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Abstract: Lithium-ion batteries are key elements in the development of electrical energy storage
solutions. However, due to cycling, environmental, and operating conditions, battery capacity tends
to degrade over time. Capacity fade is a common indicator of battery state of health (SOH) because
it is an indication of how the capacity has been degraded. However, battery capacity cannot be
measured directly, and thus, there is an urgent need to develop methods for estimating battery
capacity in real time. By analyzing the historical data of a battery in detail, it is possible to predict
the future state of a battery and forecast its remaining useful life. This study developed a real-time,
simple, and fast method to estimate the cycle capacity of a battery during the charge cycle using only
data from a short period of each charge cycle. This proposal is attractive because it does not require
data from the entire charge period since batteries are rarely charged from zero to full. The proposed
method allows for simultaneous and accurate real-time prediction of the health and remaining
useful life of the battery over its lifetime. The accuracy of the proposed method was tested using
experimental data from several lithium-ion batteries with different cathode chemistries under various
test conditions.

Keywords: battery; capacity; degradation; state of health; remaining useful life; neural networks;
wavelets

1. Introduction

Lithium-ion (Li-ion) batteries are the cornerstone in the development of electrical
energy storage solutions [1]. Today, Li-ion batteries offer high specific energy, high efficiency
(>95%), long cycle life, up to thousands of charge/discharge cycles [2], and low self-
discharge rate [3,4]. Several cathode chemistries coexist, including lithium manganese
oxide (LMO) batteries (up to 1500 cycles and 140 Wh/kg), lithium iron phosphate (LFP)
batteries (up to 2000 cycles and 140 Wh/kg), nickel manganese cobalt oxide (NMC) batteries
(up to 2000 cycles and 240 Wh/kg), and lithium nickel cobalt aluminum oxide (NCA)
batteries (up to 1500 cycles and 250 Wh/kg). Recently, NMC cells have reported energy
densities exceeding 300 Wh/kg [5].

As a result, Li-ion batteries are widely used in a variety of applications, including
transportation systems, electronics, and grid storage, among others [6]. Battery degrada-
tion is a complex phenomenon that depends on thermal, mechanical, and electrochemical
processes, whose behaviors depend on battery chemistry, cell design, operating conditions,
and use patterns [7,8]. As a result, extending the battery life is a complex and challenging
research topic that has a significant potential impact on the reliability and performance
of battery-powered systems. Battery life extension strategies are receiving increased at-
tention [9], as extended battery life can reduce operating costs and environmental impact
while enabling more sustainable operation of battery systems [10,11].

To ensure their optimal use, extend their life, improve the maintenance schedules of
the battery-powered equipment [12], and minimize the environmental impact associated
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with battery disposal, accurate state of health (SOH) estimation and prediction is critical.
The SOH is a key indicator for awareness of the battery condition and battery derating
control [8]. In [13], the SOH is defined as the Qmax/Qrated ratio, where Qmax is the maximum
charge the battery can hold at the present time and Qrated is the nominal or rated charge.

New cells can typically withstand higher load currents, but as they age, the same
current can cause accelerated degradation. At the beginning of its life, a battery can be
charged at a certain current rate without problems, but as it ages, an increase in internal
resistance, loss of active material, or other phenomena can lead to undesirable effects, such
as lithium plating at the same charge current [14]. As a result, it is necessary to determine
the SOH and remaining useful life (RUL) of the battery as it ages. This allows for preventive
and operational actions to be planned. Batteries are often considered to be at the end of their
life when they have approximately 70% to 80% of their initial or reference capacity [15].

The rated capacity of a battery, which is usually specified by the manufacturer, is
defined as the amount of charge that a fully charged battery can deliver under specified load
and temperature conditions [16]. However, due to cycling, operating, and environmental
conditions, the capacity of a battery will differ from the rated capacity due to battery fade
resulting from battery use. For example, high discharge rates tend to increase the energy
loss and internal resistance of a battery, resulting in reduced cycle capacity. Therefore, the
cycle capacity is an indicator of the amount of charge the battery can hold, similar to the
fuel gauge in internal combustion vehicles [3], and thus, it is an accepted indicator of the
SOH of a battery. Since it cannot be directly measured, real-time methods to estimate the
cycle capacity of a battery are a must. With the widespread application of renewable energy
sources and electric vehicles, researchers have paid much attention to the development of
accurate battery RUL models [17].

Several methods were proposed to estimate battery capacity and can be roughly classi-
fied as direct and indirect methods, while the latter ones can be subclassified as analysis-
based methods, state of charge (SOC)-based methods, and data-driven methods [17].

The simplest method, known as Coulomb counting, is based on the accumulation
of the charge over its cycling period [18]. This direct method requires a full charge or
discharge of the battery under specific conditions described in various IEC [19], ISO [20],
and IEEE [21] standards since a direct measurement cannot predict the battery capacity in
real applications when the battery is partially charged or discharged [17]. Another direct
method is based on measuring the internal resistance of the battery, which can be measured
by applying a current pulse to the battery, as this allows the capacity of the battery to
be estimated [22].

Indirect methods require sensors to measure the current, voltage, and temperature
and use these variables to estimate the capacitance. Analysis-based methods include elec-
trochemical impedance spectroscopy, differential voltage, incremental curve, differential
thermal curve, and mechanical stress, among others. SOC-based methods can be divided
into indirect-estimation- and observer-based methods. While indirect SOC-based methods
often estimate the battery capacity using the change in SOC determined by applying the
Coulomb counting method over a period, observer-based SOC methods estimate the battery
capacity directly using an observer based on an equivalent circuit of the battery. Finally,
data-driven methods use mathematical tools, such as neural networks, support vector
machines, Bayesian learning, or deep learning, to analyze large amounts of data to estimate
the battery capacity without the need to pre-specify a particular battery model [17].

