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Abstract: Ferrites are important magnetic materials used in electronic devices. Nanocomposites of
ferrites with TiO2, SiO2 and carbon quantum dots have gained recent interest due to their unique
advantages, such as high chemical stability, surface-active sites, high specific surface area, non-toxicity,
excellent optical properties, and tunable porosity. In the present review, general and adaptable
coprecipitation, sol–gel, hydrothermal, solvothermal, and Stöber methods for the fabrication of
nanocomposites are discussed. These materials offer the advantage of magnetic recovery and superior
photocatalytic performance. The potential of nanocomposites to act as photocatalysts to eliminate
organic pollutants and microbes from water is discussed. Mechanisms involved in these applications
are also elaborated upon. The review provides a detailed study of recent applications and future
perspectives of nanocomposites in sustainable water treatment.
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1. Introduction

For the environment and human life, developing industrialization has been both
beneficial and problematic. Many harmful compounds, such as synthetic dyes, heavy-
metal ions, and pesticides as well as microorganisms can degrade the quality of drinking
water as a result of industrial discharge and other man-made activities, posing a threat to
human life. The slow self-deterioration of organic pollutants due to their stable structure
is the most important issue. According to a World Health Organization (WHO) report,
785 million people lack access to basic drinking water, and half of the world’s population
will be living in water-scarce areas by 2025 [1].

Synthetic dyes, which are used to color plastic, paper, and artificial and natural fabrics,
are water-soluble organic pollutants [2]. The usage of dye-tainted water poses a number of
health hazards and can injure human organs [3]. Excessive discharge of organic dyes into
the water environment prevents sunlight seepage, disrupting photochemical and biological
activity of aquatic flora and fauna. They have been found to be very carcinogenic and
poisonous [4–6].

Pharmaceuticals in water degrade the quality of drinking water supplies, contribute to
antibiotic resistance, and are toxic to aquatic organisms. Pharmaceuticals have been placed
on the European Union’s and the US Environmental Protection Agency’s water quality
watch lists [7]. Tetracycline hydrochloride (TCH) release into the aquatic environment is
seen as a concern to humans since it increases antibiotic resistance in some pathogenic
bacteria and persists in the environment due to its non-biodegradability.

Surface water is polluted with many infectious microorganisms, such as bacteria (E. coli,
Vibrio), viruses (such as Norwalk virus and rotavirus) and protozoans (such as Entamoeba,

Magnetochemistry 2023, 9, 127. https://doi.org/10.3390/magnetochemistry9050127 https://www.mdpi.com/journal/magnetochemistry

https://doi.org/10.3390/magnetochemistry9050127
https://doi.org/10.3390/magnetochemistry9050127
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/magnetochemistry
https://www.mdpi.com
https://orcid.org/0000-0002-3637-7681
https://orcid.org/0000-0002-3315-698X
https://doi.org/10.3390/magnetochemistry9050127
https://www.mdpi.com/journal/magnetochemistry
https://www.mdpi.com/article/10.3390/magnetochemistry9050127?type=check_update&version=2


Magnetochemistry 2023, 9, 127 2 of 36

Giardia) that are capable of causing illnesses in humans, such as bloody diarrhea, affecting
human health as well as the environment. Because of their resistance to disinfection, they
are the most commonly identified cause of waterborne illness.

Pesticides are another major organic pollutant in water bodies. The agriculture sector
is the main source of pesticides into the aquatic environment, as they are used for de-
stroying and controlling pests to protect crops. Their variety, toxicity, persistence and low
biodegradability cause threat to humans through pollution of drinking water resources [8].

For the removal of organic contaminants, dyes, and pharmaceuticals from wastewater,
a variety of technologies have been developed, including adsorption [9], chemical oxida-
tion [10], advanced oxidation processes (AOPs), and biodegradation. Among them, AOPs
have gained much attention because they are eco-friendly and economical. These processes
include oxidation, photocatalysis, and electrochemical processes [11]. Photocatalysis is a
very economical and extensively used AOP [12]. It requires UV or visible radiation for
activation, but does not require massive machinery [13]. Due to its unique potential in
deteriorating organic pollutants, it is widely used for wastewater treatment [14]. Due to
its numerous favorable qualities, TiO2 emerged as one of the most appropriate materials
for environmental protection after the investigation of the Honda–Fujishima effect [15].
TiO2 is non-toxic, and the US Food and Drug Administration has approved it for use in
pharmaceuticals, human food, food-contact products, and cosmetics. The size of TiO2
nanoparticles reduces as their surface area increases at the nanoscale level, which is one
of the required properties of nanoparticles for photocatalytic applications [16–18]. When
compared to other photocatalysts, TiO2 is widely used for a variety of applications due
to its optical, thermal/chemical stability, abundance, high redox potential, and electrical
properties [19,20]. TiO2 can absorb UV light due to a large bandgap (3.2 eV). Solar light
has about 50% visible light and 5% UV light. Due to its band potential, TiO2 can efficiently
produce reactive oxygen species (ROS) in both oxidative and reductive pathways. There is
need for photocatalysts to harvest solar energy for environmental remediation.

Ferrites, which are mixed metal oxides with iron as their major constituent, have
emerged as one of the most intensely studied photocatalysts in the last decade due to their
remarkable magnetic properties, small bandgap, superparamagnetic, tunable morpholo-
gies, high saturation field, non-toxicity, reusability, and chemical stability. Due to their small
bandgaps (1.1–2.3 eV), ferrites absorb visible light. They are the most effective photocata-
lysts because they respond to the visible light spectrum correctly and can trap solar light
for pollutant destruction. They have photocatalytic capabilities that are useful in a variety
of industrial processes, such as exhaust gas treatment, alcohol and hydrogen peroxide
decomposition, oxidative dehydrogenation of hydrocarbons, hydroxylation of phenol, and
oxidation of CO, H2, CH4 and chlorobenzene [21–23]. Ferrites’ catalytic properties are
increased by their magnetic nature and the ease with which they may be recovered using a
magnet once the reaction is complete. Iron oxide particles have a high superparamagnetic
and surface area-to-volume ratio due to their nanoscale size [24,25]. The vast surface-active
sites and great adsorption capacity of iron oxide nanoparticles are because of their large
surface area. Iron oxide nanoparticles in their pure, doped, and nanocomposite forms are
widely used for environmental protection.

Magnetic nanoparticles have a number of disadvantages due to their aggregation-
induced instability, which reduces their surface energy and makes them easier to oxidize in
air. When magnetic nanoparticles clump together, they lose their magnetic properties and
become dispersible. New ways for chemically stabilizing pure magnetic NPs are needed.
Most studies show that coating magnetic NPs with silica (SiO2) prevents deterioration,
oxidation of the magnetic core, and aggregation. Silica promotes effective transfer of
photoinduced charge carriers, and its porous structure enhances the adsorption capacity
and surface area of the system, thus increasing photocatalytic activity.

Because of outstanding physical, mechanical, and chemical properties, carbon nanoma-
terials such as fullerenes, carbon black, carbon nanotubes, diamond, graphene and carbon
quantum dots have gained worldwide attention in the scientific community. Recently,
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carbon quantum dots (CQDs) with size less than 10 nm have extensive applications in
photovoltaic devices, fluorescent probes and bioimaging because of their excellent intrin-
sic low toxicity, excellent sunlight-harvesting ability, optical properties, eco-friendliness
and chemical stability. Hybridization of carbon in CQDs is due to sp3. Because of their
conjugated structure, CQDs are good electron acceptors and transporters, and they have
up-conversion photoluminescence (PL) characteristics. Functional groups on the surface
can be changed depending on synthesis methods to fine-tune the PL of CQDs. CQDs have
the ability to alter semiconductors in order to boost photocatalytic activity [26–29]. As a
result, their industrial production and applications in such fields as research, environment,
and medicine increased. Because of their low toxicity, high biocompatibility, stability,
and ease of use, carbon quantum dots and silica are becoming more popular as coating
materials.

