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Abstract: With the proliferation of electric vehicles (EVs) and the consequential increase in EV battery
circulation, the need for accurate assessments of battery health and remaining useful life (RUL) is
paramount, driven by environmentally friendly and sustainable goals. This study addresses this
pressing concern by employing data-driven methods, specifically harnessing deep learning techniques
to enhance RUL estimation for lithium-ion batteries (LIB). Leveraging the Toyota Research Institute
Dataset, consisting of 124 lithium-ion batteries cycled to failure and encompassing key metrics
such as capacity, temperature, resistance, and discharge time, our analysis substantially improves
RUL prediction accuracy. Notably, the convolutional long short-term memory deep neural network
(CLDNN) model and the transformer LSTM (temporal transformer) model have emerged as standout
remaining useful life (RUL) predictors. The CLDNN model, in particular, achieved a remarkable mean
absolute error (MAE) of 84.012 and a mean absolute percentage error (MAPE) of 25.676. Similarly, the
temporal transformer model exhibited a notable performance, with an MAE of 85.134 and a MAPE of
28.7932. These impressive results were achieved by applying Bayesian hyperparameter optimization,
further enhancing the accuracy of predictive methods. These models were bench-marked against
existing approaches, demonstrating superior results with an improvement in MAPE ranging from
4.01% to 7.12%.

Keywords: deep learning; lithium-ion batteries; battery management systems; EV battery recycling;
battery degradation

1. Introduction

The prediction of remaining useful life (RUL) for lithium-ion batteries is a critical task
for ensuring the safe and optimal operation of battery packs, especially in applications
like electric vehicles (EVs) [1]. This literature delves into two primary approaches for RUL
prediction: physics-based models (PBMs) and data-driven models (DDMs). PBMs leverage
the fundamental principles of electrochemistry and battery physics to simulate battery
behaviour over time [2]. These models consider factors such as ion diffusion, electrode
reactions [3], discharge capacity [4,5], cycles, capacity fade [6], and thermal effects [7]. While
PBMs provide valuable insights into degradation mechanisms, they are computationally
intensive, require detailed knowledge of electrochemical processes [2,8], and may struggle
to capture real-world complexities. DDMs, on the other hand, use machine learning
algorithms to learn patterns and relationships directly from available data [9,10]. They have
gained prominence due to their ability to capture complex and nonlinear relationships that
exist in the data, making them more adaptable and flexible than PBMs.

DDMs in machine learning are broadly categorized into two distinct groups: statistical
machine learning and deep learning, each offering unique strengths and applications in var-
ious domains. Statistical machine learning, often referred to as shallow learning, typically
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encompasses models that are less complex and computationally intensive. This category
includes a range of methods such as support vector machines (SVMs) [10], Gaussian process
regression (GPR) [11–13], random forest [14,15], and Bayesian approaches [16–18]. These
techniques are particularly effective for smaller datasets where prior knowledge about the
generative process of the data is available. However, they often encounter challenges when
addressing complex scenarios, such as accurately capturing intricate battery characteristics
and long-term dependencies within datasets [2,19].

In contrast, deep learning methods, which utilize neural networks with multiple
hidden layers, are adept at handling large, complex datasets, often where there is limited
a priori knowledge about the underlying processes or the most suitable features. This
category includes advanced techniques like recurrent neural networks (RNNs) [20,21],
convolutional neural networks (CNNs) [22,23], and various hybrid models [24,25]. Deep
learning approaches are renowned for their ability to discern and learn from intricate pat-
terns present in raw data, making them particularly effective in the analysis of multivariate
time-series information. This capability makes them especially valuable in fields where
understanding and predicting complex behaviours over time is crucial.

Recent advancements in sequence-to-sequence deep learning in the domain of natural
language processing further contribute to the discourse on multi-horizon time-series fore-
casting (MTSF). Sutskever et al. introduced a powerful end-to-end approach employing
multilayered long short-term memory (LSTM) networks for sequence learning, showcasing
impressive results in translation tasks [26]. Similarly, Yang et al. explored incorporating
a cross-entity attention mechanism in MTSF in [27]. This method minimizes assump-
tions on sequence structures, particularly in tasks where large labelled training sets are
available. The use of time-series forecasting has also been adopted in RUL prediction, as
shown by [28], which introduces a Capsule Neural Network–LSTM, a hybrid model for
precise RUL prediction in mechanical systems, enhancing sensitivity to spatial features in
time-series sensor data.

However, in the context of RUL prediction, improvements in robustness, generaliz-
ability, and addressing challenges like variable sampling rates and incomplete data remain
areas of focus [29]. Hence, despite the progress in RUL prediction, current research has
several knowledge gaps and limitations. These include (1) the need for more robust and ac-
curate models, for enhanced generalizability, (2) the comprehensive exploration of various
deep learning architectures, (3) the utilisation of complete datasets with varying sampling
rates, and the consideration of factors like battery ageing and non-stationary signals.

Rationale for Advanced Model Architectures over Regression

The progression in methodologies for predicting the remaining useful life (RUL)
of lithium-ion batteries underscores a pivotal shift toward enhancing the operational
efficiency and reliability of battery-powered systems. Building upon the groundwork laid
by Severson et al. (2019) [30], who utilized regression-based methods for early-cycle data
prediction, our study uses the same dataset for advanced machine learning exploration.
Diverging significantly, we employ sophisticated hybrid deep learning architectures, such
as convolutional long short-term memory deep neural networks (CLDNN) and temporal
transformers, which are adept at intricately modelling the spatial and temporal dynamics
of battery degradation. This strategic departure from linear regression to deep learning
is instrumental in capturing the multifaceted and nonlinear aspects of battery ageing,
thereby elevating the precision and dependability of our predictions within a dynamic
100-cycle window. The rationale behind exploring temporal deep learning approaches
based on neural networks over vanilla regression lies in their superior ability to process and
learn from sequential data, providing a nuanced understanding of degradation patterns
that enhance predictive accuracy and reliability, and broadening the scope for practical
applications in battery life-cycle management.