This paper proposes a real-time, simple, and fast method to determine the cycle
capacity or maximum charge that the battery can currently hold for any SOH during the
battery charge cycle using voltage and current measurements during a short interval of
the charge cycle. This approach is attractive because the charge cycle is controlled by
the battery management system (BMS) according to a known strategy (constant current
followed by a constant voltage stage), and the proposed approach does not require data
from the entire charge period, as batteries are rarely charged from zero to full charge. The
proposed approach requires only a small amount of data from each charge cycle, balancing
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the accuracy, efficiency, and low computational burden, while allowing the current battery
SOH to be known without the need for extensive and resource-intensive measurements.

Furthermore, the proposed approach is used to predict the degradation of the battery
in conjunction with other state-of-the-art predictive techniques, such as recurrent neural
networks (RNNs) [23,24]. RNNs are a deep learning approach for modeling sequential
data, which are particularly well-suited for capturing the temporal dependencies of data
sets and making them effective for modeling the dynamic evolution of a battery’s SOH
over time.

The proposed strategy allows for simultaneous and real-time accurate prediction of
SOH and capacity degradation over a battery’s lifetime. This approach not only provides a
real-time assessment of the battery’s health but also offers a forward-looking perspective
that aids in the predictive maintenance and management of battery systems, which can be
particularly useful in applications where reliability and longevity are critical factors.

The remainder of the paper is organized as follows. Section 2 describes the methodol-
ogy proposed in this paper to determine the SOH and degradation of the analyzed batteries.
Section 3 describes the battery data set used in this paper. Section 4 presents and discusses
the experimental results, and finally, Section 5 concludes this paper.

2. Methodology

Capacity, in the context of batteries, refers to the maximum amount of electric charge a
battery can store. Capacity is a critical parameter that evolves over time and directly affects
a battery’s energy storage capability and service life, making it an indicator to quantify
battery degradation.

The capacity is typically measured in ampere-hours [Ah] and represents the total
charge a battery can deliver under specific load and temperature conditions. It can be
defined as [15]

C =
∫ t f

t0

i(t)dt [Ah] (1)

The capacity fade after n charge/discharge cycles △Cn is a key indicator of battery
degradation. It is defined as the reduction in available battery capacity (cycle capacity) over
time and is expressed as the difference between the initial or reference capacity of a fresh
battery, i.e., Cref (reference capacity), and the remaining capacity at cycle n, i.e., Cn, as

∆Cn = Cre f − Cn [Ah] (2)

Monitoring the capacity changes provides valuable insight into the mechanisms af-
fecting the electrodes and electrolyte and the degradation of the cell. The evolution of the
capacity can then be used as the input for forecasting techniques, such as LR and an RNN.

In this paper, the state of charge of a battery at a given time, i.e., SOC(t), is defined
as the ratio between the remaining charge in the battery at a given time, i.e., Qremaining (t),
expressed in Coulombs [C], and the reference charge of a fresh battery (usually given by
the cell manufacturer), i.e., Qref [25], as follows:

SOC(t) =
Qremaining(t)

Qre f (t)
[-] (3)

The evolution of the state of charge SOC(t) from the initial state of charge SOC0 is
determined by using the Coulomb counting method. It integrates the instantaneous value
of the cell current i(t) over time during the period being analyzed. SOC(t) can be determined
if the initial state of charge SOC0 at the initial time t0 is known such that

SOC(t) = SOC0 +
1

Cre f

∫ t

t0

i(t)dt [-] (4)
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Note that during the charge period, i(t) is a positive value, while during the discharge
period, i(t) is a negative value, and (4) requires the initial value SOC0. There are many
methods to estimate this value, but in this study, we used the ModelGauge m5 EZ algorithm
from Maxim Integrated [26].

This paper uses the following nomenclature for the capacity. The rated capacity is the
capacity specified by the manufacturer. The reference capacity is the capacity of the battery
at the initial or reference cycle. The cycle capacity is the capacity of the battery at each cycle,
which differs from the reference capacity due to battery aging. The estimated cycle capacity
is the capacity calculated using the GLR–Nernst approach explained in Section 2.2. Since
the estimated capacity contains noise, the denoised version is called the denoised estimated
cycle capacity. Finally, the forecasted cycle capacity corresponds to the future values of the
cycle capacity predicted by the forecasting methods described in Section 2.5.

The proposed methodology to determine the SOH and degradation of the battery is
divided into two phases. In the first phase, a portion of the charge cycle, typically 20%,
is used to estimate the current cycle capacity of the battery. In the second phase, state-
of-the-art regression techniques are applied to predict the progression of battery aging
over time.

Phase 1 forecasts the voltage–SOC curve of a generic charge cycle using measured data
and estimates the cycle capacity of the battery through three sequential steps as follows:

Phase 1.1. Reference charge cycle characterization. Several (SOC(t), v(t)) data points of the
voltage–SOC curve of the battery are acquired, together with the input charge
in the constant voltage (CV) stage of the reference charge cycle, i.e., when the
battery is brand new. The initial or reference cycle determines the reference
capacity of the battery.

Phase 1.2. Nernst equation fitting and forecasting. During the constant current (CC)
stage of a generic charge cycle over the lifetime of the battery, a few data points
(SOC(t), v(t)) corresponding to a portion of the generic charge cycle are used
to fit the Nernst equation and forecast the behavior of the voltage–SOC curve
during the remaining charge period.

Phase 1.3. Capacity estimation. The total charge that the battery can hold in a given
cycle (cycle capacity) is estimated based on the forecasted charge cycle and the
reference cycle data.

Phase 2 models and forecasts the battery aging behavior by estimating the capacity
fade of future cycles. It includes the following steps:

Phase 2.1. Phase 2.1 Capacity denoising and preprocessing. To improve the accuracy of
the forecasting techniques in future steps, the time-series data of the calculated
cycle capacity are denoised using a discrete wavelet filter. In this step, various
algorithms are applied to preprocess the input data of the forecast models.

Phase 2.2. Phase 2.2 Aging behavior forecast. Using the processed data from the previous
steps as input, linear regression (LR), a long short-term memory neural network
(LSTM-RNN), and a gated recurrent unit neural network (GRU-RNN) are used
to predict the aging behavior and degradation of the battery.

The steps described above are summarized in Figure 1.