Due to the smallness of non-magnetic photocatalysts such as semiconductors (TiO2,
SiO2, and CQDs) their separation and recovery after treatment is difficult, expensive, and
time-consuming, and as a result, practical applications of non-magnetic photocatalytic
semiconductors have decreased [30,31]. Adding spinel ferrite nanoparticles (SFNPs) to
non-magnetic photocatalysts improves the ease of recovering photocatalysts from reaction
mixtures after they have been employed, as well as the rate of pollutant degradation.

The assembly of nanoparticles of different materials in core–shell nanostructures has
become increasingly attractive in recent years. Such nanoplatforms aim to integrate the
specific characteristics of each material into a single, multifunctional entity capable of
delivering a wide range of features. Potential applications of core–shell nanocomposites
comprise heterogeneous catalysis, water remediation, optoelectronics and biomedical ap-
plications [32,33]. They have excellent magnetic separation properties, stability and good
biocompatibility. They exhibit distinct qualities, such as a high surface area-to-volume ratio,
a significant number of reactive sites available to enable the dispersal of organic pollutants
on the surface and pores, tiny dimension, and high recovery capacity. Ag2MoO4/BiOBr het-
erojunction was used for the removal of organic pollutants [34]. Ghamkhari et al. and Mo-
hammadi et al. synthesized a poly(styrene-block-acrylic acid) diblock copolymer-modified
Fe3O4 magnetite nanocomposite for removal of penicillin G and ciprofloxacin [35,36].
Neodymium oxide (Nd2O3) nanoparticles and BaFe12O19/CoFe2O4@polyethylene gly-
col nanocomposites were used for the removal of acid dye [37,38]. Mohafez et al. and
Davarpanah et al. used MnCe1.4Fe0.6O4 and BaFe12O19/CoFe2O4 nanocomposites for
removal of fungal and bacterial pathogens, respectively [39,40].

Several reviews and chapters have been published on the photocatalytic applications
of spinel ferrite nanoparticles and nanocomposites in wastewater treatment, photocatalytic
activity of CQDs [41] and on photocatalytic performance of TiO2 [42]. Ghasemi wrote
a book on magnetic ferrite and related nanocomposites [43]. However, the research on
nanocomposites of ferrites with TiO2, SiO2, and CQDs as photocatalysts for degradation
of organic pollutants and microbes has not been compiled as review till now. These three
materials are commonly used for making nanocomposites of ferrites due to their ease of
synthesis and low cost. The present review envisages the synthesis and structural features
of nanocomposites of ferrites with TiO2, SiO2, and CQDs. Their photocatalytic activity for
degradation of organic pollutants and microbes is also elaborated upon.

2. Synthesis and Structural Features of Ferrite-Based Nanocomposites

To control size and surface area of materials, methods used to synthesize materials play
an important role. Nanocomposites are multiphase solid materials with nanoscale repeat
distances between phases and one, two, or three dimensions of less than 100 nm in one of
the phases. The successful production of nanocomposites is indicated by homogeneous
dispersion of nanometer-sized particles composing the dispersed phase in the matrix.
Methods of synthesis of nanocomposites of ferrites with TiO2, SiO2, and CQDs are given in
Figure 1.
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2.1. Magnetic Features of Ferrite Nanoparticles

Ferrite nanoparticles have chemical and physical characteristics that differ significantly
from bulk ingredients, which can be related to their size. Every discrete magnetic nanoparti-
cle behaves like a huge paramagnetic atom at the nanoscale, with a fast response to applied
magnetic fields and apparent unique magnetic characteristics. Remnant magnetization
(Mr), saturation magnetization (Ms), coercivity (Hc), and magnetic anisotropy are the
most essential magnetic characteristics of nanoparticles. Magnetic nanoparticles achieve a
perfect magnetic moment in the presence of an external magnetic field (MF) due to parallel
orientation of unpaired electrons, which is referred to as Ms. “Mr” refers to the overall
residual magnetization of the material after the removal of the MF due to a few unpaired
electron orientations. The resistance of a ferromagnetic material towards becoming demag-
netized is known as Hc, and it is used to categorize magnetic materials as hard or soft.
“Magnetocrystalline anisotropy” (MCA) is another important term used to characterize
the magnetic property of nanoparticles, and it represents the orientations of the magnetic
moments at a given time in the direction of their ideal easy axes. Spin–orbit interaction is
the principal source of MCA, especially in isolated systems, and is responsible for keeping
the spins in a certain orientation. It has a direct impact on magnetic characteristics such
as Mr, Ms, and Hc. Cation distribution on the octahedral and tetrahedral sites, as well as
the size and shape of the nanoparticles, usually regulate these magnetic characteristics. In
fact, the total magnetic moment of spinel ferrite nanoparticles is primarily determined by
the difference in the exchange interaction of valence electrons of cations located at A and B
sites. This is because the magnet’s electron spin is well-organized and parallel inside each
lattice site, but antiparallel between the two sublattice sites. However, the contribution of
the A-A and B-B interactions is negligible.

2.2. Nanocomposites of Ferrites with TiO2

TiO2 has four polymorphs: brookite (orthorhombic), rutile (tetragonal), anatase (tetrag-
onal) and TiO2-B, as shown in Figure 2. Anatase, rutile, and brookite phases have bandgaps
of 3.2, 3.0, and 3.4 eV, respectively. Brookite is less thermodynamically stable, but rutile is
stable and anatase is metastable. At temperatures exceeding 600 ◦C, irreversible conversion
of brookite and anatase TiO2 to rutile occurs [44].
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It has been observed that bandgaps of TiO2 nanoparticles with 5–10 nm particles
narrow up to 0.2 eV. Anatase is the most photocatalytically effective phase of TiO2 [45]
and is widely used in semiconducting materials for environmental applications [46]. It has
higher mobility of electron–hole pairs and higher surface hydroxyl density. Brookite-phase
activity has not been thoroughly examined [47,48]. Rutile TiO2 is usually investigated in
fundamental investigations. Due to the existence of oxygen vacancies, TiO2 is classed as
an n-type semiconductor [49]. Because crystalline TiO2 has a less photoexcited electron–
hole recombination than amorphous TiO2, it has higher photocatalytic activity [50,51].
Recombination of photogenerated charge carriers is a disadvantage of TiO2 photocatalysts,
as it decreases overall reaction quantum efficiency [52]. During the recombination processes,
the photoexcited electrons return to the valence band non-radiatively or radiatively [53–55].
An attractive feature of the TiO2 photocatalyst is its potential to be activated by visible
light. To increase photocatalytic activity and decrease recombination of photoexcited
charge carriers, several methods have been followed, such as heterojunction formation
and doping with non-metals, metals, and nanosized crystals, which can alter the electronic
and optical properties of TiO2 [56–60]. By using dopants in TiO2, its bandgap reduces [61].
Metal doping has long been known to improve visible light absorbance of TiO2 [62,63] and
increase its photocatalytic activity under UV irradiation [63–66], but the introduction of
metal ion results in thermal instability, which reduces the reuse of TiO2 photocatalyst and
recombination of electron–hole pairs occur at a fast rate. Non-metal doping is more efficient
than metal ion doping due to more thermal stability and less formation of recombination
centers [67–71].