Further, we refine the dataset through a rigorous feature engineering and selection
process, including techniques such as linear interpolation and principal component analysis
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(PCA), which enhance model training and provide a broader application range. Coupled
with precise data preprocessing and sampling techniques, such as stratified random sam-
pling and outlier removal, our methodology assures robust and dependable predictions
across varied battery use cases. The incorporation of Bayesian optimization for hyperpa-
rameter tuning is a testament to our dedication to achieving optimal model performance,
tailored specifically to the dataset’s nuances (an overview can be seen in Figure 1). It en-
compasses crucial parameters such as discharge capacity, temperature, internal resistance,
and discharge time.

To effectively address the heterogeneity within our dataset, we adopted a hybrid
approach known as CLDNN proposed by Sainath et al. [31], which stands for convolutional,
long short-term memory, and dense neural networks. CLDNN harnesses the collective
power of these neural network architectures, providing a solution to the multifaceted nature
of LIB RUL prediction. In addition, we repurposed the hybrid model called the temporal
transformer (TT) proposed by Chadha et al. [32] to enhance prediction accuracy and
robustness in LIB RUL. The TT model combines the strengths of transformer self-attention
layers and LSTM architectures, presenting a unique approach to sequential modelling that
effectively addresses the challenge of capturing long-term dependencies [33]. While the
temporal transformer shares a name with the temporal fusion transformer (TFT) introduced
by Lim et al. [34], it is important to note their architectural differences. The TFT is designed
for handling multi-modal data, allowing it to incorporate various relevant features for
forecasting tasks. In contrast, our dataset did not require such multi-modal capabilities,
leading to divergent architectural choices in our models.

Data 
Cleaning

Outlier 
Removal

Moving 
Averages

Data 
Compression

Process

Multi-step charging and constant 
current discharging

Process

Lithium-Ion Battery Cells  
(LiFePO4)

Process

Sensor data 
and collected 

measurements

Remainiing 
Useful Life

Ensemble Neural Network  architectures for spatial and temporal 
featrures with disparate sampling rate

M
er

g
e

M
er

g
e

Merge

M
erg

e

Data 
Preprocessing

Prognostics: RUL Prediction

Figure 1. An overview of the proposed advanced data refinement and model optimization.

The remainder of this article is structured as follows. In Section 2, we delve into
the related works within the field of lithium-ion battery RUL prediction, focusing on
deep-learning approaches. Section 3 provides a comprehensive overview of our proposed
methodology, followed by a detailed account of the experimental procedure. Section 4
is dedicated to discussions regarding the outcomes of our experiments. Lastly, Section 5
closes this article with our conclusion and future work.

2. Related Works

Physics-based models (PBMs) provide valuable insights into the underlying mecha-
nisms of lithium-ion batteries but often face challenges when predicting their remaining
useful life (RUL) [2]. These models perform optimally within narrow domains, requiring a
detailed understanding of battery electrochemical processes, which can be time-consuming
and computationally intensive [3,8,35]. The simplified assumptions often made in these
models limit their ability to generalize, affecting RUL prediction accuracy. Furthermore,
parametrisation in PBMs is challenging, due to manufacturing variations and the difficulty
of obtaining precise model parameters [36,37]. These models also exhibit limited adapt-
ability to dynamic environments and high computational complexity, which hampers their
real-time applicability. Calibration and validation procedures for these models demand
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extensive data and resources [38]. Consequently, data-driven methods like machine learn-
ing have gained prominence for their ability to learn complex nonlinear relationships from
data, overcoming uncertainties, and providing a promising alternative for RUL prediction
in LIB [39–42].

2.1. Statistical Machine Learning

As previously noted, statistical machine learning methods, including support vector
machines (SVMs) [10], support vector regression with Kalman filters [43], Gaussian process
regression (GPR) [11–13], random forest [14,15], and Bayesian approaches [16–18], have
been employed for predicting battery RUL. Tong et al. [44] introduced a deep-learning-
based algorithm called adaptive dropout long short-term memory (ADLSTM) and Monte
Carlo (MC) simulations, achieving high precision with only 25% of degradation data.
Similarly, Kwon et al. [45] integrated a multi-linear regression approach with a recurrent
neural network to model LIB degradation.

2.2. Temporal Models

Temporal models, like recurrent neural networks (RNNs) and more advanced vari-
ants such as LSTM cells and gated recurrent units (GRUs), are employed to capture the
sequential nature of battery data. Lipu et al. [20] introduced a nonlinear auto-regressive
with exogenous input (NARX)-based neural network (NARXNN) for state of charge (SOC)
estimation, utilizing a lighting search algorithm (LSA) to optimise hyperparameters. Sig-
nal decomposition techniques like discrete wavelet transform (DWT), empirical mode
decomposition (EMD), and variational mode decomposition (VMD) are combined with
the NARX model in [46] to predict capacity degradation trajectories. In [47], Zheng et al.
employed a deep LSTM network followed by multiple fully connected (FC) layers, whereas
Wang et al. in [48] introduced a bidirectional LSTM architecture with additional FC lay-
ers. Chemali et al. [21] proposed an RNN architecture with LSTM for RUL estimation,
achieving low mean absolute error (MAE) values and demonstrating generalization across
different conditions.

2.3. Convolutional Models

Shen et al. [23] presented a deep convolutional neural network (DCNN) that achieved
higher accuracy than traditional methods, such as filter-based models [49–52]. However,
limitations include the fixed-size input matrix and a limited understanding of the method’s
interpretability. Following a similar approach, Li et al. [53] proposed another DCNN,
employing a time window approach for sample preparation and feature extraction. In
another work, [54], Babu et al. proposed a novel deep CNN-based regression method for
RUL estimation. Similarly, Shen et al. in [14] proposed a DCNN with transfer learning
(DCNN–TL) model, which was then integrated with ensemble learning to form DCNN–
ETL. The effectiveness of the DCNN–ETL model was then benchmarked against five other
data-driven methods including random forest regression, Gaussian process regression,
and DCNN. In another study, a temporal convolutional network (TCN) model was used
along with causal and dilated convolutions to capture local capacity degradation, but its
limitations include its applicability to other battery types and real-time implementation
challenges [24].

