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Abstract: This paper describes an approach to determine a fast-charging profile for a lithium-ion
battery by utilising a simplified single-particle electrochemical model and direct collocation methods
for optimal control. An optimal control problem formulation and a direct solution approach were
adopted to address the problem effectively. The results shows that, in some cases, the optimal current
profile resembles the current profile in the Constant Current–Constant Voltage charging protocol.
Several challenges and knowledge gaps were addressed in this work, including a reformulation of
the optimal control problem that utilises direct methods as an alternative to overcome the limitations
of indirect methods employed in similar studies. The proposed formulation considers the minimum-
time optimal control case, trade-offs between the total charging time, the maximisation of the lithium
bulk concentration, and energy efficiency, along with inequality constraints and other factors not
previously considered in the literature, which can be helpful in practical applications.

Keywords: lithium-ion batteries; battery charging; electrochemical battery models; optimal control;
direct methods

1. Introduction

Green energy research has grown exponentially in the last 20 years [1,2], and one
of the most active areas of research that supports green energy and transportation is the
technology of rechargeable batteries. The increasing interest in batteries is justified because
they possess many attractive features: flexible installation, modularisation, rapid response,
and short construction cycles [2]. Fast-charging procedures will play an essential role in
achieving the faster deployment of new intermittent renewable energy infrastructure and
its interconnection with the electricity grid. Moreover, the development of fast-charging
approaches that ensure safety and minimise battery degradation will play a key role in the
adoption of electric vehicles, reducing the driver’s waiting time and range anxiety [3].

The Constant Current–Constant Voltage (CC-CV) approach is recognised as one of the
most effective methods for charging batteries. The CC-CV charging protocol is favoured
for fast-charging applications due to its ability to quickly charge the battery in the CC
stage, followed by a controlled charging process in the CV stage. This protocol helps
to improve charging efficiency, prevent overcharging, and extend the battery’s lifespan.
There are two main stages involved in the CC-CV charging protocol. Initially, the battery
is charged with a steady and controlled current until it reaches a pre-determined charge
voltage. This stage guarantees that the battery receives an appropriate and consistent
current flow. Next, the algorithm moves to the second stage, where a constant voltage is
applied to the battery, which continues to slowly charge until the charging time limit or
the minimum charging current is reached, which is commonly 3% of the rated current [4].
The CC-CV charging method is particularly well-suited for lithium-ion batteries due to
their unique electrochemical characteristics and the requirement to carefully manage the
charging process to ensure safety and longevity.
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Usually, battery manufacturers provide information sheets with the recommended
values for the different phases of the CC-CV protocol [5]. It is well known that elevated
temperatures or temperature imbalances can potentially increase the quantity of solid
electrolyte interphase growth [6,7], which hinders the performance and longevity of the
battery system during operation. Notably, the recommended values are estimated based on
laboratory studies, and despite the effort to provide accurate information, these values are
not very accurate and the optimal values may change over the lifecycle of the battery. This
imprecise estimation may increase costs, reduces the performance and negatively affects
other valuable characteristics of the battery pack.

Battery management systems (BMSs) are developed to optimise battery usage, attain
safe charging and discharging, and, more significantly, reduce cost. Battery modelling is a
necessary task within the BMS and is crucial within many battery control applications [8].
For instance, predicting safe charging in the fastest time is only achievable through ad-
vanced battery modelling.

A key problem that drives the research on new and improved battery models is
the optimal control of battery charging, which requires the use of a dynamic model of
the battery. On the one hand, to reduce the computational time, a good option is to
employ a simple electric equivalent circuit model with linear dynamics. On the other
hand, a non-linear electrochemical model would be the most accurate representation, as
the porous theory models the lithium-ion concentration and other internal parameters. A
method by which a transfer function can be calculated from the non-linear model and then
converted to a fractional polynomial has been proposed, involving the use of the Padé
approximation [2,9,10]. After obtaining the approximation, using the canonical and Jordan
forms, the transfer function can be converted to a linear ordinary differential equation
system [11–15], which can be used to formulate the battery fast-charging problem as an
optimal control problem, using a model derived from electrochemical principles.

In order to address some of the challenges and gaps identified in this research, the
optimal control problem presented in reference [3] was reformulated using direct methods,
which allowed to overcome the drawbacks of the indirect methods. In the literature, several
studies follow a similar methodology for the problem formulation [3,16,17]. However, the
existing models do not consider the trade-offs between minimising the total charge time,
maximising the lithium bulk concentration, and minimising heat losses. Consideration of
these factors may help reduce battery degradation and damage.

One key contribution of this work is to investigate the goal of maximising of the
lithium bulk concentration, and how this goal relates to other considerations including
charging time and heat losses. An upper bound on the value of the surface concentration
has been included in the formulation, as determined by the electrochemical properties of
the electrode The incorporation of charging efficiency considerations by including a term
in the objective functional to account for heat losses has not yet been tackled in the existing
literature. Reducing battery heat losses during charging is crucial as this can help protect
the battery from heat damage. Another contribution of this work is the determination
of minimum-time charging profiles, which become easy to compute with direct methods
for optimal control. All of these considerations affect the charging time and the shape of
the input current, and it is understood that the shape of the input current profile has a
significant impact on the battery charging process [18]. The challenge for designers is to
strike a balance between optimising the total charging time and energy efficiency, while
avoiding overheating the battery and considering all relevant constraints.