2.1. Phase 1.1. Reference Charge Cycle Characterization

The reference cycle (cycle 1) provides relevant information for future calculations
in terms of the reference capacity of the battery Cref and the charge accumulated by the
battery during the CV stage of the charge cycle Qre f

charge_cycle,CV . Note that the value of

Qre f
charge_cycle,CV remains almost constant throughout all charge cycles, regardless of the state

of the battery, as shown in Section 4 (see Figure 5 and Table 2). A full discharge and a
full charge are suggested to properly measure and characterize the initial or reference
voltage–SOC profile of the battery.
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Figure 1. Flowchart summarizing the steps involved in phase 1 and phase 2 of the proposed approach
for estimating the cycle capacity (SOH) and forecasting the capacity fade.

The reference capacity Cref of the fresh battery is calculated using the data from the
initial or reference cycle as follows:

Cre f =

(∫ tend,CC

tinitial,CC

iinitial
known(t)dt

)
CC

+

(∫ tend,CV

tinitial,CV

iinitial
known(t)dt

)
CV

=

(∫ tend,CC

tinitial,CC

iinitial
known(t)dt

)
CC

+ Qre f
charge_cycle,CV (5)

where CC and CV refer to the constant current and constant voltage stages of the charge
cycle, respectively.

Figure 2 shows the reference cycle and the different parameters in (5).
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2.2. Phase 1.2. Nernst Equation Fitting and Forecast

In this work, the Nernst equation was used as a fitting tool to approximate the charge
cycle using partial data from a given cycle. Assuming that the SOC is known, the cell
voltage can be determined from the Nernst equation [27,28] using

vn(t) = E0 − Rn in(t) + µ1 ln[SOC(t)] + µ2 ln[1 − SOC(t)] (6)

where vn(t) and in(t) are the instantaneous values of the cell voltage and current at cycle
n, E0 is the standard cell potential, Rn is the internal resistance of the cell calculated at
each cycle, and µ1 and µ2 are constant parameters. Figure 3 shows the profile of the
Nernst equation.
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Since the current is a constant value during the CC stage of the charge cycle, (6) can be
rewritten for fitting purposes as (7), which depends only on three unknowns, namely, a, b,
and c, according to

y(t) = a + b ln[x(t)] + c ln[1 − x(t)] (7)

where x(t) corresponds to SOC(t) and y(t) to vn(t). The generalized least squares (GLS)
method [29] is used to determine the values of the unknowns a, b, and c from experimental
data using Equation (7).

2.3. Phase 1.3. Capacity Estimation

This study assumed that the charge cycle consisted of a constant current (CC) stage
followed by a constant voltage (CV) stage because this is probably the most applied charge
strategy [30]. The input charge during the CV stage in any charge cycle was assumed to be
the same as that measured in the reference cycle because, as discussed in more detail in
Section 4 (see Figure 5 and Table 2), this value remains relatively constant over the life of
the battery.

According to the proposed method, the cycle capacity at any time of the battery’s life
can be estimated with only a few points (about 20% of the entire charge cycle) taken during
the interval (tini,known,tend,known) of the voltage–SOC curve of the charge cycle, as shown in
Figure 4. In this interval, the GLS method uses the Nernst equation to estimate the three
unknowns a, b, and c. Once the fitted curve is obtained, it is used to forecast the remaining
data points to the ending point of the CC stage of the charge cycle, as shown in Figure 4.

The estimated cycle capacity at cycle n can be calculated using

Cn = SOCn
known,0Crated +

∫ tend,known

tini,known

in
known(t)dt +

∫ tend, f orecast

tini, f orecast

in
known(t)dt + Qre f

charge_cycle,CV (8)
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where n stands for the nth charge cycle, Cn is the estimated cycle capacity at cycle n (it is
an indicator of the SOH of the battery), SOCn

known,0 is the SOC value at the first point of
measure in cycle n, tini,known and tend,known establish the time interval where the measured
values of the voltage–SOC curve are taken during the CC stage, tini,forecast and tend,forecast

define the time forecast interval of the voltage–SOC curve, and Qre f
charge_cycle,CV is the total

input charge during the CV stage of the reference cycle.

Figure 4. SOC estimation from partial charge cycle data during the CV stage starting at 3.8 V.

Note that as shown in Figure 4, this study arbitrarily chose 3.8 V as the starting point
tini,known, while tend,known corresponds to the time at which the SOC increased by 0.2 from
tini,known, and thus,

SOC(tend,known) = SOC(tini,known) + 0.2 (9)

Note that during the CC phase, there is a proportional relationship between the time
and the SOC.

From (9), it can be deduced that only about 20% of the points of the charge cycle are
necessary for the prediction of the estimated cycle capacity Cn at cycle n. It is also noted
that tini,forecast = tend,known and tend,forecast corresponds to the time when the battery voltage
reaches 4.2 V, i.e., the starting point of the CV stage.

2.4. Phase 2.1. Capacity Denoising and Preprocessing

The evolution over the lifetime of the estimated cycle capacity Cn at each cycle n
contains high-frequency noise components due to the test conditions, the experimental
measurements, the nonlinear behavior of the battery, and even the GLS fitting procedure;
therefore, a noise-reduction stage is required. Although other filtering approaches are
possible [31], a four-stage discrete wavelet transform (DWT) using a discrete Meyer mother
wavelet was applied in this study because it is well suited for signal denoising in forecasting
applications [32]. As shown in Appendix A, this method decomposes the signals into
different frequency components, allowing for the noise they contain to be selectively
eliminated, thereby improving the accuracy and reliability of predictive models.

This step also includes several sequential steps applied to the data of the denoised
estimated cycle capacity, such as detrending, normalization, and formatting [33] in order to
improve the performance of the capacity fade forecasting methods.

2.5. Phase 2.2. Aging Behavior Forecast

In this study, the capacity of future cycles was estimated using three methods, namely,
linear regression (LR), a long short-term memory recurrent neural network (LSTM-RNN),
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and a gated recurrent unit recurrent neural network (GRU-RNN), to predict the aging
behavior and capacity fade of the battery.