2.4. Hybrid Models

Ren et al. proposed an auto-CNN–LSTM model for RUL estimation, incorporating
an auto-encoder to enhance feature vectors through dimensionality reduction and fea-
ture learning, achieving accurate predictions [25]. Identified knowledge gaps include the
need for enhanced generalizability, further exploration of various temporal networks, and
improved utilization of datasets with varying feature sampling rates. Additionally, it is sug-
gested that future research should address the ageing effects, the impact of non-stationary
signals, the incorporation of relevant features, and the capture of spatial information. Li et al.
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introduced a directed acyclic graph network that combined the LSTM with the CNN, of-
fering a novel approach to RUL prediction [55]. Tan et al. focused on a multi-variate
time-series approach using a lightweight CNN with attention mechanisms to enhance
prediction accuracy [56]. Hybrid models, such as the one combining a GRU and a CNN
for state of health (SOH) estimations, presented by Fan et al., and the attention-assisted
temporal convolutional memory-augmented network (ATCMN) for RUL prediction from
limited data, proposed by Fei et al., demonstrate promise but require further exploration
and rigorous testing on more diverse datasets [57,58]. In previous work, the effectiveness
of CNN–LSTM and CNN–LSTM–Differential-Neural-Computer models was demonstrated,
showcasing not only superior predictive accuracy but also efficiency in learning temporal
dependencies with fewer epochs [59,60].

In the following section, we aim to address critical knowledge gaps identified in
the literature regarding the prediction of the RUL of LIBs. These gaps encompass issues
of robustness, accuracy, and generalizability in DDMs for battery management systems
(BMSs). To overcome these limitations, we developed end-to-end hybrid models capable
of utilizing complete datasets [61], including features with varying sampling rates. By
doing so, we intend to enhance the performance metrics for RUL estimation in LIBs
and move closer to enabling real-time implementation of these models within BMS for
practical applications. Additionally, we explored various deep learning approaches, such
as convolutional neural networks (CNNs) [62], long short-term memory cells (LSTMs) [33],
the Transformer network [63], autoencoder [64], neural Turing machines [65], differentiable
neural computers [66], and hybrid models, while considering the impact of ageing, non-
stationary signals, relevant feature incorporation, spatial information capture, and variable
ambient temperature conditions.

3. Methodology

This section presents the framework (Figure 2) of the proposed LIB RUL prediction
method. An important part of this research was the optimization of model hyperparame-
ters using Bayesian optimization techniques aimed at maximizing the models’ predictive
accuracy. The primary objective was to develop a robust predictive model for estimating
the RULs of LIBs, accounting for intricate temporal battery degradation dynamics and
feature variations in sensor measurements across different battery batches.

Key
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Figure 2. The study pipeline begins with a dataset comprising 124 commercial LIBs that have
undergone extensive cycling until failure. Next, we implement feature selection to extract crucial
features that enhance the accuracy of RUL predictions. Following this, a series of data preprocessing
techniques are employed to clean and compress the dataset. Subsequently, stratified random sampling
is utilized to create a representative sample. Finally, we develop a variety of hybrid deep network
architectures, apply hyperparameter optimization, and evaluate these models using a testing set to
determine the best-performing model.
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3.1. Dataset Description

The dataset employed in this study consists of 124 commercial lithium iron phosphate
(LFP)/graphite lithium-ion batteries, each with a nominal capacity of 1.1 Ah and a nominal
voltage of 3.3 V. These batteries were subjected to cycling tests until failure under conditions
aimed at fast charging within a temperature-controlled environment set at 30 °C. Our
dataset is derived from extensive data collection efforts, capturing critical parameters
such as voltage, current, temperature, and internal resistance, which were continuously
measured throughout the cycling process. The term ’continuously measured’ refers to the
collection of data at frequent, regular intervals throughout each battery’s charging and
discharging cycles. This high-resolution data capture allows for an in-depth analysis of
battery performance over time, enabling the precise modelling of degradation patterns.
The charging protocol involved an initial phase utilizing a current of C1 until reaching a
state-of-charge (SOC) of S1, followed by a transition to a current of C2 until achieving a SOC
of S2, consistently maintained at 80% for all cells. Subsequently, a constant current–constant
voltage (CC–CV) charging technique was applied for the transition from 80% to 100% SOC
at a rate of 1 C, culminating at a cut-off voltage of 3.6 V [67]. The batteries’ lifetimes, defined
by the cycle count at which the capacity declined to 80% of its initial value, varied from 150
to 2300 cycles, showcasing a diverse range of degradation behaviors.

3.2. Stratified Random Sampling

Stratified random sampling was employed to create a representative dataset for the
model’s training and testing. This approach ensured that cells from different battery
batches, characterised by varying quality control protocols, were proportionally included in
the dataset. By preventing models from overfitting to specific batch attributes, this method
improved model robustness and generalisation across different LIB batches.

3.3. Feature Selection

The dataset consists of three groups of approximately 48 lithium-ion battery cells
each, to identify features critical for predicting the remaining useful life (RUL) of the
batteries. Our analysis focuses on key parameters, which include linearly interpolated
discharge capacity (Qdlin) and linearly interpolated temperature (Tdlin). These features
are standardized through linear interpolation to maintain uniform analysis conditions
across all cells, ensuring accurate predictions by aligning data on a consistent timeline.
The interpolation process applied maintains a consistent sampling rate for all cells, a
critical factor for the accurate prediction of RUL and ensuring the reliability of time-
series forecasting models. The selection also encompasses internal resistance (IR) and
discharge characteristics, which are vital for evaluating battery health and degradation.
This approach ensures the reliability of our forecasting models by providing a detailed
view of battery performance over time. These features provide descriptive, summary, and
cycle data, offering a holistic view of the batteries’ operational conditions, performance
metrics, and cycle-by-cycle behaviour. This supports a nuanced analysis, leveraging Qdlin
and Tdlin alongside other selected parameters to assess battery health and predict its
lifespan effectively. The output metric, remaining cycles, is calculated to estimate each
battery’s potential duration until its capacity falls to 80% of its original value, serving as a
key indicator of its useful life.