2. Literature Review

Several papers have addressed the fast-charging problem as an optimal control prob-
lem [19–21]. Generally, the electrochemical model is the preferred modelling technique to
capture the battery’s chemistry. However, its solution can be complex and computationally
expensive. The coupled PDEs that describe the electro-chemical processes inside the battery,
must be discretised and solved over different domains, which requires ample computation
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time and memory [22]. Additionally, applying discretisation techniques to convert the
PDEs to a system of ordinary differential equations could give rise to peculiar numerical
difficulties [23,24], especially if they are stiff systems. Nonetheless, the problem can still be
approximated using the technique explained in the following paragraphs.

Various types of battery models are described in the literature [25]. These models can
be broadly classified into two categories—model driven and data driven. The model-driven
approach makes use of electrochemical relations [26–29] or employs an equivalent electrical
circuit [30–32]. Models based on electrochemical relations have the advantage of a physical
interpretation, but they can be computationally expensive. Models based on equivalent
circuits use electrical elements, such as resistors and capacitors, to represent the behaviour
of the battery. These models are computationally less expensive than electrochemical
models. Data-driven models, on the other hand, use experimental data to train generic
mathematical constructs, such as neural networks [33].

References [34,35] provide a comprehensive evaluation of mathematical models for
lithium-ion and nickel-based batteries. The most comprehensive mathematical model
widely used in battery simulations is the Doyle–Fuller–Newman model [29,36–38], well
known in the literature by its acronym DFN ’ [39], is developed using the Maxwell–Stefan
equations for the transport of ions in concentrated electrolytes. Fick’s law describes the
diffusion of lithium ions in the negative and positive electrodes. The DFN model has been
extended and coupled with a temperature model [40–42]. It was also further developed to
include ageing models [43].

The DFN model is complex due to the presence of seventeen coupled non-linear PDEs
and non-linear algebraic equations [22,44]. The model describes the electrochemistry of
the battery based on first principles. The input to the model is the applied current density,
while the outputs are the terminal voltage, the state of charge, and the state of health.
Some authors [45–48] proposed the use of novel methods to solve the diffusion equations.
Moreover, several authors concluded that the DFN model is computationally expensive and
unsuitable for the onboard calculation in a battery management system [48]. Researchers
have proposed various techniques to simplify the model’s complexity while maintaining
accuracy. One approach is to reduce the model dimension. These simplifications target the
spherical diffusion process inside the electrodes [49].

A model order reduction by grouping modes with similar eigenvalues is proposed in
reference [50]. Also, the work presented in [17] approximated the frequency response of
the surface concentration using a Padé approximation. Furthermore, the authors of [51]
used the isothermal model based on the first principles of the porous electrode theory to
simplify the model. The authors of [50] proposed a model reduction via Galerkin methods
with coordinate transformation to solve the spherical diffusion problem. More recently, [52]
proposed reducing the DFN complexity in such a way that a simplified model can be used
in online applications.

In [53], the complete DFN model was reduced into continuous-form transfer functions.
In that paper, the derivation of the transfer function followed the same approach shown
in [9], using a rational approximation. In a more recent paper [54], using the simplified
model with a Padé truncation and a feedback control strategy, the simplified model outper-
formed the traditional logic-based approach. In a recent article [52], a divide-and-conquer
methodology was used to simplify the DFN further. The model was successfully imple-
mented, and the results showed that the simulations ran many orders of magnitude faster
than the state-of-the-art models, making it suitable for online monitoring. Additionally,
in reference [55], the authors introduced a framework aimed at simplifying the DFN by
mapping its diffusion phases, thermal dynamics, and voltage output to equivalent electric
circuit models. The results showed high fidelity at low computation cost.

Several authors proposed the single-particle model with the following corresponding
simplifications: firstly, in the geometry (electrodes are considered a single spherical particle);
secondly, in the concentration polarisation (no concentration gradients at the boundary);
and thirdly, in the movements of Li+ (the concentration of Li+ in the electrolyte remains
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constant) [16,56–60]. The model, derived from the porous electrode theory, simplifies each
electrode as a solitary spherical entity. Furthermore, the dynamics of the electrolyte are
neglected. More recently, the work presented in reference [35] provides an updated review
of the physics-based electrochemical battery models. Furthermore, reference [61] presents
an enhanced version of DFN model reduction, named the revised single-particle model.
The model approximates the electrochemistry equations using a third-degree polynomial.
The outcomes of experiments revealed that the model exhibits high accuracy and is over
30 times faster than the traditional model. However, utilising this model in an optimal
control formulation poses several difficulties because of its complexity.