Linear regression, which is one of the most basic techniques in statistical modeling
and machine learning [34], serves as a fundamental tool for modeling the relationship
between a dependent variable and one or more independent variables by identifying the
linear relationship that best represents the underlying pattern in the data. Its simplicity,
interpretability, and computational efficiency make it particularly suitable for tasks where
the underlying relationship between variables can be approximated using a linear model.

The LSTM neural network, proposed by Hochreiter and Schmidhuber in 1997 [35],
is structured with three gating mechanisms, i.e., input, forget, and output gates. These
gates allow LSTMs to retain or discard information over time, facilitating the learning
of long-term dependencies in sequential data. The inherent ability of LSTMs to capture
and store information over extended sequences has been particularly effective in time-
series prediction.

Gated recurrent units (GRUs), introduced by Cho et al. in 2014 [36], represent a
simplified variant of LSTMs with a reduced number of gates. The absence of a separate
memory cell in GRUs results in computational efficiency and faster convergence during
training. Despite their structural simplicity, GRUs show commendable effectiveness in
modeling temporal dependencies, making them an attractive choice for scenarios with
limited computational resources or data sets.

It should be noted that all models, data processing, and forecasting performed in
this study were done using Python 3.10.9, which is a high-level general-purpose open-
source programming language. All the modules used, such as NumPy, Pandas, SciPy, and
Scikit-learn, which are required for the computation of the results, are also open source
and public.

3. Data Description

The data of the cells investigated in this study were acquired and published by
Sandia National Laboratories (SNL) [37] through the open-access web platform batter-
yarchive.org [38]. The data set includes data from several commercially available 18650
cells of different chemistries under different test conditions.

Table 1 summarizes the analyzed cell characteristics and cycling conditions.

Table 1. Technical specifications of the Sandia National Laboratories database batteries investigated
in this study and their test conditions.

Cathode Chemistry NCA NMC

Manufacturer Panasonic LG Chem
Manufacturer PN NCR18650B 18650HG2

Battery type 18650 18650
Nominal capacity [Ah] 3.2 3

Nominal voltage [V] 3.6 3.6
Voltage range [V] 2.5 to 4.2 2 to 4.2

Max discharge current [A] 6 20
Temperature range [◦C] 0 to 45 −5 to 50

Charge C-rate 0.5C 0.5C
Discharge C-rate 0.5C/1C/2C 0.5C/1C/2C

Test temperature [◦C] 15 ◦C/25 ◦C/35 ◦C 15 ◦C/25 ◦C/35 ◦C
Depth of discharge 0% to 100% 0% to 100%

As shown in Table 1, this study focused on two cathode chemistries (NCA and NMC)
cycled at different C-rates (0.5C during the charge cycle and different C-rates during the
discharge cycle, i.e., 0.5C/1C/2C) and operated at different constant temperatures (15 ◦C,
25 ◦C, and 35 ◦C). The behaviors of a total of 39 cells were investigated in this study.

The tests were performed using an Arbin Instruments SCTS & Arbin high-precision
battery tester (LBT21084, Arbin Instruments, College Station, TX, USA) for cycling and
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a thermal test chamber (T10C-1.5 SPX, Tenney, New Columbia, PA, USA) for tempera-
ture control.

4. Experimental Results

This section describes the results obtained with two cathode chemistries (NCA and
NMC) of Li-ion batteries using the method described in Section 2. Note that all experimental
results related to battery cycling were obtained from the Sandia National Laboratories
(SNL) battery database [37] through the open-access web platform batteryarchive.org [38].

As explained in Section 2.1, the value of Qre f
charge_cycle,CV , which was calculated along the

CV stage of the reference charge cycle, remained almost constant throughout all the charge
cycles, regardless of the battery cycle analyzed. Figure 5 and Table 2 confirm this statement.

Batteries 2024, 10, x FOR PEER REVIEW 9 of 17 
 

Table 1. Technical specifications of the Sandia National Laboratories database batteries investigated 

in this study and their test conditions. 

Cathode Chemistry NCA NMC 

Manufacturer Panasonic LG Chem 

Manufacturer PN NCR18650B 18650HG2 

Battery type 18650 18650 

Nominal capacity [Ah] 3.2 3 

Nominal voltage [V] 3.6 3.6 

Voltage range [V] 2.5 to 4.2 2 to 4.2 

Max discharge current [A] 6 20 

Temperature range [°C] 0 to 45 −5 to 50 

Charge C-rate 0.5C 0.5C 

Discharge C-rate 0.5C/1C/2C 0.5C/1C/2C 

Test temperature [°C] 15 °C/25 °C/35 °C 15 °C/25 °C/35 °C 

Depth of discharge 0% to 100% 0% to 100% 

As shown in Table 1, this study focused on two cathode chemistries (NCA and NMC) 

cycled at different C-rates (0.5C during the charge cycle and different C-rates during the 

discharge cycle, i.e., 0.5C/1C/2C) and operated at different constant temperatures (15 °C, 

25 °C, and 35 °C). The behaviors of a total of 39 cells were investigated in this study. 

The tests were performed using an Arbin Instruments SCTS & Arbin high-precision bat-

tery tester (LBT21084, Arbin Instruments, College Station, TX, USA) for cycling and a thermal 

test chamber (T10C-1.5 SPX, Tenney, New Columbia, PA, USA) for temperature control. 

4. Experimental Results 

This section describes the results obtained with two cathode chemistries (NCA and 

NMC) of Li-ion batteries using the method described in Section 2. Note that all experi-

mental results related to battery cycling were obtained from the Sandia National Labora-

tories (SNL) battery database [37] through the open-access web platform bat-

teryarchive.org [38]. 

As explained in Section 2.1, the value of 
_ ,

ref

charge cycle CVQ , which was calculated along the CV 

stage of the reference charge cycle, remained almost constant throughout all the charge cycles, 

regardless of the battery cycle analyzed. Figure 5 and Table 2 confirm this statement. 

 

Figure 5. Amount of charge accumulated in the battery during the CV stage of the charge cycle 

_ ,

n

charge cycle CVQ . These data correspond to an NCA-type battery cycled at 15 °C and 0.5C/2C. 