3.4. Data Preprocessing

To prepare the data for deep neural networks, we implemented a comprehensive
preprocessing pipeline. Outliers in internal resistance, discharge time, and discharge
quantity were removed using the fill outliers function with the cubic spline method and a
moving average window of 100 (Figure 3a, Figure 3b and Figure 3c, respectively). These
figures show the features before and after preprocessing (note: these plots depict the first
cell in the first batch). Smoothing techniques, such as moving average filters with a window
size of 15, were applied to discharge data. To capture temporal dynamics in Qdlin and
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Tdlin, the sampling rate was standardized to 1000 entries per cycle. Finally, principal
component analysis (PCA) was employed to reduce the dimensionality of Qdlin and Tdlin
while preserving their salient features.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Cycle

0

0.01

0.02

Re
sis

ta
nc

e 
(O

hm
) Original Data (First Element):

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Cycle

0.016

0.017

0.018

Re
sis

ta
nc

e 
(O

hm
) Cleaned Data (First Element):

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Cycle

0

10

20

Re
sis

ta
nc

e 
(O

hm
)

10-3 Comparison Results (First Element):

(a)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Cycle

1

1.5

Ca
pa

cit
y (

Ah
) Original Data (First Element):

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Cycle

0.9

1

Ca
pa

cit
y (

Ah
) Cleaned Data (First Element):

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Cycle

-0.4

-0.2

0

Ca
pa

cit
y (

Ah
) Comparison Results (First Element):

(b)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Cycle

0

500

Ca
pa

cit
y (

Ah
) Original Data (First Element):

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Cycle

40

45

50

Ca
pa

cit
y (

Ah
) Cleaned Data (First Element):

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Cycle

-400

-200

0

Ca
pa

cit
y (

Ah
) Comparison Results (First Element):

(c)
Figure 3. Comparison of data features before and after preprocessing. (a) Internal resistance, (b) dis-
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3.5. RUL Estimation

Traditional supervised learning approaches rely on labelled training data, where each
data point is associated with a known target value. However, in the context of prognostics,
this assumption often does not hold. The remaining useful life (RUL) of individual com-
ponents is typically not known a priori, making it challenging to train predictive models
using standard regression techniques. To overcome this hurdle, researchers have explored
alternative approaches, such as employing physics-based models or utilizing machine
learning algorithms to estimate the RUL of training data. While assigning a constant RUL
value to all training points may seem like a straightforward solution, this can lead to
inaccurate representations of the actual degradation patterns and hinder the model’s ability
to generalize effectively. A more sophisticated approach involves estimating the RUL based
on a suitable model, as demonstrated by the use of a deep convolution neural network [23].
This approach offers a more realistic representation of the degradation process and can
potentially enhance the model’s predictive performance.

3.6. Metrics

A variety of metrics were used in this study. The success of the model was calculated
based on the deviation (ei) of the predicted number (model prediction ŷi : RULpredicted)
of cycles from the actual number (ground truth yi : RULtruth) of cycles remaining after
every 100 cycle count, as shown in Equation (1). The choice of loss function significantly
impacts the outcome of RUL prediction. Along with the mean absolute error (MAE), shown
in Equation (3), and the mean absolute percentage error (MAPE), shown in Equation (4),
which simply average the absolute errors and calculate the percentage, respectively, we
also tracked the root mean squared error (RMSE), shown in Equation (2), which squares
the errors before averaging, placing greater emphasis on larger deviations. This sensitivity
to larger errors makes RMSE a more suitable metric for prognostics, where accurately
predicting RUL is crucial, and substantial errors can lead to poor performance. Additionally,
the rationale behind tracking these specific metrics is that they allow for meaningful
comparisons against state-of-the-art approaches. Success in our study is quantitatively
measured by the accuracy of our RUL prediction models. The MAE provides a direct
measure of prediction accuracy in the same units as the dataset (number of cycles), MAPE
offers a percentage-based error that is independent of the scale, and RMSE gives a sense of
the error distribution and penalizes larger errors more severely. Our success criterion was
to minimize these error metrics, thereby improving the predictive accuracy of our models.

ei = ŷi − yi (1)

RMSE =

√
1
n

n

∑
i=1

e2
i (2)

MAE =
1
n

n

∑
i=1
|ei| (3)

MAPE =
1
n

n

∑
i=1

(
|yi − ŷi|
|yi|

)
× 100 (4)

3.7. Proposed Architectures

It is worth noting that our experimentation phase encompassed the exploration of
multiple temporal hybrid models; however, we only detail the most effective models.
The most successful architectures in our study were the convolutional long short-term
memory deep neural network (CLDNN), originally proposed by Sainath et al. [31] for
natural language processing and specifically used for large vocabulary continuous speech
recognition (LVCSR) tasks [31]. In their work, CLDNN outperformed the Gaussian mixture
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model (GMM) and hidden Markov model (HMM) systems [68]. We repurposed the CLDNN
architecture for the specific task of RUL estimation.

Another noteworthy model in our investigation was the temporal transformer (TT),
initially introduced by Chadha et al. [32] for RUL estimation using the commercial modular
aero-propulsion system simulation (C-MAPSS) dataset. The TT model demonstrated
effectiveness in predicting the remaining useful life of aircraft engines. Ma et al. [69]
presented a similar use case where their model utilized multi-head attention to capture
global features from various representation sub-spaces. Although originally designed for
predicting the remaining useful life of aerospace engines, we adapted these models for
estimating the remaining useful life of lithium-ion batteries (LIB). This adaptation involved
specific architectural deviations and adjustments to hyperparameters.

Our approach follows Occam’s razor principle, which emphasizes simplicity and
efficiency in model selection without sacrificing the predictive accuracy needed for effective
RUL estimation [70]. This method allows for scalable solutions in battery degradation
prediction by using the advantages of neural network architectures while avoiding un-
necessary complexity. Regarding dataset size concerns, our hybrid deep learning models
aim to balance complexity with dataset limitations. We enhanced data utilization through
preprocessing strategies and incorporated dropout, regularization, and early stopping in
our training processes to prevent overfitting, ensuring consistent performance (please refer
to Figure 4a,b).

(a)
Figure 4. Cont.
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Figure 4. Comparison of the CLDNN and temporal transformer architecture. (a) The CLDNN model.
(b) The temporal transformer model.

3.7.1. The Convolutional Long Short-term Memory Deep Neural Network (CLDNN)

Adapting a convolutional long short-term memory deep neural network (CLDNN),
initially developed for natural language processing (NLP) tasks with tokenized sentences,
to predict remaining useful life (RUL) in lithium-ion batteries (LIB) necessitates several
architectural and algorithmic modifications, as follows:

• Input Representation: In NLP tasks, CLDNN takes tokenized sentences as input. For
RUL prediction, the input representation needs to be tailored to the characteristics of
battery data. Time-series data from sensors measuring various parameters (voltage,
current, temperature, etc.) were used as input. The input data were reshaped into a
format suitable for time-series analysis.