Several variations of the single-particle model exist. For example, the authors of [62]
extended the model to use a Kalman filter. In [63], the model defined the volume-average
concentration as a state variable, which removes the diffusion PDEs of the lithium concen-
tration in the electrode. Another model simplification was proposed in [56]. The model
did not consider the effect of the particle size distribution. In reference [64], using the
simplified single-particle model as a baseline and dynamic programming, the optimal
charge currents were calculated as a function of the cycle number. In [65], the authors
used the single-particle model to solve the minimum-time battery charge using optimal
control. Although the results match those presented by other papers that used equivalent
circuit models, the methods and procedures used in that article are not sufficiently clear.
The simplification proposed in [58], widely adopted due to its accuracy at low values of
the rate of discharge and moderate computational costs, is commonly utilised despite its
limitation of inaccurate results at high battery current levels. The work described in [66]
studied the minimum-time charging problem using bidirectional current pulses and an
electric equivalent circuit model, which is less accurate for the estimation of the state of
charge than the electrochemical model.

The third-order Padé approximations have been widely used to reduce the complexity
of the electrochemistry model [9,11,67–69]. In those works, the Padé approximation is
applied to the transfer function resulting from combining the evolution of the lithium
concentration and the current density [3,70]. In reference [71], the authors performed
a runtime test for the third-order Padé model approximation, showing that it presents
great superiority in terms of computational complexity. In [72–74], similar simplifications
were applied to the diffusion partial differential equations using a Padé approximation.
However, these papers aimed to simulate lithium batteries rather than formulate optimal
control problems.

The implicit optimal control problems formulated for the battery fast-charging problem
rely on a set of conditions that the charging current and the state trajectory must satisfy to
be considered an optimal solution; those conditions are called the necessary first/second
conditions for optimality. The calculus of variations helps find these conditions [75–79].
Two main methods are used to numerically find the optimal trajectory: indirect and
direct methods.

Pontryagin’s minimum principle is at the core of indirect methods, which utilise the
first-order necessary conditions of optimality. As a result, a two-point boundary value
problem is generated. Additionally, the equations can be manipulated analytically, provid-
ing a clearer understanding of the solution’s structure. However, indirect methods have a
significant drawback: the need to derive the first-order necessary conditions analytically
for each problem instance. Moreover, creating an appropriate initial estimate is challenging
since it necessitates prior understanding of the control’s switching structure.

Solving optimal control problems using direct methods requires the specification
of the type of discretisation approach to be utilised. Discretisation approaches include
local approximations, such as the trapezoidal and Hermite–Simpson methods, among
others [80–82]. Trapezoidal and Hermite–Simpson collocation methods are direct ap-
proaches that work by dividing the time interval and approximating the solution within
each subinterval using interpolation. The trapezoidal method uses a quadratic interpolating
polynomial, while the Hermite–Simpson collocation method approximates the solution
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using a cubic interpolating polynomial. On the other hand, increasing the number of
discretisation points improves the accuracy of the approximation but also increases the
computational cost. When using additional discretisation points, the solution can capture
more details of the underlying solution, such as sharp transitions or fast variations in the
input current. However, doing so requires more computational resources and time. For
all the simulations in this work, the maximum relative local error, which measures the
accuracy of the approximation of the state variables and is described in [83], was estimated
for each candidate solution, and the best solution was chosen for each case to provide the
smallest value of this error.

Direct methods for optimal control do not present a general approach to the solution;
instead, the numerical algorithm is adjusted for each problem. These algorithms can
manage high-dimensional-order systems. Indirect methods offer higher accuracy than
direct methods, though the latter are more adaptable and sturdier. Direct methods are
designed to easily accommodate bounds on inputs and states, in addition to path and
terminal constraints.

3. Battery Fast-Charging Problem

The primary goal of the battery fast-charging problem is to efficiently transition from
an initial to a final state of charge while adhering to the problem constraints. Conse-
quently, the battery fast-charging problem has been framed as an optimal control problem.
While different battery models have been utilised to formulate and solve this problem,
the equivalent circuit model has proven to be particularly effective, offering a reliable
approximation [84]. This model produces a system of linear ordinary differential equations
that can be solved using well-known numerical methods. In reference [85], the authors
developed a closed-form solution of an equivalent circuit model of order one, which was
used to show that the bang-and-ride shape of the input current is the best charging policy,
considering the objective functional of the optimisation problem as a weighted sum of
time-to-charge and heat losses.

Few studies have investigated the battery charging formulated as an optimal control
problem. One such study [66] employed a basic equivalent circuit model of order two to
determine the optimal equilibrium voltage required for a lithium-ion battery. The authors
demonstrated that the problem’s constraints determine whether the minimum-time battery
charge solution is a bang-bang or bang-off-bang trajectory as it “switches from one extreme
to the other within the bounds” [66]. The same authors reformulated the optimal control
problem into the determination of the switching time (switching time refers in this context
to the specific moment in time when the input charging current transitions or switches
from on to off [86]). The results demonstrated that the model is computationally suitable
for embedded applications.