Nanocomposites of ferrites with TiO2 have been synthesized using different chemical
methods. A summary of methods used to synthesize magnetic nanocomposites has been
discussed in this section.

2.2.1. Sol–Gel Method

In typical sol–gel synthesis, formation of gel materials with three-dimensional structure
occurs by condensation and hydrolysis reaction of metal ions. It is an irreversible process:
once gel is formed, it cannot break down. There is covalent interaction between gel particles.
In this method, huge precursors are used during conversions and can be performed at or
near room temperature. For chemical catalysts, porous ceramic xerogels with large surface
area act as support and thin-film deposition is important for material possessing desired
optical and magnetic properties [24]. This method uses simple equipment, produces highly
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homogeneous and pure products at low temperatures, and allows modification of the
surface.

Tatarchuk et al. [72] developed magnetic nanocomposites of CoFe2O4@TiO2 using the
Pechini sol–gel method with ethylene glycol and citric acid as chelating agents and titanium
(IV) polymeric precursor solution. XRD study of CoFe2O4@TiO2 indicated the presence
of 46% and 54% of anatase and rutile crystal phase, respectively, in the titanium dioxide
(TiO2) component, and the average size of cobalt ferrite (CoFe2O4) and TiO2 nanoparticles
was about 30 and 8 nm, respectively. SEM revealed that because of deposition of TiO2
on the CoFe2O4 surface, particles became large. The IR spectrum of the nanocomposite
illustrated the shift of bands, which was the result of isomorphic heterovalent substitution
in the octahedral position. Dadfar et al. [73] and Xu et al. [74] fabricated SrFe12O19/TiO2
and TiO2/ZnFe2O4 nanostructures by the sol–gel method. XRD indicated the presence
of impurity phases (α-Fe2O3) at pH 2.5 and 4.5, while pure SrFe12O19 and TiO2 phases
were formed at pH 3.5. The production of the rutile phase was prohibited to some extent
by highly dispersed ZnFe2O4 nanoparticles in TiO2/ZnFe2O4 nanocomposites. TEM con-
firmed average particle sizes of 15–75 nm of SrFe12O19/TiO2 and uniform attachment of
ZnFe2O4 nanoparticles to TiO2 nanoparticles to produce a coupled semiconductor. The
electron diffraction pattern displayed very weak intensity of the electron diffraction pattern
for the ZnFe2O4 phase, which was attributed to the dispersion of ZnFe2O4 nanoparticles
amid the TiO2 nanoparticles. The value of saturation magnetization, remnant magnetiza-
tion, and coercivity decreased with increasing amounts of TiO2 in TiO2/ZnFe2O4, due to
the contribution of the non-magnetic TiO2 component to total sample volume.

Lahijani et al. [75] fabricated a PbFe12O19-TiO2 nanocomposite using the sol–gel
method. From XRD analysis, the average size of crystals was found to be 88 nm. FTIR
study indicated that absorption bands at 544, 716, 935 and 1401 nm−1 corresponded to
stretching modes of Fe-O, Ti-O, Pb-O and C-C bonds, respectively. Heating the compound
in the presence of a polyhydroxy alcohol, such as ethylene glycol, promotes polymerization.
The metal ions are equally dispersed inside the organic matrix, resulting in a homogeneous
resin—the polymeric precursor [76]. The immobilization of metal complexes in such
rigid organic polymeric networks can decrease segregation of specific metals, ensuring
molecular compositional uniformity. Polymeric precursors can be used to make ferrite–
TiO2 nanocomposites. Mouro et al. [77] used a polymeric precursor technique to make
nanometric TiO2/CoFe2O4 composites. X-ray diffraction, Raman spectroscopy, surface
area through N2 physisorption, zeta potential, scanning and high-resolution transmission
electron microscopy were used to characterize the as-prepared sample. The lack of a rutile
phase in the nanocomposites was confirmed by Raman spectroscopy. XRD patterns revealed
that thermal treatment did not cause phase segregation. The synthesized nanocomposites
showed an increase in surface area, a change in surface charge in relation to pure TiO2, and
selectivity in the photodegradation. The materials had photocatalytic activity due to the
presence of TiO2 on their surfaces, and CoFe2O4 cores were beneficial for separating and
recovering photocatalysts after use in an oxidative process.

2.2.2. Ultrasonic Method

The ultrasonic technique involves using sound energy to agitate the particles in a
solution, resulting in physical and chemical changes. This method is found to be the most
promising method for manufacturing nanocomposites such as oxides, carbides, alloys and
colloids with almost uniform distribution of nanoparticles [78]. Ultrasound irradiation
causes unstable bubbles in liquids to form, grow, and collapse rapidly at temperatures
as high as 5000 K, pressures as high as 20 MPa, and cooling speeds of 1010 Ks−1 [79].
Ultrasonication was used for the synthesis of titania-coated γ-Fe2O3 magnetic activated
carbon and Fe3O4-TiO2 photocatalyst with saturation magnetization value of 2.21 and
14 emug−1, respectively [80,81]. XRD revealed that the titania coated on the magnetic
activated carbon maintained the anatase phase, with the same set of characterization peaks
for both Fe3O4 and Fe3O4-TiO2, indicating that the ultrasound irradiation had no effect on
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the crystal structure of the Fe3O4 nanoparticles. The tiny crystallite size was shown by the
broad nature peak of the deposited TiO2 on Fe3O4-TiO2. SEM revealed the homogeneous
distribution of titania. Superparamagnetic characteristics of Fe3O4-TiO2 photocatalyst at
room temperature were confirmed by a magnetization hysteresis loop. HRTEM analysis
showed the occurrence of a heterojunction in the Fe3O4-TiO2 nanocomposite. XPS showed
that the peaks at 710.5 eV and 458.8 eV originated from Fe 2p and Ti 2p energy levels,
respectively, implying that Fe3O4 and TiO2 were largely present as separated phases in
Fe3O4-TiO2 composites.

2.2.3. Coprecipitation Method

This approach requires the preparation of a mixed aqueous solution of starting chemi-
cals such as chlorides, nitrates, or sulfites of Fe3+, as well as of divalent metal ions in the
requisite stoichiometric ratio. The precipitates are then generated by treating the solu-
tion with NaOH, filtration, washing twice, and drying. This approach entails four steps:
nucleation, growth, coarsening, and agglomeration, all occurring at the same time [82].
Nanocomposites of ferrites of good quality and phase purity can be obtained by this
method. This process offers various advantages such as high yield, high product purity,
lack of necessity to use organic solvent, good reproducibility and low cost. It is a quick
and easy way to make ultrafine particles that are disseminated in a variety of media. By
carefully monitoring the preparation parameters, it is possible to achieve control over the
surface morphology, structure, and chemical composition with this procedure.