The results presented in Figure 5 clearly show that despite some small fluctuations, 

the amount of charge accumulated in the battery during the CV stage of the nth charge 
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Qn

charge_cycle,CV . These data correspond to an NCA-type battery cycled at 15 ◦C and 0.5C/2C.

Table 2. Accumulated charge during the CV stage of the charge cycle over the life of the batteries.
Average maximum differences for the 39 analyzed batteries of NCA and NMC cathode chemistries
between the reference cycle and all cycles over the life of the batteries.

Tambient 15 ◦C 25 ◦C 35 ◦C

Cathode NCA NMC NCA NMC NCA NMC

C-Rate 1 2 1 2 0.5 1 2 0.5 1 2 1 2 1 2

Average max. difference [Ah] 0.08 0.10 0.04 0.03 0.05 0.06 0.08 0.21 0.14 0.09 0.09 0.09 0.07 0.07
Average max. difference [%] * 2.73 3.41 1.46 1.08 0.44 2.03 2.62 7.14 4.63 3.06 2.50 2.80 2.38 2.38

* Percentage of the average maximum difference referred to the reference capacity.

The results presented in Figure 5 clearly show that despite some small fluctuations, the
amount of charge accumulated in the battery during the CV stage of the nth charge cycle
Qn

charge_cycle,CV corresponding to the plateau region of Figures 2 and 4 remained almost
constant throughout all the charge cycles, regardless of the battery cycle analyzed.

Table 2 summarizes the average maximum differences between the reference cycle and
all cycles over the life of the batteries for the different cathode chemistries of the parameter
Qn

charge_cycle,CV .
The results summarized in Table 2 show the small percentage differences between

Qn
charge_cycle,CV corresponding to the nth generic cycle and that of the reference cycle

Qre f
charge_cycle,CV .

Figure 6 shows the evolution of the cycle capacity calculated from the Coulomb count
(reference method) using all available experimental data over the life of the battery, the
cycle capacity estimated using the GLS–Nernst approach over the life of the battery, and
the denoised estimated cycle capacity.
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Figure 6. Evolution of the cycle capacity over the lifetime of the battery was obtained using Coulomb
counting, the estimation was obtained using the GLS–Nernst approach, and its denoised version
was obtained by applying the DWT filtering method. These data correspond to an NCA-type battery
cycled at 35 ◦C and 0.5C during the charge cycle and 1C during the discharge cycle.

The results presented in Figure 6 show a great similarity between the values obtained
for the cycle capacity using the Coulomb counting method and those obtained with the
GLS–Nernst estimation method, which is a confirmation of the usefulness and accuracy of
the proposed approach.

The mean absolute percentage error between two time series is defined as

MAPE =
100
m

m

∑
i=1

∣∣∣∣∣Ccycle_CC,i − Cestimated,i

Ccycle_CC,i

∣∣∣∣∣ (10)

where Ccycle_CC,i is the cycle capacity at cycle i obtained using Coulomb counting, Cestimated,i
is the value obtained by denoising the GLS–Nernst estimate at the same cycle, and m is the
number of samples. The root-mean-square error is defined as

RMSE =

√
1
m
(Ccycle_CC,i − Cestimated,i)

2 (11)

Table 3 summarizes the average error values (RMSE and MAPE) for the 39 batteries
analyzed with NCA and NMC cathode chemistries, as calculated between the cycle capacity
of the batteries over the full life cycle and the denoised GLS–Nernst estimation of the
capacity. Note that although this work suggests starting measurements on the CC phase at
3.8 V, Table 3 also shows the results starting at 3.7 V and 3.9 V to show that the method can
work at different voltages and give similar results.

Table 3. Average RMSE and MAPE errors between the Coulomb counting cycle capacity and the
denoised estimated cycle capacity calculated for the 39 batteries analyzed over their full lifetime for
CV stage starting at 3.7, 3.8, and 3.9 V.

Tambient 15 ◦C 25 ◦C 35 ◦C

Cathode NCA NMC NCA NMC NCA NMC

V C-Rate 1 2 1 2 0.5 1 2 0.5 1 2 1 2 1 2

3.7
RMSE 0.11 0.12 0.11 0.07 0.09 0.09 0.11 0.35 0.34 0.17 0.18 0.17 0.17 0.16
MAPE 4.46 5.16 5.27 3.05 2.54 3.16 3.78 13.80 13.78 7.02 5.71 6.40 6.61 6.15

3.8
RMSE 0.06 0.11 0.07 0.04 0.04 0.06 0.1 0.18 0.21 0.22 0.09 0.12 0.17 0.21
MAPE 2.23 4.08 1.81 1.4 1.34 1.75 2.77 6.26 7.23 9.05 2.18 3.86 6.69 8.23

3.9
RMSE 0.04 0.05 0.13 0.12 0.05 0.07 0.08 0.11 0.07 0.11 0.12 0.14 0.13 0.15
MAPE 1.14 1.89 6.30 5.84 1.87 2.32 3.02 2.67 2.82 4.54 3.99 5.55 5.22 5.62
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The results summarized in Table 3 show that the mean absolute percentage error
(MAPE) of the estimated capacity of the analyzed batteries using the proposed GLS–Nernst
approach was between 1.34% and 9.05% with 3.8 V as the starting voltage, which is an
acceptable value that validates the method proposed in this work.

Regarding the capacity prediction results, Figure 7 shows the forecasted cycle capac-
ities using the LR, LSTM-RNN, and GRU-RNN methods at cycles corresponding to 6%,
15%, and 24% of capacity fade with respect to the initial or reference capacity.
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Figure 7. Forecasted cycle capacities using the LR, LSTM-RNN, and GRU-RNN methods at cycles
corresponding to 6%, 15%, and 24% of capacity fade with respect to the reference capacity. These
data correspond to an NCA-type battery cycled at 35 ◦C and 0.5C during the charge cycle and 1C
during the discharge cycle.

Table 4 summarizes the average error values (RMSE and MAPE) for the 39 batteries
analyzed with NCA and NMC cathode chemistries, as calculated between the Coulomb
counting cycle capacity of the batteries and the denoised CNC-LR forecasted cycle capacity
over the remaining life cycle calculated at cycles corresponding to 6%, 15%, and 24% of
capacity fade with respect to the reference capacity (see Figure 7).