In a more recent publication [87], the authors linearised the single particle model. The
resulting model is composed of four linear differential equations. However, the model
has limited usability because it made the assumption that the input current has a small
amplitude and no direct current component. Linearisation notably simplifies the problem’s
analytical solution, but it reduces the solution’s accuracy.

In this work, the battery fast-charging problem is initially formulated according to the
methodology described in [3]. The model involves an approximation of the battery cell
dynamics using first principles. The objective is to establish a transfer function between the
input current I(t) and the bulk concentration c−s . Then, by utilising the Laplace transform,
the lithium diffusion partial differential equation can be transformed into an ordinary
differential equation in the variable s and solved. The concentration dynamics over time
that describe the diffusive flow of Li+ in the negative electrode are represented by a one-
dimensional partial differential equation that follows the diffusion model as shown in
Equation (1):

∂c−s
∂t

(r, t) =
1
r2

∂

∂r

(
D−

s r2 ∂c−s
∂r

(r, t)
)

(1)
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which can be transformed into Equation (2):

∂c−s
∂t

(r, t) = D−
s

[
2
r

∂c−s
∂r

(r, t) +
∂2c−s
∂r2 (r, t)

]
(2)

with Newman boundary conditions:

∂c−s
∂t

(0, t) = 0 and
∂c−s
∂r

(R−
s , t) =

I(t)
D−

s Fa−sn AsnL−
sn

(3)

where R−
s is the particle radius of the negative electrode, D−

s is the solid diffusion constant
of the negative electrode, asn is the specific interfacial surface area, F is Faraday’s constant,
Asn is the electrode current collector specific area, and Lsn is the thickness of the negative
electrode.

Using Laplace transform applied to (2),

D−
s

d2cs(r, s)
dr2 +

2D−
s

r
dcs(r, s)

dr
− scs(r, s) = 0 (4)

The lithium bulk concentration in the particle is determined by evaluating the solution
at r = R−

s . The general solution of Equation (4) with the boundary conditions given in
Equation (3) was developed in [9] and is provided in (5):

C−
ss(R−

s , s)
jn(x, s)

=
R−

s

asFAD−
s

sinh(R−
s

√
s

D−
s
)

R−
s

√
s

D−
s

cosh(R−
s

√
s

D−
s
)− sinh(R−

s

√
s

D−
s
)

(5)

where C−
ss(R−

s , s) is the solid-electrolyte surface concentration. Then, the Padé approxi-
mation method can be applied to Equation (5) to obtain a linearised representation of the
model [3],

C−
ss(R−

s , s)
j−n

≈ −

3
R−

s
+

4
11

R−
s

D−
s

s +
1

165
R−

s
3

D−
s

2 s2

s

(
1 +

3
55

R2
s

D−
s

s +
1

3465
R−

s
4

D−
s

2 s2

) (6)

and j−n is given by Equation (7):
j−n = a−snFAsnL−

sn

asn = 3ϵsn/R−
s

(7)

where ϵsn is the volume fraction of filler in the negative electrode and j−n represents, as
noted in [72], the mean pore wall movement of lithium ions at the negative current collector.
Although, as highlighted in [17], it is unnecessary to estimate the bulk concentration
through an additional state variable since it can be directly deduced from (6), the approach
in this work follows [8].

As observed in Equation (6), the model conserves, to some extent, the physical meaning
of the diffusion process through the presence of D−

s and R−
s in the resulting transfer

function. Additionally, as presented in Equation (7), the transfer function also depends on
the geometry of the electrodes. The value for the parameters R−

s , D−
s , Asn, Lsn and ϵsn for a

nickel–manganese–cobalt lithium-ion battery can be obtained from [88].
Assuming zero off-diagonal elements in the system matrix, the final Jordan canonical

form is given in Equation (8):
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ż1
ż2
ż3

 =

−0.34413 0 0
0 −0.004203 0
0 0 0

z1
z2
z3

+

 2.2254 × 10−7

−2.7182 × 10−8

−1.2338 × 10−1

u(t) (8)

[
C−

ss
c−s

]
=

[
−2.9233 × 106 3.3022 × 106 1.0

0 0 1.0

]z1
z2
z3

 (9)

The surface concentration, C−
ss = C1x is calculated as a linear combination of the states

x = [z1, z2, z3]
T , C1 is the row vector defined by the first row of the matrix in Equation (9),

while the state z3 = c−s represents the bulk concentration.

4. Optimal Control Problem Formulation

Formulating an optimal control problem for fast charging involves the definition of
the objective functional, the dynamic equations, the boundary conditions, and any other
constraints associated with the problem. The initial step is to define an objective functional
representing the optimisation goal. One possibility is to maximise the bulk concentration.
The battery dynamics are modelled using the simplified single-particle model, as described
in Section 3. The lithium surface concentration needs to be given an upper bound as there
is a limit it cannot exceed. The optimal control problem is solved using direct methods
and numerical optimisation techniques to find the optimal charging profile, which satisfies
the surface concentration constraint, as well as other constraints defined below, while
minimising the objective functional.