Coprecipitation was employed for fabrication of CoFe2O4/TiO2 and ZnFe2O4-TiO2
nanocatalysts [83,84]. The average particle size of the coprecipitated nanocatalysts was
50 nm for CoFe2O4 and 150 nm for CoFe2O4/TiO2 according to SEM images, which was con-
sistent with the crystallite size predicted from XRD data. The spherical geometry (9 ± 2 nm)
of ZnFe2O4 nanoparticles and spherical-like morphology (11 ± 3 nm) of ZnFe2O4-TiO2
nanocomposites and fine dispersion of black particles (CoFe2O4) on the gray surface (TiO2)
of CoFe2O4/TiO2 were depicted in the TEM images (Figure 3). Bandgaps of CoFe2O4/TiO2,
CoFe2O4, ZnFe2O4-TiO2, and ZnFe2O4 were found to be 2.8, 1.1, 2.3, and 2.1 eV, respec-
tively, which suggested the formation of a visible light-active photocatalyst. The large
bandgap of the composite may be due to the mixing effect of the bandgap and the in-
terfacial coupling effect between ZnFe2O4 and TiO2, CoFe2O4 and TiO2. XRD pattern
analysis revealed that in CoFe2O4/TiO2, the conversion of anatase to the rutile phase of
TiO2 happened at a TiO2 annealing temperature of ≤600 ◦C, confirming the purity of
ZnFe2O4 and TiO2 phase in ZnFe2O4-TiO2, which was in agreement with HRTEM and
SAED investigations. Haw et al. [85] found that in comparison to conventional rutile-phase
TiO2 and pure urchin-like TiO2 (3D TiO2) microparticles, nanocomposites of CoFe2O4-3D
TiO2 showed an increase in photodegradation of methylene blue, and this nanocomposite
demonstrated a generally constant photocatalytic efficacy with low degradation. Two sets
of lattice fringes were visible at the TiO2-CoFe2O4 interface, with d110 = 0.322 nm of rutile
phase titania and d331 = 0.193 nm of CoFe2O4. The CoFe2O4 nanoparticles were clearly
visible on the 3D urchin-like TiO2 structure, and each element was uniformly distributed
over the surface of the TiO2 microsphere on scanning transmission electron microscopy.
XRD peaks were designated to the rutile phase of 3D urchin-like TiO2 and broader peaks
confirmed the presence of nanosized CoFe2O4 in the sample.
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permission from Ref. [83], 2013, Chemical Engineering Journal).

2.2.4. Hydrothermal Method

The hydrothermal method is a way of crystallizing a chemical, utilizing an aqueous
solution at a high vapor pressure as well as temperature [86]. At standard temperatures
(100 ◦C) and pressures (<1 atm), it is generally depicted as crystal formation or crystal
synthesis from insoluble chemicals. Autoclaves are used to carry out the process, which
is performed at a controlled pressure and temperature. This enables the utilization of
temperatures that are higher than the boiling point of water or an organic solution. The
concoction reaction that occurs beyond the dissolvable breaking point and at pressures over
bar is known as hydrothermal synthesis. The hydrothermal technique has the following
advantages: it is simple to acquire nanotube morphology, variations in the synthesis process
may be used to improve TiO2 nanotube characteristics, and it is a method that can be used
for a variety of applications.

Hydrothermal deposition of a hard ferromagnetic strontium ferrite (SrFe12O19) over
TiO2 can result in a photocatalyst that is both ferromagnetic and visible light-active. The
TiO2-supported SrFe12O19 nanocomposite has a strong ferromagnetic property and is quite
stable when it comes to losing its magnetic property. XRD images of TiO2-supported
SrFe12O19 nanocomposite correspond to mixture of anatase and rutile crystal phases. EDS
results confirmed that TiO2-supported SrFe12O19 consists of Fe, Ti, Sr, C, O and Si. The
BET-specific surface area of TiO2 was 49.5 m2g−1 with a total pore volume of 0.1553 cm3g−1,
which compares with 38.3 m2g−1 and 0.0155 cm3g−1 for TiO2-supported SrFe12O19. Due
to the deposition of SrFe12O19 nanoparticles onto the TiO2, the surface area and pore vol-
ume of the TiO2 nanocomposite reduces. The paramagnetic impact of TiO2 lowered the
coercivity (HC) and saturation magnetization (MS) of TiO2-supported SrFe12O19. The pho-
tocatalyst TiO2-supported SrFe12O19 had HC of 2125.5 G. The coercivity of TiO2-supported
SrFe12O19 nanocomposite showed that it was a good ferromagnetic material [87]. Nguyen
and Doong [88] and Pongwan et al. [89] fabricated ZnFe2O4-TiO2 and CoFe2O4/TiO2
nanostructure photocatalysts by the hydrothermal method. The ZnFe2O4-TiO2 nanocom-
posite was prepared by coupling 0.2–2 wt % narrow-bandgap material of p-type ZnFe2O4
with n-type anatase TiO2. Transmission electron microscopy (TEM) and high-resolution
TEM confirmed average particle sizes of 8–9 nm and 5–35 nm for ZnFe2O4-TiO2 and
CoFe2O4/TiO2, respectively. It was observed that ZnFe2O4 and TiO2 were intimately
linked, which led to a decrease in electron–hole recombination rate as well as enhanced
photocatalytic activity of ZnFe2O4-TiO2 heterostructures under visible light irradiation.
When the loading amount of ZnFe2O4 increased from 0.5 to 2 wt %, SEM revealed a slight
increase in particle size of ZnFe2O4-TiO2 nanocomposites. The N2 adsorption–desorption
isotherms showed that the combination of TiO2 with ZnFe2O4 can increase the specific
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surface area. XRD analysis indicated that ZnFe2O4-TiO2 can retain the crystallinity of both
nanoparticles. Electron diffraction pattern of CoFe2O4/TiO2 displayed the brightness of
polymorphic discrete rings of the crystalline particles, suggesting quite a high degree of
crystallinity in polycrystals. In this study, the obtained maximum saturation magnetization
and coercivity of CoFe2O4 and CoFe2O4/TiO2 nanocomposites were found to be 32.58,
29.64 emug−1 and 0.15, 0.05 kOe, respectively.

2.2.5. Solvothermal Method

The solvothermal technique employs a non-aqueous solvent and a considerably higher
temperature, allowing high boiling point solvents to be utilized. The solvothermal method
outperforms the hydrothermal method in terms of shape, size control, distribution, and
crystallinity of nanoparticles [90]. Organic solvents, which have a low relative permittivity
and are free of ionic species, are used in the solvothermal process to produce a product
devoid of foreign anions and ionic species. The benefits of both the hydrothermal and sol–
gel methods are combined in this technique. This approach may be utilized in the ceramics
sector to regulate the particle size of synthesized materials and to fabricate tiny particles,
such as magnetic titania photocatalyst [91]. Atacan et al. [92] developed ZnFe2O4/Ag-
TiO2 by the solvothermal method. The formation, structure and morphology of prepared
samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier-
transform infrared spectroscopy and vibrating sample magnetometry. In this study, the
obtained value of saturation magnetization of ZnFe2O4/Ag-TiO2 was 5.5 emug−1. XRD
patterns indicated that no chemical reaction occurred between ZnFe2O4 and Ag-TiO2,
because no peaks related to other impurities were observed. Nguyen and Doong [93]
synthesized ZnFe2O4/TiO2 heterostructure by this method.

2.3. Nanocomposites of Ferrites with Silica

Because of the Van der Waals forces of attraction between magnetic particles and their
large surface area, they clump together, making it difficult to determine their physicochem-
ical characteristics. One of the excellent methods to reduce particle agglomeration and to
stabilize magnetic nanoparticles is the dispersion of magnetic nanoparticles in a silica ma-
trix. Due to biocompatibility and chemical inertness, silica does not affect the redox reaction
at core surface and assists the functioning of nanocomposites in a biological environment.
This sort of matrix can help to reduce toxicity, increase biocompatibility, and shield encapsu-
lated components from harsh reaction media. The properties of such nanocomposites might
provide a number of advantages, including improved catalytic, magnetic, and mechanical
capabilities [94,95]. Thus, silica-coated magnetic nanoparticles are becoming a promising
and important approach in the development of magnetic nanoparticles for both fundamen-
tal studies and technological applications. Therefore, coating magnetic particles with silica
allows its surface to conjugate with various functional groups. The optical properties of
nanoparticles can also be increased by coating of silica gel [96]. Nanocomposites consisting
of nanoscale magnetic particles embedded in an insulating matrix such as silica presented
considerable difference in magnetic properties when compared with their equivalent pure
and bulk materials. In this section, techniques for synthesis of ferrite–silica nanocomposites
are discussed.

