM, and SSA-CNN-BiLSTM were constructed, respectively.

The experiments were built in MATLAB with LSTM, BiLSTM, CNN-BilSTM, and SSA-
CNN-BilSTM experimental programs, respectively. Experimental data were obtained using
the first group of NASA data, with capacity as the experimental variable. The initial 70% of
the data were utilized as training data, while the remaining 30% were allocated for testing
purposes. The sliding window method was used to process the data. The sliding window
was set to 9, and the prediction step was 1. The evaluation metrics for the experimental
results are presented in Table 2. The iteration plot for the SSA algorithm is illustrated
in Figure 7. For a visual comparison of performance metrics, the graphical analysis of
performance indicators is depicted in Figures 8 and 9. Finally, the prediction curves of
the four optimization algorithms are graphically analyzed for their tracking behavior, as
shown in Figures 10 and 11.
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Table 2. Comparison of error indicators for BO005, BO006, B0007, B0018 (24 °C).

BaterryID Method RMSE MSE MAE MAPE Training Testing
Time (s) Time (s)
B0005 LSTM 0.07160 0.00513 0.06661 0.05034 21.41 0.26
B0005 BiLSTM 0.05488 0.00301 0.05063 0.03827 26.28 0.24
B0005 CNN-BIiLSTM 0.02586 0.00067 0.02239 0.01650 26.76 0.28
B0005 SSA-CNN-BiLSTM 0.01568 0.00025 0.01346 0.01004 ~ ~
B0006 LSTM 0.09817 0.00964 0.08573 0.07011 2453 0.30
B0006 BiLSTM 0.08019 0.00643 0.06966 0.05700 28.19 0.30
B0006 CNN-BiLSTM 0.05537 0.00307 0.04912 0.03802 30.18 0.32
B0006 SSA-CNN-BiLSTM 0.02832 0.00080 0.02350 0.01834 ~ ~
B0007 LSTM 0.06237 0.00389 0.05716 0.03980 20.33 0.25
B0007 BiLSTM 0.05310 0.00282 0.04528 0.03161 25.27 0.24
B0007 CNN-BiLSTM 0.04107 0.00169 0.03612 0.02437 2756 0.30
B0007 SSA-CNN-BIiLSTM 0.02613 0.00068 0.02275 0.01607 ~ ~
B0018 LSTM 0.09087 0.00826 0.08217 0.05982 20.52 0.25
B0018 BiLSTM 0.05586 0.00312 0.04907 0.03578 24.87 0.26
B0018 CNN-BiLSTM 0.04067 0.00165 0.03072 0.02174 25.40 0.27
B0018 SSA-CNN-BiLSTM 0.03275 0.00107 0.02873 0.02040 ~ ~
107"
B0005
B0006
B0007
B0018
1072
6)
<
A
o0
o
2
o
Cél 10 \  I—
1 O—A Il Il Il Il Il
5 10 15 20 25 30

Iteration Number

Figure 7. The SSA fitness function changes of B0005, B0006, B0007, B0018.

Based on Table 1, it is evident that LSTM, serving as the baseline model, demonstrates
the lowest predictive accuracy. In Figure 8, the optimization percentage is based on LSTM
as the comparative baseline. BILSTM slightly outperforms the standard LSTM across the
four performance metrics, with only a few percentage points of improvement. This can
be attributed to the bidirectional structure, which allows the model to simultaneously
consider past and future information, thereby enhancing predictive accuracy. By combining
the models of CNN, CNN-BiLSTM significantly outperforms both standalone LSTM and
BiLSTM across all indicators, with performance improvements ranging up to 74.5%. The
incorporation of CNN layers enables the extraction of local features from time series data.
When combined with BiLSTM, it further captures time-dependent features within the
sequence. Among the four, the SSA-CNN-BiLSTM algorithm exhibits the best performance
metrics. All error metrics show a significant improvement over the other three algorithms,
with MSE optimized by 95.7% compared to LSTM, and the other three metrics surpassing
77%. This suggests that by combining the SSA with CNN and BiLSTM, the predictive
capabilities of the model are maximally enhanced.
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Figure 8. Comparison of error metrics for B0O005, B0O006, B0007, B0018 (24 °C): (a) line diagram for
error composite index; (b) radar diagram for error composite index.
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Figure 9. Compared to LSTM model optimization percentage of BO005, BO006, B0O007, B0018 (24 °C).

To analyze the computational burden of various algorithms, training and testing
times were employed as evaluation metrics, as shown in Table 2, where the results are the
average of five runs. Given that the SSA algorithm is a swarm optimization algorithm, its
computational burden is N (population size) x M (number of iterations) times greater than
that of CNN-BiLSTM, representing a considerable time expense. Consequently, the time
cost for the SSA-CNN-BiLSTM algorithm was not examined, with its base time reference
being that of CNN-BiLSTM. In terms of training and testing times, the LSTM model carries
the least computational burden, while the CNN-BiLSTM model bears the greatest, and the
BiLSTM model falls in between. Nevertheless, the variance among them is minimal. Due to
the inherently short testing times, the differences between the algorithms are even smaller,
essentially negligible, thus obviating the need for further analysis.
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Figure 10. Estimation results of each model on B0005, BO006, BO007, B0O018 (24 °C).