In mathematical terms, an optimal control problem is typically formulated as follows.
Find the final time t f , the optimal state trajectory x(·) ∈ Rn, and the control function
u(·) ∈ Rm such that the objective functional J is optimised over the interval t ∈ [t0, t f ],
where t0 ∈ R and t f ∈ (0, Tf ] ⊆ R are the initial and final time, respectively, and m, n ∈ N.
The variable t ∈ R is the independent variable. The objective functional in Bolza form is
given in (10):

J = Φ(x(t0), to, x(t f ), t f ) +
∫ t f

t0

L(x(t), u(t), t)dt (10)

where Φ : Rn ×R×Rn ×R → R is the end cost, the integral term is known as the running
cost, and the scalar function L : Rn ×Rm ×R → R is the integrand. The system is subject to
the system state equations (i.e., dynamic constraints)

ẋ = f(x(t), u(t), t) (11)

A set of inequality constraints can be used to express the initial and terminal conditions.
These constraints are also known as event constraints:

eL ≤ e[x(t0), u(t0), x(t f ), u(t f ), t0, t f ] ≤ eU (12)

The problem might also have time-dependent inequality constraints, often called path
constraints:

hL ≤ h[x(t), u(t), t] ≤ hU , t ∈ [t0, t f ] (13)

where L and U refer to lower and upper bounds, respectively. The functions f, e and h are
defined as per Equation (14)

f : Rn ×Rm × [t0, t f ] −→ Rn

e : Rn ×Rm ×Rn ×Rm ×R×R −→ Rs

h : Rn ×Rm × [t0, t f ] −→ Rr

(14)
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r, s ∈ N. There are, in addition, bound constraints on the decision variables as given in
Equations (15)–(18)

uL ≤ u(t) ≤ uU , t ∈ [t0, t f ], (15)

xL ≤ x(t) ≤ xU , t ∈ [t0, t f ], (16)

t f − t0 ≥ 0 (17)

t f ≤ Tf (18)

The formulation of the battery fast-charging problem as an optimal control problem
using the third-order Padé approximation of the single-particle model follows. The dy-
namics of the battery are given in Equation (8). The formulation aims to find an input
current profile and a final time to minimise the objective functional, while simultaneously
enforcing physical and operational constraints.

The state vector x(t) for the lithium-ion battery cell under the new linear model is:

x(t) = [z1 z2 z3]
T

The meaning and units of the state variables are:

• z1: state 1 (mol/m3)
• z2: state 2 (mol/m3)
• z3: bulk concentration (mol/m3)

On the other hand, the profile of the input current I(t) over the time interval [t0, t f ]
needs to be chosen. The letter u is commonly used to represent the control variable such
that u(t) ≡ I(t).

In this study, different formulations of the optimal fast charging problem were anal-
ysed, as described in Table 1. It is henceforth assumed that t0 ≡ 0.

Table 1. Summary of the different formulations of the optimal control problems. Note that the initial
time t0 = 0.

Case Description Path Constraints End Cost Integrand Final Time

1 Baseline C1x ≤ Cb 0 −z3 free
2 Balanced C1x ≤ Cb 0 −z3 + u2Rc free
3 Parameterised C1x ≤ Cb γt f (1 − γ)(−βz3 + κ(1 − β)(u2Rc)) free

4.1. Case 1: Baseline

The model dynamics, constraints and boundaries are obtained from [3]. The authors
derived the analytical solution to the battery fast-charging problem using the optimality
conditions and Pontryagin’s minimum principle for a fixed final time.

Given the dynamics of the battery as shown in Equation (8), the goal is to determine the
final time t f , the optimal control function u(t) and the state trajectory x(t) that maximises
the bulk concentration by minimising the objective functional, J:

J =
∫ t f

0
−z3(t)dt (19)

with the state and input variables bounded as per Equation (20):

−3.0 × 10−4 ≤ z1 ≤ 0.0

−3.0 × 10−4 ≤ z2 ≤ 6.0 × 10−4

0.0 ≤ z3 ≤ 15, 000.0

−5C ≤ u(t) ≤ 0

(20)
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where C is the battery rate of discharge (66 Ah), and a single path constraint is given in
Equation (21):, which places an upper bound in the surface concentration:

C−
ss = C1x = −2.9233 × 106z1 + 3.3022 × 106z2 + 1.0z3 ≤ Cb (21)

where C1 refers to the first row of the matrix in Equation (9), Cb = 0.5c−s,max, and c−s,max =
30, 000.0 is the maximum surface concentration. The surface concentration cannot go above
its maximum value, which depends on the electrochemical characteristics of the electrode,
and so 50% of the actual limit has been chosen as the upper bound Cb [3]. The initial state
condition is:

z1(0) = 0.0

z2(0) = 0.0

z3(0) = 1022.70

(22)

The definition of the state of charge, SoC is given in Equation (23):

SoC =
z3

c−s,max
=

c−s
c−s,max

(23)

The initial conditions for state variables in Equation (22) and the value of c−s,max, imply
that the initial state of charge is SoC(0) = 0.03. Note that the state of charge as defined by
Equation (23) is proportional to the bulk concentration c−s .