2.3.1. Sol–Gel Auto-Combustion Method

Exothermic chemical reactions occur in the sol–gel process, and self-ignition of the gel
occurs as a result of the combustion of the gel, resulting in black–brown powder as a prod-
uct. Urea, glycine, citric acid, hydrazine, and carbohydrazide are common starting materials
for this process, and stoichiometry and crystallite size can be easily adjusted. Colloidal gel
is created by combining metal nitrate and an organic solvent, then adding NH4OH to alter
the pH. Sol–gel auto-combustion was used to synthesize CoFe2O4-SiO2 nanostructures by
using metal nitrates as precursors. Bardapurkar et al. [97] studied (CoFe2O4)x(SiO2)1−x syn-
thesis, structural, spectral, and magnetic characteristics, where x ranged from 0.1 to 1.0. The
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crystal structure, cation distribution, and band locations of silica matrix were detected in IR
spectra. Crystallite size and pore fraction were at their maximum when the sample had the
highest silica concentration, due to changes in inter-particle distances and crystallite size
following dispersion in the matrix. As the ferrite-silica ratio was increased, the saturation
magnetization dropped from 68.7 emug−1 to 4.77 emug−1, indicating that the magnetic
characteristics may be changed by altering the ferrite-silica ratio. The reduction in magneti-
zation for the coated sample may be attributed to the presence of a non-magnetic silica layer
on the surface of magnetic nanoparticles that reduces the particle–particle interaction and
lowers the exchange coupling energy, which in turn reduces the magnetization. In the FTIR
spectra, there were strong absorption bands found around 1090 cm−1 and 800 cm−1 that
corresponded to silica network. SiO2-coated cobalt ferrite nanocomposites were fabricated
by Gharagozlou [98] and Pansambal et al. [99] using tetrakis(2-hydroxyethyl) orthosilicate
(THEOS) and tetraethyl orthosilicate (TEOS) as water-soluble silica precursors, respectively.
TEM images revealed that spherical, non-agglomerated cobalt ferrite nanoparticles were
homogeneously distributed in the silica matrix. Saturation magnetization was found to be
less for nanocomposite compared to bare nanoparticles. Peaks present in the XPS spectra of
CoFe2O4@SiO2 corresponded to Co 2p, Fe 3p, Fe 2p, Si 2s, Si 2p signals, which confirmed
the formation of CoFe2O4@SiO2. There was no unidentified peak in the EDX data, which
confirmed the purity, elemental composition and formation of CoFe2O4@SiO2. Specific
surface area of CoFe2O4@SiO2 was 9.34 m2g−1 calculated by BET equation. Results indi-
cated that crystallization, saturation magnetization Ms and remanent magnetization Mr
escalates as the calcination temperature rises, but the variation in coercivity Hc was not
in accordance with that of Ms and Mr, indicating that Hc is not determined only by the
crystallinity and size of CoFe2O4 nanoparticles. Figure 4 shows a technological scheme
for the synthesis of ferrite–silica nanocomposite. The influence of chelator chain length on
precursor formation and decomposition to nanocomposites of ferrite with SiO2 was studied.
Dippong et al. [100] prepared CoFe2O4/SiO2 nanocomposite by using three short-chain
diols (1,2-ethanediol, 1,3-propanediol, and 1,4-butanediol) as chelators. The influence
of the methylene groups’ numbers in the precursors and annealing temperature on the
nanocrystallite size was revealed. This method provides some advantages in making silica
composite material containing highly dispersed nanoparticles and promotes a good and
homogeneous dispersion of particles into silica matrix.

2.3.2. Stöber Method

A system of chemical reactions has been developed that allows the controlled growth
of spherical silica particles of uniform size by means of hydrolysis of alkyl silicate and
subsequent condensation of silicic acid in alcoholic solutions. The schematic procedure
employed for the synthesis of MgFe2O4-SiO2, Co1−xZnxFe2O4/SiO2, CoFe2O4/SiO2 was
reported [101]. Eromosele et al. [102] and Khanna and Verma [103] developed SiO2-coated
MgFe2O4 and KFeO2 by Stöber method, respectively. Both bare and SiO2-coated KFeO2
exhibited orthorhombic structure, whereas bare and silica-coated magnesium ferrite exhib-
ited a single cubic spinel phase. Association of silica on the surface of MgFe2O4 and KFeO2
nanoparticles was confirmed by EDAX in MgFe2O4-SiO2 and by FTIR in KFeO2/SiO2. It
was further confirmed by FTIR data in MgFe2O4-SiO2, because in coated samples, there
was a shift in stretching vibration of Fe-O from 560 cm−1 to 574 cm−1 due to silica coating.
It was observed that due to silica coating, the crystallite size reduced from 53 to 47 nm
in MgFe2O4-SiO2, but in KFeO2/SiO2, it increased from 4–8 nm to 10–22 nm. Values of
saturation magnetization of MgFe2O4-SiO2 and KFeO2/SiO2 were 22 and 21.17 emug−1

and possessed ferrimagnetic and superparamagnetic behavior, respectively, at room tem-
perature. Figure 5 shows a schematic representation of SiO2 coating of MgFe2O4.
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The influence of aging temperature on the synthesis of nanocomposites of ferrites with
silica by the Stöber method was studied. Queiroz et al. [104] investigated various aging
temperatures—98, 80, 60, 27/98, and 27 ◦C—for the synthesis of silica-coated cobalt ferrite.
Aging temperatures of 98 and 27/98 ◦C give the best suited conditions for preparing the
single phase of cobalt ferrite. The presence of silica on the particle surface was confirmed
using diffuse reflectance infrared Fourier transform, which presented vibrational modes
with asymmetric stretching absorption in the region 900–1200 cm−1 associated with the
Si-OH and O-Si-O groups and value of saturation magnetization of coated samples of
10.05 emug−1. Girgis et al. [105] studied the magnetic and optical properties of CoFe2O4,
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ZnFe2O4, Co0.5Zn0.5Fe2O4 coated with silica by heating at 400, 600 and 800 ◦C. It was
observed that by raising the temperature from 400 to 800 ◦C, average crystallite size of
core–shell nanocomposites increase.

2.3.3. Coprecipitation Method

This method was used for the formation of nanocomposites of ferrites with silica
using different precursors. SiO2-coated cobalt ferrite nanocomposites were fabricated using
metallic chlorides and metal nitrate as precursors and annealing at 100, 200, and 300 ◦C
and 250, 500, and 750 ◦C, respectively. The coercivity and saturation magnetization of
nanocomposite (annealed at 300 ◦C for 2 h) were much higher than that of bulk cobalt
ferrite. CoFe2O4 nanocrystallites were observed in the silica matrix during the annealing of
samples, and their size increased with increasing annealing temperature. TEM showed that
homogeneously distributed, well-crystallized, and nearly spherical CoFe2O4 nanoparticles
were inserted in the silica host matrix (Figure 6). FTIR spectra showed that as annealing tem-
perature increased, the absorption peaks at 1090 cm−1 for Si-O-Si further broadened [106].
The broad hump in the X-ray diffraction pattern at 2θ ∼18◦–23◦ corresponds to the presence
of amorphous silica in the sample. An increase in crystallite size of CoFe2O4:SiO2 nanocom-
posites was observed from 20.26 to 28.95 nm and 38.76 nm with increase in calcination
temperature from 250 to 500 ◦C and 750 ◦C by the Williamson–Hall method. Moreover,
lattice parameter and strain values increased from 8.0321 to 8.0691 Å and 1.01 × 10−2