• Sequence Length and Padding: LIB data have variable lengths of sequences as the
cycle count for each battery differs, unlike fixed-length sentences in NLP. Padding or
trimming sequences to a uniform length was not necessary. The network architecture
was able to handle variable-length input sequences.

• Temporal Features: LIB data are inherently temporal, reflecting the degradation of
the battery over time. The CLDNN architecture incorporated mechanisms to capture
temporal dependencies effectively. Long short-term memory (LSTM) layers allowed
us to model temporal patterns.

• Feature Extraction: The features relevant to RUL prediction in LIB differ from those
important for NLP tasks. Modifications to the convolutional layers had to be made to
extract features that are indicative of the battery’s health and degradation.

• Hyperparameter Tuning: The hyperparameters, such as learning rate (lr), filter size
(n f ), kernel parameters (ks), activation functions (a), and dropout rates (dr) needed
adjustment for the new task. Bayesian hyperparameter tuning was used to optimize
the model for RUL prediction.

• Fine-tuning: The model was fine-tuned with different optimizer choices to minimize
loss functions.
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The final optimized CLDNN architecture excels at predicting the remaining useful life
(RUL) of lithium-ion batteries. It comprises a total of 1,518,665 trainable parameters and
combines convolutional neural networks (CNN), long short-term memory (LSTM), and
dense neural networks (DNN). Each component of the network serves a specific function,
as follows:

1. CNN: The CNN layers are used for feature extraction. They capture intricate spatial
patterns within the input data, which, in this case, are time-series data from sensors
measuring various parameters like voltage, current, and temperature.

2. LSTM: The LSTM layers are used to model temporal patterns in the data. They
capture the temporal dependencies in the data, reflecting the degradation of the
battery over time.

3. DNN: The dense neural networks are used for prediction. They contribute to the
model’s regularization and refined prediction capabilities.

The CLDNN architecture for our task is shown in Algorithm 1 and Figure 4a. This
model demonstrates a strong efficiency in handling the heterogeneity of the dataset.

Algorithm 1 CLDNN

1: procedure DEFINESPATIALLAYER(Qdlin, Tdlin, IR, DT, QD, hp)
Input: Qdlin, Tdlin: Input data tensors, IR, DT, QD: Additional inputs, hp: Hyperpa-
rameters
Concatenate: (Qdlin and Tdlin)
Apply Convolutional Layers and Dropout:
h1 ← Conv1D([Qdlin, Tdlin], n f , ks, s, a, padding = same)
h2 ← MaxPooling1D(h1)
h3 ← Conv1D(h2, 2n f , ks, s, a, padding = same)
h4 ← MaxPooling1D(h3)
h5 ← Conv1D(h4, 4n f , ks, s, a, padding = same)
h6 ← MaxPooling1D(h5)
h7 ← Flatten(h6)
h8 ← Dropout(h7, dr)
Features Concatenation:
h9 ← Concatenate(h8, IR, DT, QD)
Return h9

2: end procedure
3: procedure DEFINELSTMLAYER(h9, nu, au)

Input: h9, nu, au
h10 ← LSTM(h9, nu, au)
Return h10

4: end procedure
5: procedure DEFINEDENSELAYERS(h10, nd, ad)

h11 ← Dense(h10, nd, ad)
RUL← Dense(h11, 1, relu_cut)
Return: RUL

6: end procedure

3.7.2. Temporal Transformer

Adapting the temporal transformer (TT) model, which was originally designed for the
estimation of the remaining useful life (RUL) of aircraft engines, for the estimation of RUL
in lithium-ion batteries (LIB), involves several architectural differences and adjustments.
The following are some modifications that might be considered.

• Input Representation: Adjustments to the input representation to accommodate the
characteristics of LIB data were required. The original model took input sequences
related to engine parameters. LIB data consists of time-series measurements of capacity,
temperature, resistance, and discharge time.
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• Attention Mechanisms: Multi-head attention mechanisms, which were used in the
original model by Ma et al. [69], needed adjustments for LIB data. Attention mecha-
nisms were tailored to focus on features relevant to battery degradation patterns about
the linearly interpolated feature.

• Model Size and Complexity: The overall size and complexity of the LIB dataset
required an increase in the size and complexity of the TT model. This involved adding
layers, adjusting attention mechanisms, and increasing the model depth, which led to
3,936,281 trainable parameters.

• Hyperparameter Tuning: Fine-tuning hyperparameters using Bayesian optimization
specific to LIB data was required. This included learning rates, the number of attention
heads, embedding dimensions, layer sizes, and dropout rates.

The temporal transformer (TT) model we used is a hybrid network that combines the
transformer and long short-term memory (LSTM). Each component of the network serves
a specific function, as follows:

1. Transformer: The transformer’s multi-head self-attention mechanism allows the
model to decipher complex temporal dependencies within the dataset. By parallel
processing different parts of the input sequence, it extracts a rich contextual under-
standing of each data point.

2. LSTM: The LSTM units capture long-term relationships between features, enhancing
the model’s predictive capabilities.

3. Feed-forward neural networks (FFNs): The architecture employs FFNs for further
refinement, facilitating the modelling of non-linear data relationships.

The TT algorithm is outlined in the provided Algorithm 2 and Figure 4b (note:
x ∈ RB×T×D: input data with dimensions B × T × D, where B is the batch size, T is
the time dimension, and D is the feature dimension).

The SelfAttention function in Algorithm 2 computes weighted representations of
input data by considering inter-dependencies across multiple dimensions, employing
a scaled dot-product attention mechanism. The TransformerBlock further refines these
representations through layer normalization and feed-forward networks, enhancing their
expressiveness while retaining sequential relationships. This modular and hierarchical
structure allows the LSTM–transformer to capture patterns in sequential data, making it
versatile for offering a robust solution for accurate RUL predictions in lithium-ion batteries.