4.2. Case 2: Balanced

In [3], the bulk concentration was maximised analytically (indirect method) by min-
imising the objective functional given in Equation (19).

In contrast, given the dynamics of the battery as shown in Equation (8), in this case
the goal is to determine the final time t f , the optimal control function u(t) and the state
trajectory, x(t), that optimises the objective functional:

J =
∫ t f

0

[
−z3(t) + u(t)2Rc

]
dt (24)

with the state variables bounded as per Equation (20), a single path constraint given in
Equation (21), and the initial condition for the state variables given in Equation (22).

This formulation investigates a balanced optimisation of the bulk concentration and
the heat losses, which are given by u(t)2Rc, where Rc = 25.051874 × 10−3 Ω.

4.3. Case 3: Parameterisation of the Objective Functional

The parameterised problem defines different weighting factors in the objective func-
tional. Three sub-cases are summarised in Table 2. The parameters are interpreted as
follows: β ∈ [0, 1] is the relative weight between the final time and the heat losses, γ ∈ [0, 1]
is the relative weight between final time and the integral term in the objective functional,
and κ imposes penalties on the internal heat losses. Case 3.1 considers the minimum-time
approach, as the final time is being minimised, case 3.2 studies the trade-off between
maximising the bulk concentration and reducing heat losses, and case 3.3 investigates
the trade-offs between minimising the final time, maximising the bulk concentration, and
minimising the heat losses.

Table 2. Different objective functionals based on the values of the parameters β, γ and κ for case 3.

Case γ β κ End Cost Integrand

3.1 1 n/a n/a t f 0
3.2 0 0.1 ≤ β ≤ 0.9 {1, 5, 10} 0 −βz3 + κ(1 − β)u2Rc
3.3 γ = 0.8 0.1 ≤ β ≤ 0.9 {5} γt f (1 − γ)(−βz3 + κ(1 − β)(u2Rc))



Batteries 2024, 10, 2 10 of 20

Given the dynamics of the battery as shown in Equation (8), the goal is to determine
the final time t f , the optimal control function u(t) and the state trajectory, x(t), that optimise
the objective functional:

J = γt f +
∫ t f

0

[
(1 − γ)(−βz3(t) + κ(1 − β)u(t)2Rc)

]
dt (25)

where Rc is the internal resistance of the cell, the state variables are bounded as per Equation (20),
a single path constraint is given in Equation (21), and the initial state condition is given in
Equation (22).

This formulation aims to facilitate the investigation of the effects of different terms of
the objective functional.

5. Results and Discussion

In each of the following simulation scenarios, the optimal control solver PSOPT is
configured to produce the best approximation error possible. PSOPT is an open-source,
optimal control solver written in the C++ programming language. The application is
described in detail in [89].

5.1. Case 1: Baseline Scenario

The baseline scenario corresponds to the solution of the battery fast-charging problem
by maximising the bulk concentration using the third-order Padé approximation of the
single-particle model via direct numerical methods. The optimal control trajectory and
the SoC are shown in Figure 1. The solution was found analytically using Pontryagin’s
minimum principle in [3]. The upper bound on the final time Tf was selected as 450 s. The
solution was found using the Chebyshev collocation method with 100 discretisation nodes.

The quantitative analysis shown in Table 3 confirms that the results obtained in this
research are consistent with the findings reported in [3]. Qualitative analysis of the plots in
Figure 1 shows that the charging current profile is a bang-and-ride trajectory, in accordance
to the results in [3]. Bang-and-ride refers to the input current staying constant at its limit
from the start (the bang phase), and then reducing its magnitude from the point where
the path-constraint-becomes active (the ride phase). This profile is qualitatively similar
to the current profiles that occur when the CC-CV protocol is applied. Note that the path
constraint on the surface concentration becomes active at 311 s, thus the switching time
between bang and ride was 311 s, while the final time t f resulted in the upper limit of 450 s.
In this case, the initial current was -5C (equivalent to 330 A). What occurs at the switching
point is that the dynamics change from a linear ordinary differential equation (ODE) to a
linear differential-algebraic equation (DAE) due to the active path constraint. The DAE is
of index 1 as the path constraint needs to be differentiated once for the control variable to
appear explicitly. As a result, the control variable exhibits a singular arc from the switching
point to the final time [83].

Table 3. Comparison of the results from [3] with the results obtained in this work, in particular for
case 1. The switching time refers to the point in time at which the surface concentration reaches its
upper limit.