to 3.75 × 10−3, respectively, as temperature increased from 250 to 750 ◦C. SEM analysis
revealed the formation of well-developed nanoparticles of CoFe2O4:SiO2 with intergranular
porosity [107]. Yakob et al. [108] prepared CoFe2O4/SiO2 by coprecipitation using metal
nitrate as precursor. The polycrystalline and spinel crystal structure of CoFe2O4/SiO2
with Fd3m group space was determined using XRD analysis. CoFe2O4/SiO2 crystallite
nanoparticles were 29.4 ± 0.2 nm in size, whereas CoFe2O4 was 26.8 ± 0.2 nm. Sharma
et al. [109] calcined a NiFe2O4/SiO2 composite at temperatures of 300 to 900 ◦C. It was
discovered through Rietveld refining that the powdered combination contains two phases:
silicon dioxide and nickel ferrite. As a result, the sample has a cubic phase with space
group F d-3 m (227), with Fe atom at 32e site (3/8, 3/8, 3/8), O (oxygen) atom at 32e site
(0.387, 0.387 and 0.387) and Ni atom at Wyckoff 8a site (0, 0, 0).

Magnetochemistry 2023, 9, x FOR PEER REVIEW 13 of 37 
 

 

was discovered through Rietveld refining that the powdered combination contains two 

phases: silicon dioxide and nickel ferrite. As a result, the sample has a cubic phase with 

space group F d-3 m (227), with Fe atom at 32e site (3/8, 3/8, 3/8), O (oxygen) atom at 32e 

site (0.387, 0.387 and 0.387) and Ni atom at Wyckoff 8a site (0, 0, 0). 

 

Figure 6. TEM images of (a) CoFe2O4/SiO2 (b) electron diffraction pattern (adapted from with the 

permission from Ref. [106], 2011, Journal of Magnetism and Magnetic Materials). 

2.3.4. Ball-Milling Method 

This is a process of creating new alloys and composites from top-down synthesis. It 

is a low-cost and quick synthesis approach [110]. Milling causes precise deformation be-

cause the internal structure of powders is gradually distorted to the nanoscale level. Gon-

zalez et al. [111] and Scano et al. [112] synthesized barium ferrite silica and magnetite-

silica nanocomposites in molar ratios of 40:60, 50:50, 60:40, 70:30 and silica content of 6, 

20, 50 wt %, respectively, by high-energy ball milling. The XRD pattern revealed that a 15 

h milling period is sufficient to avoid the formation of hematite phase, but a longer milling 

period and heat treatment above 900 °C produce hematite phase in BaFe12O19-SiO2 and 

form uniformly distributed spherical narrow (4–6 nm) Fe3O4 nanoparticles in amorphous 

SiO2 agglomerate of 100–200 nm in Fe3O4/SiO2. It was discovered that a sample with a 

compositional ratio of 60 barium ferrite-40 silica milled for 15 h and heated to 900 °C was 

sufficient to achieve the best magnetic characteristics and excellent dispersion of the hard 

magnetic phase barium ferrite into the ceramic matrix. In this study, it was found that the 

value of the highest saturation magnetization and corresponding coercivity (Hc) for 

BaFe12O19-SiO2 was 43 emug−1 and 3.4 kOe, respectively. 

2.4. Ferrites with Carbon Quantum Dots 

Quantum dots are toxic colloidal semiconductors made up of elements from the pe-

riodic groups II–VI, III–V, and IV–VI. Carbon has huge potential in nanoelectronics, cata-

lytic supports, drug delivery, sensors and electrochemical energy storage due to its di-

verse electron orbital types (sp, sp2, or sp3 hybrid) and size-dependent electric and surface 

properties [113–117]. Carbon quantum dots are a new type of nanomaterial with diameter 

less than 10 nm. Carbon quantum dots have unique properties compared to conventional 

semiconductor quantum dots and organic dyes, including intrinsic low toxicity, chemical 

stability, excellent optical properties, eco-friendliness, biological labelling, bioimaging, 

sensing, drug delivery, photocatalysis, biomedicines, low cost, and ease of availability 

[118–120]. The unique and attractive characteristic of CQDs is quantum confinement [121–

123]. Properties of CQDs such as surface group and size depend intensively on methods 

of preparation and applied precursors. Based on the synthesis method, CQDs have differ-

ent oxygen-, nitrogen-, and sulfur-containing functional groups on the surface [124–126]. 

The hydrothermal process is a straightforward, low-cost, and widely used method for 

Figure 6. TEM images of (a) CoFe2O4/SiO2 (b) electron diffraction pattern (adapted from with the
permission from Ref. [106], 2011, Journal of Magnetism and Magnetic Materials).

2.3.4. Ball-Milling Method

This is a process of creating new alloys and composites from top-down synthesis.
It is a low-cost and quick synthesis approach [110]. Milling causes precise deformation
because the internal structure of powders is gradually distorted to the nanoscale level.
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Gonzalez et al. [111] and Scano et al. [112] synthesized barium ferrite silica and magnetite-
silica nanocomposites in molar ratios of 40:60, 50:50, 60:40, 70:30 and silica content of 6, 20,
50 wt %, respectively, by high-energy ball milling. The XRD pattern revealed that a 15 h
milling period is sufficient to avoid the formation of hematite phase, but a longer milling
period and heat treatment above 900 ◦C produce hematite phase in BaFe12O19-SiO2 and
form uniformly distributed spherical narrow (4–6 nm) Fe3O4 nanoparticles in amorphous
SiO2 agglomerate of 100–200 nm in Fe3O4/SiO2. It was discovered that a sample with a
compositional ratio of 60 barium ferrite-40 silica milled for 15 h and heated to 900 ◦C was
sufficient to achieve the best magnetic characteristics and excellent dispersion of the hard
magnetic phase barium ferrite into the ceramic matrix. In this study, it was found that
the value of the highest saturation magnetization and corresponding coercivity (Hc) for
BaFe12O19-SiO2 was 43 emug−1 and 3.4 kOe, respectively.

2.4. Ferrites with Carbon Quantum Dots

Quantum dots are toxic colloidal semiconductors made up of elements from the
periodic groups II–VI, III–V, and IV–VI. Carbon has huge potential in nanoelectronics,
catalytic supports, drug delivery, sensors and electrochemical energy storage due to its
diverse electron orbital types (sp, sp2, or sp3 hybrid) and size-dependent electric and
surface properties [113–117]. Carbon quantum dots are a new type of nanomaterial with
diameter less than 10 nm. Carbon quantum dots have unique properties compared to
conventional semiconductor quantum dots and organic dyes, including intrinsic low toxi-
city, chemical stability, excellent optical properties, eco-friendliness, biological labelling,
bioimaging, sensing, drug delivery, photocatalysis, biomedicines, low cost, and ease of
availability [118–120]. The unique and attractive characteristic of CQDs is quantum con-
finement [121–123]. Properties of CQDs such as surface group and size depend intensively
on methods of preparation and applied precursors. Based on the synthesis method, CQDs
have different oxygen-, nitrogen-, and sulfur-containing functional groups on the sur-
face [124–126]. The hydrothermal process is a straightforward, low-cost, and widely used
method for preparing ferrite nanocomposites with CQDs. A solution of metal salts and
a base is autoclaved under pressure in this process, and crystalline structures are formed
from the aqueous solution at high vapor pressure. The precipitated precursor suspensions
are then placed in a sealed autoclave and slowly cooked at various temperatures and times.
The particle size in this process is determined by the rate of hydrolysis and the solubility of
metal oxide. High purity, chemical homogeneity, small and consistent particle size, and
controlled particle shape are all advantages of this unconventional technique.