3.8. Hyperparameter Optimization

The hyperparameter tuning for the proposed LIB RUL prediction models was achieved
using Bayesian Optimization. Hyperparameter tuning is a critical step in the development
of machine learning models, involving the search for optimal configurations to enhance
predictive accuracy [71]. In this study, Bayesian optimization was chosen due to its ef-
fectiveness in handling non-linear and complex search spaces. Unlike traditional grid
search or cross-validation methods [72], Bayesian optimization uses probabilistic models to
predict the performance of different hyperparameter configurations, guiding the search
toward promising regions [73]. This is particularly beneficial in high-dimensional spaces,
where an exhaustive search becomes computationally expensive.

The specific implementation of this tuning process utilized the Keras Tuner library [74],
a choice motivated by its compatibility and ease of integration with deep learning models
(which can be seen in Algorithm 3). The process began with the definition of a hypermodel
class, referred to as “MyHyperModel”, derived from Keras Tuner’s “HyperModel” class. This
class encapsulated not only the architecture of the LIB RUL prediction models, including
CLDNN or TT but also the hyperparameters’ search space. Furthermore, a specialized
Bayesian optimization tuner class, named “MyBayesianOptimizationTuner”, was created
by extending the “BayesianOptimization” class from Keras Tuner. This custom tuner was
configured to minimize the validation mean absolute error (MAE), thereby optimizing the
models’ performance.
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Algorithm 2 Temporal Transformer

1: procedure DEFINETIMEDISTRIBUTEDLAYER(Qdlin, Tdlin, hp)
Input: Qdlin, Tdlin ∈ RB×T×D and Hyperparameters hp . Qdlin, Tdlin: Input data
tensors, hp: Hyperparameters
Concatenate: (Qdlin and Tdlin) . Merge input features
Apply TimeDistributed Dense Layer and Dropout: . Feature transformation and
regularization
h← TimeDistributedDense([Qdlin, Tdlin], hp)
Flatten h . Prepare for Transformer input
Return [Qdlin, Tdlin] . Linearly interpolated features compressed

2: end procedure
3: procedure DEFINESTRUCTURING(hp, IR, DT, QD)

Extract Hyperparameters: embed_dim, num_heads, ff_dim, lstm_units, dense_units .
Model configuration parameters
Define Inputs: IR, DT, QD . Additional model inputs
Features Concatenation: [Qdlin, Tdlin, IR, DT, QD] . Combine all input features
Apply TimeDistributed Dense Layer and Dropout: . Further feature transformation

4: h← TimeDistributedDense([Qdlin, Tdlin, IR, DT, QD], hp)
Flatten h . Prepare for Transformer block
Return [Qdlin, Tdlin, IR, DT, QD] . We now proceed to apply the attention mechanism
across each data point

5: end procedure
6: procedure DEFINEMULTIHEADSELFATTENTION(x, Dh) . Uses three sets of weight

matrices Wq, Wk, Wv to transform the input data into query (Q), key (K), and value (V)
Input: x ∈ RB×T×D, Dh . Obtained from DefineStructuring()
Parameters: Wq, Wk, Wv ∈ RD×Dh , Wo ∈ RDh×D . Dh is number of attention heads, W
is weight matrices
Q, K, V ← xWq, xWk, xWv
H ← Attention(Q, K, V) . Computing attention scores Q and K representations,
obtained by linear transformations using Wq and Wk.
h← HWo
Return h

7: end procedure
8: procedure DEFINETRANSFORMERENCODERBLOCK(x, Dh, F)

Input: x ∈ RB×T×D, Dh, F
Parameters: Wq, Wk, Wv ∈ RD×Dh , Wo ∈ RDh×D, W1, W2 ∈ RD×F, b1, b2 ∈ RF . F is the
feedforward dimension
h← MultiHeadSelfAttention(x, Dh)
h← LayerNorm(h + x) . Apply layer normalization to h + x
u←W1h + b1 . Perform a linear transformation on h and add bias b1
u← ReLU(u) . Apply the ReLU activation function for non-linearity
v←W2u + b2
z← LayerNorm(v + h) . Perform another linear transformation

9: Return z ∈ RB×T×D

10: end procedure
11: Dropout Layer
12: LSTM Layers: . LSTM for sequential data processing

h1 ← LSTM(z, lstm_units)
13: Dense Layers: . Dense layer for feature extraction

h2 ← Dense(h1, dense_units, activation) . Output layer for remaining useful life
prediction
RUL← Dense(h2, 1, relu_cut)

14: Return: RUL ∈ RB×1 . Final model output
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Algorithm 3 Hyperparameter Optimization with Keras Tuner

1: procedure DEFINEHYPERMODELCLASS
Class MyHyperModel(HyperModel):
Inputs: . Define hyperparameters and model architecture
Define build: . Build and compile models with varying hyperparameters (e.g.,
CLDNN, TRANSFORMER–LSTM)
Return model

2: end procedure
3: procedure DEFINECUSTOMBAYESIANOPTIMIZATIONTUNER

Class MyBayesianOptimizationTuner(BayesianOptimization):
Define initialization: . Define custom Bayesian Optimization tuner
Define on_error: . Handle errors during the optimization for increased modularity
and robustness

4: end procedure
5: procedure HYPERMODELINSTANCEANDTUNER

Instantiate Hypermodel and Tuner:
hypermodel←MyHyperModel(...)
tuner←MyBayesianOptimizationTuner(hypermodel, objective=val_mae) . Optimize
for the lowest validation MAE
tuner.search(max_trials=100, epochs=10, dataset_train, batch_size=512)

6: end procedure
7: procedure BESTHYPERPARAMETERSANDMODEL . Extract optimized

hyperparameters and associated weights
best_hp← tuner.oracle.get_best_trials(1)
best_model.set_weights(tuner.get_best_trial().get_weights())

8: end procedure

The hyperparameter search was conducted over a substantial span of 100 trials, en-
compassing 10 epochs for each trial on the training dataset. This comprehensive approach
ensured a thorough exploration of the hyperparameter space, thereby identifying configu-
rations that yield the most accurate predictions. Finally, the performance of the optimized
models was rigorously evaluated on the validation dataset, ensuring the reliability and
effectiveness of the hyperparameter tuning process in enhancing the predictive capabilities
of the LIB RUL prediction models.