Parameter Results from [3] This Work ∆

Final Time, t f (s) 450 (fixed) 450 0%
Switching Time (s) 317 311 1.89%

SoC 0.5 0.5 0%
c−s (t f ) (mol/m3) 15,000 15,000 0%

u(t f ) 0C −0.012C 1.2% 1

1 Based on the absolute error.
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Figure 1. Solution for case 1: baseline scenario. (a) Optimal current profile, u. (b) State of charge SoC.
(c) Bulk concentration c−s . (d) Surface concentration C−

ss .

5.2. Case 2: Balanced Scenario

In this case, a term that penalises heat losses was added to the integrand, which
originally aimed at maximising the lithium surface concentration. The optimal control
trajectory and the state of charge are shown in Figure 2. As can be seen in the figure,
the input charging current starts constant at -5C, then it decreases in magnitude after
270 s. Thus, the input current looks like a bang-and-ride trajectory. However, the surface
concentration has not reached its upper limit at 270 s; therefore, the path constraint is still
inactive at that point in time. The path constraint becomes active at about 350 s, and the
surface concentration C−

ss becomes constant from that point onwards. The state of charge
reaches its final value close to the final time of 450 s. The solution shown was found using
the trapezoidal collocation method with 250 discretisation nodes.

A second experiment was performed using the same problem formulation. On this
occasion, the upper bound on the final time Tf was increased from 450 to 550 s. As shown
in Figure 3a, the optimal control trajectory starts with a constant value and it decreases in
magnitude at around 277 s. Thus, the input current looks like a bang-and-ride trajectory
as well. The path constraint associated with the surface concentration becomes active at
around 330 s as can be observed from Figure 3c. The state of charge reaches its final value
at around 500 s.
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Figure 2. Solution for case 2: balanced scenario, with the upper bound on the final time Tf = 450 s.
(a) Optimal current profile. (b) State of charge. (c) Bulk concentration c−s . (d) Surface concentra-
tion C−

ss .

Qualitative analysis of the optimal control trajectory shows that increasing Tf changed
the trajectory’s shape. For illustration, the resulting final time, cost (objective functional
value), and maximum relative local error is shown in Table 4, for the two different values
of the final time.
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Figure 3. Solution for case 2: balanced scenario, with the upper bound on the final time Tf = 550 s.
(a) Optimal current profile. (b) State of charge. (c) Bulk concentration c−s . (d) Surface concentra-
tion C−

ss .

Table 4. Cost and maximum relative local error comparison for problem formulation for case 2.

Final Time, t f (s) Cost Max Relative Local Error

450 3.44 × 106 8.38 × 10−6

550 6.43 × 106 1.73 × 10−5

5.3. Case 3: Parameterisation of the Objective Functional

A parametric study was performed to analyse the influence of different terms of the
objective functional in the optimal solution. Three parameters were considered: γ, β, and κ.
A detailed description of the cases is shown in Table 2. The solutions in case 3 were found
using the Hermite-Simpson collocation method with 150 discretisation nodes.

5.3.1. Case 3.1: γ = 1

This case exclusively considers minimising the final time t f based on the parameter
γ = 1 applied to the end cost. Here, the upper bound on the final time Tf was selected as
450 s. All the other parameters (β and κ) are not applicable in this case. As observed in
Figure 4, the optimal control trajectory is a constant at −5C until the value of t f = 311 s
is reached. The path constraint becomes active at the final time, and the state of charge
reaches its highest value at the final time.

5.3.2. Case 3.2: γ = 0, 0 ≤ β ≤ 1.0 and κ ∈ {1, 5, 10}
Figure 5 shows the solution when the integrand of the objective function includes a

trade-off between the bulk concentration (z3) and the heat loss, which is parameterised by
the value of β; with zero end cost. Here, the upper bound on the final time Tf was selected
as 450 s. Note that β = 1 corresponds to the baseline case. As noted in Figure 5a, when
the parameter β is higher than 0.8, the optimal input current profile has a bang-and-ride
shape. For values of β lower than 0.8, the optimal input current profile does not resemble
a bang-and-ride trajectory. In Figure 5b, the continuous purple line is the state-of-charge
trajectory obtained for β = 1; the dotted line, which corresponds to the extreme case when
β = 0, shows that the state of charge reaches its a maximum value at the final time that is
lower than the maximum achieved for β = 1, while for values of β between 0 and 1, the
final value of the state of charge increases with increasing values of β.
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Figure 4. Solution for case 3.1: γ = 1. (a) Optimal current profile. (b) State of charge. (c) Bulk
concentration c−s . (d) Surface concentration C−

ss .

(a) Optimal current profiles. (b) State of charge.

Figure 5. Different solutions for case 3.2 (γ = 0). Charge current profiles for β values without the
contribution of the final cost. (a) Input current profiles for different values of β; (b) corresponding
trajectories of the state of charge for different values of β.

As shown in Figure 6a,b, as the penalty on heat losses κ increases, the final state of
charge is attained more slowly. On the other hand, as the β value is increased from 0 for a
given value of κ, the state of charge increases more rapidly towards its final value.
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(a) State of charge for κ = 5. (b) State of charge for κ = 10.