The hydrothermal method was used for fabrication of nanocomposites of MFe2O4
(M=Zn, Cu, Co, Ni) with CQDs. CQDs can be prepared from green sources and chemi-
cals such as turmeric, almond, glucose, L-ascorbic acid, lemon peels, etc. Fini et al. [41]
and Fini et al. [127] prepared CoFe2O4–carbon quantum dot and NiFe2O4–carbon dot
nanocomposites using turmeric and almond as green starting material, respectively. From
hysteresis loop, the obtained values of saturation magnetization and coercivity of CoFe2O4
and CoFe2O4–carbon quantum dots were 35 emug−1 and 585 Oe and 16.8 emug−1 and 647
Oe, respectively, whereas coercivity of NiFe2O4–carbon dots rose from 90 Oe to 220 Oe in
comparison to pure NiFe2O4. Increased coercivity of nanocomposites occurred because
of increased interactions among nanoparticles. Apparently, magnetic domains are pinned
by carbon dots, and as a result, a higher magnetic field is needed for change in magnetic
domains of ferrite. In the case of CoFe2O4–carbon quantum dots, TEM analysis revealed
that CQDs were uniform in size from 40 to 100 nm in diameter when prepared for 24 h
at 180 ◦C, when prepared for 48 h at 200 ◦C, CQDs were uniform from 20 to 100 nm in
diameter, and when NiFe2O4–carbon quantum dots were autoclaved at 180 ◦C for 6 h, their
size was less than 30 nm.

Huang et al. [128] synthesized CQD/ZnFe2O4 nanocomposites using l-ascorbic acid
as a source of CQDs and metal nitrates for preparation of metal ferrite. Formation of
CQD/ZnFe2O4 nanocomposites was confirmed by TEM. In CQD/ZnFe2O4, the XRD
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pattern revealed no typical CQD peak, which could be attributed to the sample’s low
concentration and high dispersion of CQDs (Figure 7). The phase structure of ZnFe2O4
was shown to be unaffected by the inclusion of CQDs during the synthesis. XPS proved
the presence of CQDs and revealed the chemical states of synthesized materials for the
CQD/ZnFe2O4 (15 vol %) and ZnFe2O4 samples. A carbon quantum dot–bismuth ferrite
(CQDs/BiFeO3) heterostructure was developed using glucose as a source of CQDs. At-
tachment of CQDs on the surface of BiFeO3 was confirmed through TEM. Based on XRD
analysis, the sites of diffraction peaks of pure BiFeO3 powders were similar to those of
CQD/BiFeO3 composite samples (CQD content: 1.2%, 3.3%, and 4.7%), demonstrating
that introducing CQDs to BiFeO3 did not modify their crystal structures. As CQD content
increased from 1.2% to 4.7%, peaks at 570 cm−1 declined or vanished [129].
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survey spectra of ZnFe2O4 and CQD/ZnFe2O4 (15 vol %). High-resolution XPS spectra of (c) Fe 2p,
(d) Zn 2p, (e) O 1s, and (f) C 1s in corresponding samples (adapted from with the permission from
Ref. [128], 2017, Environmental Science and Technology).

Nabiyouni and Ghanbari [130] reported a CuFe2O4–carbon quantum dot nanocom-
posite as a sensor for detecting Hg (II) Ions. Peaks at 1630, 3410 and 1050 cm−1 in the
FTIR spectrum of CuFe2O4–carbon quantum dots correspond to presence of C=O, O-H
and C-O group in this nanocomposite. SEM of the product confirmed that CQDs were
uniform in size around 50 nm in diameter. From the hysteresis loop of the product, satu-
ration magnetization and coercivity were 8 emug−1 and 500 Oe, showing ferromagnetic
behavior. Figure 8 shows the preparation of (a) CQDs and (b) nanocomposites of copper
ferrite–carbon quantum dots by the hydrothermal method. The raw materials used in
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the synthesis of ferrites, TiO2, SiO2, CQDs and their nanocomposites are cheap and easily
available. Thus, synthesis of these nanocomposites is cost-effective.
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3. Applications

Nanotechnology has been a prominent area of research in science and technology for
several decades, including space science, medical technology, coatings, and electronics [131].
It is the study and application of structures smaller than 100 nm [132]. Nanotechnology
has the potential to revolutionize the coating industry. Nanoscale coatings are attracting a
lot of attention around the world. Nanoparticles are being considered as fillers in coatings
with changed surface qualities by the paint and coating industries [133]. Nanocoatings are
made by mixing nanoparticles (1–100 nm) with coating formulations to improve certain
properties. The large surface area and smallness of nanoparticles present many advantages
and opportunities to the paint and coating industries [134].

Nanotechnology has been widely applied in medicine, pharmaceutics, industry, agri-
culture, and biological sciences, making the 21st century a “golden time” for researchers.
Apart from metal and metal oxide nanoparticles, ferrite nanoparticles have raised interest
due to their superparamagnetic characteristics and surface area-to-volume ratio, which
differ significantly from their bulk counterparts [135]. Ferrites have the advantage of having
a bandgap that can absorb visible light, as well as a spinel crystal structure that increases
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efficiency by providing additional sites due to the crystal lattice. The bandgap of ferrites
is narrower than that of other regularly employed visible light catalysts (Figure 9). The
size, shape, and number of substituted transition metal ions can be adjusted to modify the
properties of ferrite nanoparticles [136–138]. Doping of spinel ferrites with other metal
ions as mixed ferrites is thought to be a useful engineering method for increasing photocat-
alytic activity and improving the interaction between contaminants and the photocatalytic
surface. In recent years, the application of ferrites as a visible light photocatalyst for the
decomposition of pollutants in water has attracted much interest.
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In photocatalysis, a semiconductor material interacts with light with higher energy
than the bandgap of the semiconductor to excite an electron from the valence band to the
conduction band, forming an electron–hole pair, which is responsible for photochemical
reactions.

Ferrites have been demonstrated to be effective photocatalysts, generating e−/h+

couples on the photocatalyst surface using light energy. The e−/h+ pairs are then used
for oxidation and reduction reactions, which typically result in the creation of reactive
oxygen species such as ·OH and, O.−

2 , which aid in the breakdown of pollutants (Figure 10).
The addition of oxidants such as H2O2 to the reaction mixture can boost the generation of
reactive oxygen species [139].
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When H2O2 is introduced as an oxidant, iron cations react with H2O2 according to the
processes below.

Fe2+ + H2O2 → Fe3+ + OH− + OH

Fe3+ + H2O2 → Fe2+ + ·OOH + H+

H2O2 + OH → H2O + ·OOH

H2O2 + e− → OH− + ·OH

OH− + h+ → H+ + ·OH

There is also the possibility that once ·OOH is formed, it reacts with Fe3+ to form O2.

Fe3+ + ·OOH → Fe2+ + H+ + O2

The capacity of ferrites to generate ·OH, which is strongly effective against bacteria,
is responsible for its antimicrobial activity. Partial substitution of transition metal in
commonly used spinel ferrites improves their antibacterial activity.