After completing the search, the optimal hyperparameter set was retrieved, and a
new model was built using these parameters. This process ensured that the final CLDNN
and TT model was fine-tuned for optimal performance, leveraging the power of Bayesian
optimization to navigate the hyperparameter space efficiently.

4. Results and Discussion

This section presents and compares our findings and results to other algorithms,
leveraging the validation data. During model development, it became evident that the
most effective models necessitated two cardinal attributes. Firstly, they were required to be
capable of managing sparse data by proficiently extracting significant features. Secondly,
they were expected to possess the capability to learn both temporal and spatial relationships
between the features, and the remaining cycles of each lithium-ion battery.

After these findings, a comparative analysis was undertaken among an assortment of
hybrid models, which embraced these two critical characteristics. The performance of these
models is visually presented in Figure 5a–c where key performance indicators such as loss,
mean absolute error (MAE), mean absolute percentage error (MAPE) and mean squared
error (MSE) are prominently depicted. It is noteworthy that each figure includes a compari-
son of all the hybrid neural network architectures developed, encompassing the baseline
CLDNN, the optimized CLDNN, the transformer–LSTM, and its optimized counterpart.
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(a)

(b)

(c)
Figure 5. Comparison of error metrics between the top-performing models and other tested models, as
detailed in Table 1. (a) MAE—mean absolute error for the best performing models. (b) MAPE—mean
absolute percentage error for the best performing models. (c) MSE—mean squared error for the best
performing models.

4.1. Comparing All the Tested Temporal Models

When placed in contrast with other models that embody the desired characteristics,
such as convolution neural network–differential neural computer (CNN–DCN), CNN–
LSTM–neural Turing machine (CNN–LSTM–NTM), CNN–transformers, and transformer–
autoencoder, it becomes evident that these models exhibit higher error metrics, thereby
underscoring their relative inefficacy in accurately predicting the RUL for lithium-ion
batteries, as can be seen in Table 1.
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Table 1. Results of six different ensemble NN models.

Model MSE MAE MAPE RMSE %

CLDNN 0.6754 84.012 25.676 0.8218

CNN–DCN 1.402 95.6365 46.408 1.1841

CNN–LSTM–NTM 1.333 284.887 - 1.1546

Transformer–LSTM 0.7136 85.134 28.7932 0.8444

CNN–transformers 0.6783 92.127 36.981 0.8236

Transformer–autoencoder 1.524 288.951 - 1.2345

4.2. Best Performing Models

In the course of assessing these results, two models, namely the convolutional, LSTM,
densely connected (CLDNN) and the transformer–LSTM (temporal transformer), emerged
as the most proficient in predicting the RUL, as outlined in Table 1 and Figure 5. The
CLDNN model exhibited an MAE of 84.012, a MAPE of 25.676, and a MSE of 0.6754.
Conversely, the temporal transformer model recorded a MAE of 85.134, a MAPE of 28.7932,
and a MSE of 0.7136. To view the model’s training duration, please refer to Figure 6.

Figure 6. Training times of the baseline and optimized models in seconds.

4.3. Observations

Several key observations were drawn from the hyperparameter setups (Tables 2 and 3)
of the best-performing hybrid models.

• The optimized temporal transformer had fewer embedding dimensions and a lower
number of attention heads compared to the original model. This meant that the
original model was over-parametrised.

• Both transformer–LSTM and CLDNN models have ’optimized’ versions with distin-
guishable hyperparameter configurations. For instance, the dense layer in the opti-
mized models contains an increased number of units, with the optimized transformer–
LSTM model having 64 units, compared to its original 40. Additionally, the optimized
configurations have a reduced dropout rate and learning rate.

• With a learning rate of 0.001, the original transformer–LSTM model is ten times more
robust than its optimized counterpart, which has a learning rate of 0.0001, preventing
gradient explosion and overshooting the minimum in the optimized model.
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Table 2. Hyperparameter comparison for CLDNN.

Parameter Original Optimized

Convolution filter 56 44
Convolution kernel 27 12
Dense layer Activation tanh tanh
Dense layer units 40 64
LSTM layer activation tanh tanh
LSTM layer units 132 108
Dropout rate–CNN 0.45 0.3
Dropout rate–LSTM 0.4 0.3
Output activation relu relu_cut
Learning rate 0.001 0.0001

Table 3. Hyperparameter comparison for transformer–LSTM.

Hyperparameter Original Optimized

Embedding Dimension (embed_dim) 64 32
Number of Attention Heads (num_heads) 8 2
Hidden layer size (ff_dim) 32 32
Dropout after attention 0.3 0.2
Dense layer activation tanh tanh
Dense layer units 40 64
LSTM layer activation relu tanh
LSTM layer units 132 108
Dropout rate–LSTM 0.4 0.3
Output activation relu_cut relu
Learning rate 0.001 0.0001

4.4. Comparing Convolutional–Long Short-Term Memory–Deep Neural Network (CLDNN) and
Temporal Transformer (TT) Models to Existing Approaches

In comparing our results to other approaches in the literature, several standout mod-
els, namely autoencoder–DNN, auto–CNN–LSTM, and ATCMN, exhibit relevance and
importance to our research. These models, as presented in Table 4, share a hybrid deep
learning architecture similar to ours, combining different network architectures to enhance
prediction. Notably, they distinguish themselves by predicting the remaining useful life
(RUL) of batteries in terms of remaining cycle counts, aligning with our research objectives
and providing a more actionable metric for battery health management compared to other
models that predominantly focus on binary classification tasks (predicting whether the
battery has remaining cycles or has surpassed the end of life threshold). While these models
bear significance due to their hybrid architecture and cycle count prediction approach, our
CLDNN and transformer–LSTM models demonstrate superior performance in RUL predic-
tion for lithium-ion batteries (LIBs), especially when compared to other temporal models
like LSTM–RNN, Deep-CNN, and Temporal-CNN [75]. Table 4 also highlights the average
inference time during the validation of each of the approaches. The average inference time
of the CLDNN and TT is also reasonable, making them efficient for real-time applications.