From Figure 10, it is visually apparent that the LSTM and BiLSTM algorithms exhibit
significant prediction errors. Although the predicted trends are largely consistent, these
algorithms struggle to effectively track capacity regeneration, particularly in the elliptical
region of the graph. In contrast, both the CNN-BiLSTM and SSA-CNN-BiLSTM not only
predict the trends correctly with smaller errors but also anticipate the capacity regeneration
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phase, demonstrating superior predictive performance. The suboptimal performance of
the LSTM and BiLSTM algorithms may stem from their reliance solely on capacity as input
data without incorporating other indicators related to capacity estimation. The lack of
diverse input information poses significant challenges for the algorithms, especially in
the presence of nonlinear and unconventional pattern changes. The BiLSTM algorithm
enhances the utilization of past and future information by running LSTM in two directions
within the time series, resulting in some improvement in predictive performance. The
CNN-BiLSTM and SSA-CNN-BiLSTM algorithms experience substantial performance im-
provements, attributed to the incorporation of the CNN network. The CNN automatically
extracts crucial information from simple capacity indicators, enhancing algorithmic per-
formance. CNN’s automatic feature extraction is particularly beneficial in scenarios with
fewer health indicators. The SSA-CNN-BiLSTM algorithm, compared to CNN-BiLSTM,
achieves further performance enhancement due to the optimization of neural network
hyperparameters. Reasonable hyperparameters play a significant role in improving neural
network performance, and the use of the SSA optimization algorithm automates the search
for optimal parameters. However, it is noteworthy that SSA is a swarm optimization
algorithm that requires considerable computational resources, making it challenging for
real-time applications with stringent online prediction requirements.

Combined Violin Plot of Model Errors for All Batteries

e H

Error
&
&

g
&

e

e E——
—[—

Model_Battery

Figure 11. Raincloud diagram of absolute error for BO005, BO006, BO007, B0018 (24 °C).

Due to the more regular degradation pattern in the first group, resulting in smaller
prediction errors and better curve tracking, further experiments were conducted using
the sixth group, where capacity degradation exhibits greater variability. The prediction
error metrics are presented in Table 3, and the visualization of error metrics is shown in
Figures 12 and 13. Additionally, Figures 14 and 15 illustrate the tracking performance of the
predictions and error analysis. The error metrics reveal that, compared to the conventional
LSTM method, incorporating CNN and SSA optimization has reduced the error metrics to
some extent, as evident from the error line chart and radar plot. However, the optimization
effect is not as pronounced as in the first group, as indicated by Figure 13. Figures 14
and 15 indicate that, although the predictive results are obtained, the curve-tracking
performance is inferior compared to the first group. The optimized methods can only
minimize errors to some extent but do not significantly improve the fitting performance.
This is attributed to the lower operating temperature of the batteries in the sixth group,
resulting in larger variations in capacity degradation trends. It becomes challenging to
track these changes effectively.
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error composite index; (b) radar diagram for error composite index.
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Figure 13. Compared to LSTM model optimization percentage of B0053, B0054, BO055, B0056 (4 °C).

Table 3. Comparison of error indicators for r BO053, B0054, B0055, B0056 (4 °C).

BaterryID

Method

RMSE

MSE MAE

MAPE

B0053
B0053
B0053
B0053
B0054
B0054
B0054
B0054
B0055
B0055
B0055

LSTM
BiLSTM
CNN-BIiLSTM
SSA-CNN-BiLSTM
LSTM
BiLSTM
CNN-BiLSTM
SSA-CNN-BiLSTM
LSTM
BiLSTM
CNN-BiLSTM

0.04473
0.03237
0.02874
0.02555
0.06857
0.06484
0.04462
0.03031
0.08889
0.05522
0.03169

0.00200 0.04080
0.00105 0.03035
0.00083 0.02543
0.00065 0.02216
0.00470 0.06443
0.00420 0.06116
0.00199 0.03596

0.00092
0.00790
0.00305
0.00100

0.02475
0.07586
0.04519
0.02743

0.03947
0.02964
0.02463
0.02143
0.07439
0.07066
0.03925
0.02779
0.06212
0.04485
0.02701
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Table 3. Cont.

BaterryID Method RMSE MSE MAE MAPE
B0055 SSA-CNN-BIiLSTM 0.02719 0.00074 0.01990 0.01946
B0056 LSTM 0.09688 0.00939 0.08486 0.06858
B0056 BiLSTM 0.04722 0.00223 0.03228 0.02747
B0056 CNN-BiLSTM 0.04653 0.00216 0.03513 0.03049
B0056 SSA-CNN-BiLSTM 0.04373 0.00191 0.03183 0.02766
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Figure 14. Estimation results of each model on B0053, B0054, B0055, B0056 (4 °C).
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Figure 15. Raincloud diagram of absolute error for BO053, B0054, B0055, B0056 (4 °C).

5. Conclusions and Future Work

In this study, we propose an innovative SSA-CNN-BiLSTM framework aimed at accu-
rately estimating the capacity of LIBs and effectively addressing the challenges in current
battery health management systems. Firstly, the CNN applied in this framework can
automatically select features, eliminating the tediousness and potential oversight of impor-
tant features in manual selection processes. Moreover, our introduced SSA optimization
algorithm outperforms traditional methods by overcoming the shortcomings of manual
network parameter setting.

Meanwhile, the comprehensive validation of this framework using two sets of experi-
mental data provided by NASA is also conducted under different temperature conditions.
In-depth evaluation of the prediction results show that the SSA-CNN-BiLSTM framework
for capacity prediction of LIBs has higher accuracy compared with traditional LSTM, BiL-
STM, and CNN-BiLSTM methods during the multi-battery cycle experiments. Future work
will focus on improving and expanding this research. A potential avenue for improvement
is the application of additional deep neural network models to enhance the prediction
accuracy of the algorithms. Thus, conducting more practical experiments is necessary to
validate the algorithm.
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