The results presented in Table 4 show that as expected, the forecast errors for the three
forecasting methods tended to decrease as more historical data (number of cycles) were
available. However, there were some differences between the three forecasting methods.
While LSTM clearly outperformed the other methods when there were few data available,
this difference tended to decrease as the amount of data available increased.

Deep learning algorithms have been applied to the prediction of Li-ion battery degra-
dation. However, most of the work dealt with full cycle data, such as in [39], where the
degradation of NMC and LFP batteries was predicted using a deep learning framework
cored by a recurrent neural network. In [40], indicators such as loss of lithium inventory
(LLI) or loss of active material (LAM), which are difficult to measure, were used to predict
battery degradation. The authors in [41] used data from several batteries with NCA and
NMC cathodes as the input to train an LSTM-RNN model. Although the above works can
achieve good mean RMSE errors, they still require full cycles of historical data to achieve
their results, while this study could achieve similar error margins with only partially
measured cycles.
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Table 4. Average RMSE and MAPE errors between the Coulomb counting cycle capacity and the
forecasted cycle capacity calculated at cycles corresponding to 6%, 15%, and 24% of capacity fade with
respect to the reference capacity. Errors averaged for the 39 batteries analyzed over their full lifetime.

Forecast Errors Calculated at the Cycle Corresponding to 6% Capacity Fade

TAmb 15 ◦C 25 ◦C 35 ◦C

Cathode NCA NMC NCA NMC NCA NMC

C-Rate 1 2 1 2 0.5 1 2 0.5 1 2 1 2 1 2 Average

LR
RMSE 0.09 0.13 0.19 0.19 0.17 0.13 0.14 0.16 0.26 0.24 0.23 0.20 0.22 0.28 0.19
MAPE 3.54 5.14 9.68 9.41 6.10 4.77 5.51 6.57 10.50 10.55 7.75 7.71 9.29 11.49 7.72

GRU
RMSE 0.48 0.80 0.29 0.27 0.05 0.28 0.38 0.75 0.40 0.30 0.15 0.31 0.34 0.15 0.35
MAPE 19.20 40.47 13.61 10.48 1.59 9.70 15.66 28.82 15.60 10.63 4.65 11.15 12.30 5.60 14.25

LSTM
RMSE 0.08 0.15 0.17 0.11 0.10 0.08 0.11 0.14 0.24 0.24 0.16 0.16 0.20 0.27 0.16
MAPE 3.09 5.66 8.63 5.28 3.40 2.83 3.27 5.87 9.68 10.57 4.92 5.59 8.18 11.11 6.29

Forecast Errors Calculated at the Cycle Corresponding to 15% Capacity Fade

TAmb 15 ◦C 25 ◦C 35 ◦C

Cathode NCA NMC NCA NMC NCA NMC

C-Rate 1 2 1 2 0.5 1 2 0.5 1 2 1 2 1 2 Average

LR
RMSE 0.05 0.12 0.05 0.03 0.06 0.06 0.12 0.15 0.19 0.2 0.14 0.15 0.17 0.21 0.12
MAPE 1.7 3.84 2.16 1.54 2.49 2.03 3.79 6.21 7.34 8.93 4.33 5.74 7.18 8.35 4.69

GRU
RMSE 0.24 0.3 0.28 0.32 0.1 0.21 0.12 0.18 0.12 0.33 0.15 0.41 0.14 0.1 0.21
MAPE 10.38 13.95 14.85 15.25 3.82 8.03 4.05 7.43 4.8 14.16 4.89 17.67 5.26 3.09 9.12

LSTM
RMSE 0.04 0.15 0.06 0.02 0.03 0.07 0.12 0.14 0.16 0.21 0.12 0.15 0.15 0.19 0.12
MAPE 1.51 5.53 2.69 0.78 0.86 2.21 3.57 5.85 6.28 9.12 3.3 5.84 6.12 7.75 4.39

Forecast Errors Calculated at the Cycle Corresponding to 24% Capacity Fade

TAmb 15 ◦C 25 ◦C 35 ◦C

Cathode NCA NMC NCA NMC NCA NMC

C-Rate 1 2 1 2 0.5 1 2 0.5 1 2 1 2 1 2 Average

LR
RMSE 0.04 0.15 0.06 0.02 0.01 0.07 0.15 0.12 0.12 0.21 0.09 0.15 0.11 0.19 0.11
MAPE 1.83 5.1 3.23 0.88 0.43 2.67 5.71 4.86 5.16 9.28 2.8 5.85 4.69 7.41 4.28

GRU
RMSE 0.09 0.24 0.06 0.17 0.05 0.13 0.13 0.13 0.08 0.2 0.1 0.21 0.09 0.17 0.13
MAPE 3.88 12.12 3.07 8.93 1.61 5.18 2.49 5.71 3.12 9.25 3.62 8.23 3.72 6.66 5.54

LSTM
RMSE 0.05 0.17 0.08 0.02 0.02 0.06 0.15 0.12 0.11 0.22 0.08 0.17 0.12 0.2 0.11
MAPE 2.04 6.48 4.64 0.78 0.63 2.34 4.62 5.24 4.79 9.9 2.41 7.47 4.87 7.76 4.57

Finally, Table 5 summarizes the computation times of all the methods averaged over
all the batteries tested using an Intel i9-13900K processor (Intel, Santa Clara, CA, USA).

Table 5. Computation time for each method averaged over all batteries analyzed.

Method Average Computation Time per Cycle [s]

Capacity estimation 0.00158
DWT denoising 0.00053

LR 0.00188
GRU 19.28116
LSTM 21.13642

5. Conclusions

Today, lithium-ion batteries are key elements in energy storage systems deployed
around the world. However, due to their continuous use, cycling, load, and environmental
conditions, the battery capacity, which is an indicator of the battery SOH, degrades over
time. This study has addressed this issue by proposing a method to estimate the cycle
capacity of the battery and its remaining lifetime. Since the battery capacity cannot be
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measured directly, this study developed a real-time method to estimate the battery cycle
capacity using data from a short period of each charge cycle using a GLS–Nernst approach.
By analyzing the historical capacity data of a battery, this study also developed a method
to predict its degradation in real time based on three prediction methods, namely, LR,
LSTM-RNN, and GRU-RNN. Both approaches for estimating the cycle capacity of the
battery and predicting the capacity fade were tested using experimental data from 39 Li-ion
batteries of two cathode chemistries operating under different test conditions. The results
presented in this paper show the accuracy of both approaches and quantify the average
errors, which were low enough in all cases to validate this proposal.