The ATCMN model, as described by Fei et al. [58], utilizes discharging time, volt-
age, and capacity for RUL estimation. In contrast, our models demonstrate superior
performance in predicting remaining cycles for LIBs within a 100-cycle moving window,
employing a CC–CV (constant current–constant voltage) charge policy. The CC–CV charg-
ing approach involves initially charging the battery at a constant current until a set voltage
threshold is reached, followed by maintaining this voltage while the current gradually
decreases as the battery becomes fully charged. This method is widely used due to its
effectiveness in extending the battery’s lifespan and optimizing its performance. Typical
parameters of the CC–CV charge policy include the constant charge current, the voltage
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threshold at which the transition to constant voltage occurs, and the termination current at
which the charge cycle is considered complete. These parameters are not dynamic but are
predetermined based on the battery’s characteristics and the desired charging performance.
The Auto–CNN–LSTM model by Ren et al. [25] operates on a distinct dataset with less
variation and limited diversity in input parameters, which the authors acknowledge. This
disparity in datasets, compared to our more extensive and diverse dataset, may lead to
variations in outcomes between the two models. Our comprehensive dataset provides
a robust foundation for modelling and prediction, ultimately enhancing the reliability
and applicability of our findings, especially when considering real-time variables such as
voltage, capacity, battery body temperature, and internal resistance within the 100-cycle
moving window.

Table 4. Caparison of CLDNN and TT against other deep learning algorithms.

Model MAE RMSE MAPE Avg. Inference Time

Auto–CNN–LSTM [25] - 5.03 - -

ATCMN [58] 84 - 32.8% 18 ms

Deep CNN [23] - 1.986 - 12.3 ms

Deep CNN transfer-learning [14] - 1.361 - 133.9 s

CLDNN (ours) 84.012 0.8218 25.676 % 15.5 ms

Transformer–LSTM (ours) 85.134 0.8444 28.7923% 16.7 ms

5. Conclusions and Future Work

This study addresses the critical challenge of accurately estimating the RUL of LIBs
within the context of electric vehicles. By leveraging deep learning techniques and utilizing
a rich dataset from the Toyota Research Institute, we have developed and evaluated two
hybrid models: CLDNN and TT. Our contributions encompass the creation of a pre-
processed high-quality dataset through stratified random sampling, by implementation of
a comprehensive data preprocessing pipeline, and the development of two hybrid models.
This pipeline ensures feature consistency and captures temporal dynamics, thereby laying
the foundation for precise RUL predictions.

Both the CLDNN and TT models exhibited commendable performance, surpassing
existing approaches with mean absolute errors (MAEs) of 84.012 and 85.134, respectively.
Furthermore, they demonstrated improvements in mean absolute percentage error (MAPE),
which ranged from 4.01% to 7.12%. These models prove to be well-suited for LIB RUL
prediction, making substantial contributions to battery recycling and sustainability within
the electric vehicle industry. Additionally, these models demonstrated superior inference
time, highlighting their efficiency and applicability in real-world scenarios where rapid
decision-making is crucial. This enhancement in inference speed, combined with their
predictive accuracy, positions the CLDNN and TT models as highly effective tools for
advancing the reliability and efficiency of battery systems in the electric vehicle sector.

While the current achievements in battery health estimation models are commendable,
there are several avenues for improvement. Expanding the validation of these models to a
wider array of real-world datasets is essential to strengthening confidence in their practical
applicability. Investigating advanced techniques such as complex data augmentation,
and alternative ensemble methods, and exploring the potential of liquid neural networks
(LNNs) could lead to improvements in model performance, offering more adaptable and
robust solutions for battery health estimation. Additionally, the application of graph neural
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networks (GNNs) in explaining the lithium-ion battery’s (LIB) remaining useful life (RUL)
has been suggested as a means to reduce the number of parameters while potentially
outperforming traditional physics-based models. Incorporating diverse battery chemistries
into future research is also critical. The current dataset is limited to a specific type of
battery (lithium ferrous phosphate/Gr, 1.1 Ah, 3.3 V), which may not fully represent the
performance across different battery types. By including a variety of battery chemistries,
such as LFP batteries with a capacity of 3 Ah or nickel cobalt manganese (NCM) batteries
with a capacity of 3 Ah and a nominal voltage of 3.8 V, models can be trained to generalize
better across different battery systems. The benefit of including diverse battery chemistries
lies in the ability to create more universal and robust predictive models that can adapt to
various battery behaviours and degradation patterns, ultimately leading to improved safety,
reliability, and efficiency in battery usage. Additionally, a more exhaustive comparison
with existing RUL prediction methods, encompassing both traditional statistical models
and contemporary machine learning approaches, could be conducted.

Despite these achievements, several areas for future improvement have been identified.
Real-world implementation and validation on a broader dataset are crucial for bolstering
confidence in the models’ applicability. Exploring complex augmentation methods, alterna-
tive ensemble solutions, and liquid neural networks (LNNs) [76–78] could further refine
model performance and introduce more efficient, adaptable, and robust approaches to
battery health estimation. There is also potential for the use of explaining the LIB RUL using
graph neural networks, which have also been shown to significantly reduce parameter
count and perform better than their traditional physics-based model counterparts [79,80].
Future research may leverage LNNs or GNNs, known for their dynamic adaptability, to
potentially enhance RUL prediction for LIBs. With reduced computational intensity, these
networks may offer superior generalization and efficiency for large-scale applications like
electric vehicle battery management systems.

Reducing parameter counts to enhance model efficiency, measuring processing times
in online scenarios, and investigating the alignment between hyperparameter optimization
and a comparison between physics-based models are promising avenues for future research.
In conclusion, while this study represents a significant step forward in battery health
estimation, ongoing research should focus on diversifying data sources, simplifying model
complexities, and exploring emerging technologies, such as LNNs, to further advance
this field.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial neural network
AE Autoencoder
BMS Battery management system
CLDNN CNN–LSTM–deep neural networks
CNN Convolution neural network
DDA Data-driven approaches
DL Deep learning
EOL End of life
EM Electrochemical model
GPR Gaussian process regression
IR Internal resistance
LSTM Long short-term memory
LIB Lithium-ion batteries
MAE Mean absolute error
MAPE Mean absolute percentage error
QD Quantity of discharge
Qdlin Linearly interpolated discharge capacity
DDM Data-driven model
RUL remaining useful life
RMSE Root mean square error
RNN Recurrent neural network
SOC State of charge
SOH State of health
SVM Support vector machine
Tdlin Linearly interpolated temperature
TT Temporal transformer
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