Figure 6. Solutions for case: 3.2, showing different state of charge for different values of β with an
additional penalty factor applied to the heat losses. (a) Penalty factor κ = 5. (b) Penalty factor κ = 10.

5.3.3. Case 3.3: γ = 0.8, 0 ≤ β ≤ 0.9, κ = 5

This case considers the trade-offs between minimising charging time, maximising bulk
concentration, and minimising heat losses. Here, the upper bound on the final time Tf was
selected as 450 s. Figure 7a shows that as the parameter β decreases, the similarity of the
shape of the input current with the bang-and-ride shape is lost. As expected, reducing the
heat losses by penalising them results in a longer charging time.

(a) Optimal current profile. (b) State of charge.

Figure 7. Solution for case 3.3: State of charge and optimal control trajectory considering the
minimisation of the end time, the maximisation of the bulk concentration, and a penalty on the
internal losses, for different values of β. (a) Input current profile. (b) State of charge profile.

5.4. Analysis of Energy Dissipation in the Parameterised Case

Numerous studies have highlighted the critical role played by heat generation in
battery charging [90]. In this paper, heat loss estimation analysis follows the thermal
model presented in [91] with simplifications. Specifically, the temperature and the internal
resistance are assumed to be constant. The absence of energy transfer between the battery
core and the casing simplifies the model as represented by Equation (26).

Given that the control signal u(t) is the input charging current, the total heat loss is
calculated as follows. If Etotal is the total energy dissipated by the internal resistance in
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kWh, u(tk), with tk in seconds, is the charging current at t = tk, Rc is the equivalent internal
resistance in Ω, and ∆t is defined as |tk+1 − tk|, then

Etotal =
k=N

∑
k=0

(
u2(k∆t)Rc

1000.0

)
∆t

3600.0
kWh (26)

where Rc is estimated according to the data in [88].
The estimate of the total dissipated energy is shown in Figure 8. The values for the

charging current u(t) and the simulation time steps ∆t used in Equation (26) were obtained
from the solutions of case 3.3. The graph shows different contributions of the heat loss in
the integrand. As noted, β = 1 gives the maximum energy loss of 0.2473 kWh, which is
expected as selecting β = 1 implies that the heat losses are not penalised in the objective
functional.

Figure 8. Comparison of energy dissipation for different contributions κ in the integrand. The
baseline case is shown in orange.

Additionally, the figure illustrates that decreasing β leads to a decrease in total heat
loss for most values of κ. For example, when κ is fixed at 10, setting β to 0.9 reduces the
total heat losses by 3% (from 0.2473 kWh to 0.2393 kWh). However, reducing β to 0.6 results
in a 30% reduction in energy loss (from 0.2473 kWh to 0.1764 kWh). The heat loss for β = 0.3
yields a 32% reduction. Note that, when reducing β below a specific value (0.8), the solution
is no longer similar to bang-and-ride trajectory, and that the purple (β = 0.8) and green
(β = 0.6) curves intersect just before κ = 10. Table 5 provides the values of the energy loss
for different values of β and κ.

Table 5. Estimation of the energy loss in KWh during battery charging for different contributions of
lithium (β) and charging current (κ) in the objective functional.

κ β = 0.3 β = 0.6 β = 0.8 β = 0.9 β = 1.0

1 0.2131 0.2444 0.2451 0.2456 0.2473
2 0.1852 0.2358 0.2451 0.2455 0.2473
3 0.1756 0.2209 0.2436 0.2456 0.2473
4 0.1721 0.2066 0.2409 0.2455 0.2473
5 0.1705 0.1964 0.2373 0.2451 0.2473
6 0.1697 0.1896 0.2328 0.2444 0.2473
7 0.1692 0.1852 0.2237 0.2434 0.2473
8 0.1689 0.1812 0.2067 0.2423 0.2473
9 0.1686 0.1784 0.1898 0.2409 0.2473
10 0.1684 0.1764 0.1729 0.2394 0.2473
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6. Conclusions

This paper studied the battery fast-charging problem using a simplified model based
on electrochemical principles and a direct optimal control approach. The transfer function
from the original non-linear dynamics was transformed into a linear state–space form using
a third-order Padé approximation, a controllable form, and a Jordan transformation.

In the first phase of the work, the model and optimal control results obtained with
our methods were validated using data from the literature for a nickel–manganese–cobalt
lithium-ion chemistry. The validation results agreed with the analytical findings reported
in [3]. In the second phase, the problem formulation and solution were improved by
exploiting the flexibility of direct collocation methods, which allowed to add various terms
to the objective functional to study the trade-offs between the minimisation of the charging
time, the maximisation of the bulk concentration of lithium, and the minimisation of
heat losses.

The direct optimal control approach taken in this work allows for an easy extension to
more complex/nonlinear models of the dynamic equations of the battery. Moreover, the
approach provides flexibility with regard to the constraints that are required by the problem,
and the inclusion of additional terms in the objective functional reflecting additional
control objectives.
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