The proposed approach allows for assessing a battery’s state of health in real time
and also offers a forward-looking perspective to determine the degradation of the battery
without the need for data of a full charge cycle (from 0% SOC to 100% SOC), but using only
20% of the full charge cycle starting from any voltage above 3.8 V. These developments have
potential implications for the application of predictive maintenance and management strate-
gies of battery systems, allowing for extending the battery lifetime, which is particularly
important in applications where high reliability and longevity are critical factors.

Author Contributions: Conceptualization, J.d.l.V., J.-R.R. and J.A.O.-R.; methodology, J.d.l.V. and
J.A.O.-R.; software, J.d.l.V. and J.-R.R.; validation, J.d.l.V., J.-R.R. and J.A.O.-R.; formal analysis,
J.-R.R. and J.A.O.-R.; investigation, J.d.l.V., J.-R.R. and J.A.O.-R.; resources, J.-R.R. and J.A.O.-R.; data
curation, J.d.l.V.; writing—original draft preparation, J.d.l.V. and J.-R.R.; writing—review and editing,
J.d.l.V., J.-R.R. and J.A.O.-R.; supervision, J.-R.R. and J.A.O.-R. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by Ministerio de Ciencia e Innovación de España, grant number
TED2021-130007B-I00, and by the Generalitat de Catalunya, grant number 2021 SGR 00392.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found in the website of Battery Archive upon request at https://www.batteryarchive.org/.

Acknowledgments: The authors are grateful to Sandia National Labs (SNL) for making their battery
data publicly available and to BatteryArchive.org for providing the means to access the data sets.

Conflicts of Interest: The authors declare no conflicts of interest.

Nomenclature

Term Symbol Unit
Battery capacity C Ah
Reference battery capacity (fresh battery) Cref Ah
Remaining battery capacity at cycle n Cn Ah
Constant current phase CC -
Constant voltage phase CV -
Battery charge Q C
Max. battery charge Qmax C
Rated or nominal battery charge Qrated C
Remaining battery charge Qremaining C
Reference battery charge (fresh battery) Qref C
Current i A
Generalized least squares GLS -
Gated recurrent unit GRU -
Linear regression LR -
Long short-term memory LSTM -
State of charge SOC -
Initial state of charge SOC0 -
State of health SOH -
Remaining useful life RUL h
Internal cell resistance R Ω

https://www.batteryarchive.org/
BatteryArchive.org
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Radial neural network RNN -
Cell voltage v V

Appendix A

Appendix A describes the denoising method based on the discrete wavelet transform
(DWT), which is commonly employed for both denoising and compressing signals and
images. It is based on a multi-step process where the signal is sequentially decomposed
into high-frequency and low-frequency components using a high-pass filter (HPF) and a
low-pass filter (LPF). The LPF, which is referred to as the approximation level, allows for
identifying the overall trend of the signal. The HPF, which is referred to as the detail level,
captures local abrupt changes and noise. This decomposition is conducted in a multi-level
approach, as shown in Figure A1. In this study, a four-level decomposition was applied for
an effective denoising of the input signal.
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Figure A1. DWT decomposition sequence of an input noisy signal.

The entire DWT denoising process was performed using the Python module Py-
Wavelets [42]. The selected wavelet was the discrete Meyer (dmey) wavelet with a threshold
of 0.1 and a soft-threshold configuration. The Meyer wavelet is composed of two functions
defined in the frequency domain named ψ and φ, which represent the wavelet and the
scaling function, respectively, and are defined as follows [43]:

ψ(ω) = (2π)−1/2e−iω/2sin
(

π
2 v

( 3
2π |ω| − 1

))
if 2π

3 ≤ |ω| ≤ 4π
3
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π
2 v

( 3
4π |ω| − 1

))
if 4π
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3
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3 , 8π
3
]

wherev(a) = a4(35 − 84a + 70a2 − 20a3) a ∈ [0, 1]
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3
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(A2)

References
1. Huang, Y. The discovery of cathode materials for lithium-ion batteries from the view of interdisciplinarity. Interdiscip. Mater. 2022,

1, 323–329. [CrossRef]
2. Spitthoff, L.; Øyre, E.S.; Muri, H.I.; Wahl, M.; Gunnarshaug, A.F.; Pollet, B.G.; Lamb, J.J.; Burheim, O.S. Thermal management

of lithium-ion batteries. In Micro-Optics and Energy: Sensors for Energy Devices; Springer: Berlin/Heidelberg, Germany, 2020;
pp. 183–194.

3. Meng, J.; Ricco, M.; Luo, G.; Swierczynski, M.; Stroe, D.I.; Stroe, A.I.; Teodorescu, R. An Overview and Comparison of Online
Implementable SOC Estimation Methods for Lithium-Ion Battery. IEEE Trans. Ind. Appl. 2018, 54, 1583–1591. [CrossRef]

4. Meng, J.; Luo, G.; Gao, F. Lithium polymer battery state-of-charge estimation based on adaptive unscented kalman filter and
support vector machine. IEEE Trans. Power Electron. 2016, 31, 2226–2238. [CrossRef]

https://doi.org/10.1002/idm2.12048
https://doi.org/10.1109/TIA.2017.2775179
https://doi.org/10.1109/TPEL.2015.2439578


Batteries 2024, 10, 10 15 of 16

5. Tao, R.; Gu, Y.; Sharma, J.; Hong, K.; Li, J. A conformal heat-drying direct ink writing 3D printing for high-performance lithium-ion
batteries. Mater. Today Chem. 2023, 32, 101672. [CrossRef]

6. Teodorescu, R.; Sui, X.; Vilsen, S.B.; Bharadwaj, P.; Kulkarni, A.; Stroe, D.I. Smart Battery Technology for Lifetime Improvement.
Batteries 2022, 8, 169. [CrossRef]

7. Zhu, J.; Xu, W.; Knapp, M.; Dewi Darma, M.S.; Mereacre, L.; Su, P.; Hua, W.; Liu-Théato, X.; Dai, H.; Wei, X.; et al. A method to
prolong lithium-ion battery life during the full life cycle. Cell Reports Phys. Sci. 2023, 4, 101464. [CrossRef]

8. Ruan, H.; Barreras, J.V.; Engstrom, T.; Merla, Y.; Millar, R.; Wu, B. Lithium-ion battery lifetime extension: A review of derating
methods. J. Power Sources 2023, 563, 232805. [CrossRef]

9. Jin, S.; Huang, X.; Sui, X.; Wang, S.; Teodorescu, R.; Stroe, D.I. Overview of Methods for Battery Lifetime Extension. In Proceedings
of the 2021 23rd European Conference on Power Electronics and Applications (EPE’21 ECCE Europe), Ghent, Belgium, 6–10
September 2021.

10. Harper, G.; Sommerville, R.; Kendrick, E.; Driscoll, L.; Slater, P.; Stolkin, R.; Walton, A.; Christensen, P.; Heidrich, O.;
Lambert, S.; et al. Recycling lithium-ion batteries from electric vehicles. Nature 2019, 575, 75–86. [CrossRef]

11. Woody, M.; Arbabzadeh, M.; Lewis, G.M.; Keoleian, G.A.; Stefanopoulou, A. Strategies to limit degradation and maximize Li-ion
battery service lifetime—Critical review and guidance for stakeholders. J. Energy Storage 2020, 28, 101231. [CrossRef]

12. Chung, C.H.; Jangra, S.; Lai, Q.; Lin, X. Optimization of Electric Vehicle Charging for Battery Maintenance and Degradation
Management. IEEE Trans. Transp. Electrif. 2020, 6, 958–969. [CrossRef]

13. Shen, L.; Li, J.; Meng, L.; Zhu, L.; Shen, H.T. Transfer Learning-based State of Charge and State of Health Estimation for Li-ion
Batteries: A Review. IEEE Trans. Transp. 2023. [CrossRef]

14. Koleti, U.R. Fast Charging Strategies in Lithium-Ion Batteries: Detection and Control of Lithium Plating; University of Warwick:
Coventry, UK, 2020.

15. de la Vega, J.; Riba, J.R.; Ortega-Redondo, J.A. Mathematical Modeling of Battery Degradation Based on Direct Measurements
and Signal Processing Methods. Appl. Sci. 2023, 13, 4938. [CrossRef]

16. Wenzl, H. BATTERIES|Capacity. In Encyclopedia of Electrochemical Power Sources; Newnes: Sebastopol, CA, USA, 2009; pp.
395–400.

17. Peng, J.; Meng, J.; Chen, D.; Liu, H.; Hao, S.; Sui, X.; Du, X. A Review of Lithium-Ion Battery Capacity Estimation Methods for
Onboard Battery Management Systems: Recent Progress and Perspectives. Batteries 2022, 8, 229. [CrossRef]

18. Jiang, J.; Zhang, C. Fundamentals and Application of Lithium-Ion Batteries in Electric Drive Vehicles; Sons, J.W., Ed.; Wiley:
Singapore, 2015.

19. IEC IEC 62660-2:2018; Secondary Lithium-Ion Cells for the Propulsion of Electric Road Vehicles—Part 2: Reliability and Abuse
Testing. International Electrotechnical Commission: Geneva, Switzerland, 2018.

20. ISO ISO 6469-1:2019; Electrically Propelled Road Vehicles—Safety Specifications—Part 1: Rechargeable Energy Storage System
(RESS). ISO: Geneva, Switzerland, 2019.

21. IEEE IEEE Std 450-2020; Recommended Practice for Maintenance, Testing, and Replacement of Vented Lead-Acid Batteries for
Stationary Applications. IEEE: Piscataway Township, NJ, USA, 2020.

22. Meng, J.; Cai, L.; Luo, G.; Stroe, D.I.; Teodorescu, R. Lithium-ion battery state of health estimation with short-term current pulse
test and support vector machine. Microelectron. Reliab. 2018, 88–90, 1216–1220. [CrossRef]

23. Song, Y.; Li, L.; Peng, Y.; Liu, D. Lithium-Ion Battery Remaining Useful Life Prediction Based on GRU-RNN. In Proceedings of the
2018 12th International Conference on Reliability, Maintainability, and Safety (ICRMS), Shanghai, China, 17–19 October 2018; pp.
317–322.

24. Park, K.; Choi, Y.; Choi, W.J.; Ryu, H.Y.; Kim, H. LSTM-Based Battery Remaining Useful Life Prediction with Multi-Channel
Charging Profiles. IEEE Access 2020, 8, 20786–20798. [CrossRef]

25. Zhao, J.; Zhu, Y.; Zhang, B.; Liu, M.; Wang, J.; Liu, C.; Hao, X.; Kowal, J.; Zhao, J.; Zhu, Y.; et al. Review of State Estimation and
Remaining Useful Life Prediction Methods for Lithium&ndash;Ion Batteries. Sustainability 2023, 15, 5014.

26. MaximIntegrated. MAX1726x ModelGauge m5 EZ User Guide; MaximIntegrated: San Jose, CA, USA, 2018.
27. Plett, G.L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 2. Modeling and

identification. J. Power Sources 2004, 134, 262–276. [CrossRef]
28. Hussein, A.A.H.; Batarseh, I. An overview of generic battery models. In Proceedings of the 2011 IEEE Power and Energy Society

General Meeting, Detroit, MI, USA, 24–28 July 2011.
29. Wang, Y.; Meng, D.; Chang, Y.; Zhou, Y.; Li, R.; Zhang, X. Research on online parameter identification and SOC estimation

methods of lithium-ion battery model based on a robustness analysis. Int. J. Energy Res. 2021, 45, 21234–21253. [CrossRef]
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