For the photocatalytic breakdown of Congo red dye, nanosized iron oxide powder
with average crystallite sizes of 35, 100, and 150 nm was utilized. The influence of iron
oxide crystal size on the rate of breakdown of Congo red dye was studied both in visible
light and in the dark. The results showed that iron oxide particles with crystallite sizes of 35
and 150 nm completely decomposed Congo red dye, whereas iron oxide particles with crys-
tallite sizes of 100 nm were unable to do so [140]. BaFe2O4 was investigated for its visible
light photocatalytic activity by decomposition of C3H7OH and H2O. Ag-doped CuFe2O4
NPs showed 97% photodegradation of malachite green, whereas CuFe2O4 degraded only
85% [141]. Table 1 documents the removal of organic pollutants by ferrites [142–147]. Fer-
rites have been found to be efficient in the disinfection of E. coli when coupled with other
materials. It has been demonstrated that when ferrites are combined with silver, including
Ag/MgFe2O4 and Ag/NiFe2O4, they show antimicrobial activity [148]. Ansari et al. [149]
developed chromium-substituted copper ferrite nanoparticles and demonstrated that bac-
terial growth was inhibited in a size-dependent manner: small nanoparticles possessed
strong antibacterial activity, whereas large nanoparticles suppressed bacterial growth at
concentrations of more than 16 mg/mL−1. The substitution of Co with Cu in cobalt fer-
rite nanoparticles strongly influenced the microstructure, crystal structure, and particle
diameter, and also improved the antibacterial properties and inactivated E. coli [17,18,150].
Ferrite photocatalyst-inhibition zones were identical to antibiotic-inhibition zones.

Table 1. List of ferrites for removal of pollutants.

S.No. Ferrites Preparation
Method Size (nm) Bandgap

(eV)
Crystal

Structure Degradation (%) References

1. Fe2O3 Coprecipitation 35 - cubic 77 (Congo red) [140]

2. Codoped
MgFe2O4

Hydrothermal 52 1.92 cubic 96.8 (Rhodamine B) [142]

3. Doped
MgFe2O4

Hydrothermal 96 - cubic 97.8 (Rhodamine B) [143]

4. CuFe2O4 Sol–gel 15 - cubic 100 (Sulfanilamide) [144]

5. MnFe2O4 Sol–gel 281.1 2.8 cubic 90.6 (Norfloxacin) [145]

6. NiFe2O4 Coprecipitation 155–185 1.56 cubic 98.5 (Methylene blue) [146]

7. CuFe2O4 Solvothermal 150 - cubic 95 (Phenolic compound) [147]
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The creation of a p–n junction is caused by the connection of semiconductors with
distinct bandgaps, which prevents electron–hole recombination and improves their pho-
tocatalytic activity (Figure 11). To enhance photocatalytic activity, ferrites have been
combined with other photocatalysts, such as TiO2, silica, and CQDs. Because of its high
photoreactivity, broad-spectrum antibiosis, and chemical stability, TiO2 is a widely used
photocatalyst due to its low cost, abundant availability, biological inertness, photocatalytic
stability, and non-toxic behavior toward the environment. It has been used to kill a variety
of microorganisms, including bacteria, fungi, and viruses [151–155]. The anatase form of
TiO2 has the best photocatalytic activity, followed by the rutile form. Individual ferrites or
TiO2 alone have lower photocatalytic efficacy than composite photocatalysts when coupled
with TiO2. Furthermore, when ferrites are added to TiO2, the composites become visible
light-effective, although TiO2 alone is only UV light-effective and has a large bandgap
(Table 2). A magnetic photocatalyst consisting of a magnetic core covered with a photoac-
tive titanium oxide layer was created to solve the problem of catalyst recovery [13,156–164].
The magnetic core is utilized to improve the photocatalyst’s separation capabilities from
the treated water, while the outside titanium oxide layer is employed to degrade organic
pollutants.
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Table 2. Bandgap of nanocomposites of ferrites with TiO2.

S. No. Nanocomposites of
Ferrites with TiO2

Bandgap (eV) References

1. TiO2 3.2 [35]

2. CoFe2O4/TiO2 2.8 [66]

3. ZnFe2O4-TiO2 2.3 [74]

4. TiO2/ZnFe2O4 1.92 [75]

5. TiO2-SrFe12O19 2.26 [78]

6. ZnFe2O4-TiO2 1.9 [79]

The mechanism of photocatalysis in doped TiO2 is shown below:

TiO2 + hν → TiO2
(
e−cb + h+

vb
)

O2 + e−cb → O−2

H2O+ h+
vb →

·OH + H+
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·OH + ·OH → H2O2

O.−
2 +H2O2→ ·OH+OH−+O2

·OH+ Organic+O2→ CO2 +H2O

TiO2 has bactericidal capabilities due to the high redox potential of surface species
produced by photoexcitation, which allows a non-selective oxidative attack on bacteria.
Microorganisms were photocatalytically inactivated by reactive oxygen species (ROS) such
as hydroxyl radical, superoxide radical (O.−

2 ), and hydrogen peroxide (H2O2) [165,166].
Because the rate of generation of ROS is a function of particle size, crystalline phase,
isoelectronic point, BET-specific surface area, aggregate size in suspension solution, and
other nanostructural characteristics, the type and source of TiO2 play an essential role
during bacterial inactivation. The presence of a large number of surface hydroxyl groups is
the reason for high antibacterial activity. The bactericidal mode of action of ROS depends on
the specific microorganisms involved [167,168]. Nanoparticles can interact with microbial
cells through a variety of mechanisms, such as by interrupting transmembrane electron
transfer, disruption of the cell wall, and oxidizing cell components [169] (Figure 12).
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TiO2 photocatalytic reactions were used to kill a wide range of bacteria [170]. TiO2’s
bactericidal and fungicidal activities against E. coli, Staphylococcus aureus, and Pseudomonas
putida have been well described [171–173]. Food packaging using TiO2 coatings or in-
tegrated within it has also attracted a lot of interest [174]. Because infection caused by
hazardous microbes has become a severe social concern, the development of simple and
efficient antibacterial methods and materials is critical. Thus, wood, medical equipment,
fabrics, dental implants, architectural materials, and food packaging coated with TiO2
are efficient for preventing pathogenic infections. Organic dyes such as malachite green,
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orange G, rhodamine 6G, amido black 10B, alizarin green, solvent red 23, indigo carmine,
methylene blue, and methyl orange [175–179] and pesticides such as 3-tert-butyl-5-chloro-
6-methyluracil and 2,4,5-tribromoimidazole were decomposed in the presence of TiO2
photocatalyst. The degradation of dyes follows pseudo-first-order kinetics according to
the Langmuir–Hinshelwood model. It was found that degradation rates and photonic
efficiencies were strongly influenced by pH, substrate, photocatalyst concentration and
presence of alternative additives, such as H2O2, KBrO3, (NH4)2S2O8 [180].

Large surface area, easy pore-size management, low cost, rich surface-functional
groups, high adsorption capacity, environmental friendliness, and thermal and mechanical
stability are all advantages of porous SiO2 [181–187]. To create well-defined nanocom-
posites, silica can be used as a support, coating layer, and binding material. When silica
coats photocatalysts, it acts as a protective physical barrier, preventing the inside cata-
lysts from dissolving and oxidizing, and therefore improving their chemical stability [188].
Meanwhile, the photocatalyst’s surface property can be modified to boost the surface ad-
sorption of reactants. Because pollutant adsorption on photocatalyst surfaces is frequently
the rate-determining step for pollutant degradation, large-surface-area photocatalysts are
recommended. Furthermore, nanoparticles supported by silica provide more active sites
for catalytic reactions. The photocatalytic activity of photocatalysts can be enhanced by
these features of silica.

Water solubility, high-emission quantum yields, size-tunable emission, restricted spec-
tral bands, surface modification for a particular sensing application, and photobleaching
resistance are advantages of CQDs. Because of high up- and down-converted photolumi-
nescence, electron-transporting and electron-accepting properties, carbon quantum dots
have been used as a photocatalyst. The better electron-transporting and electron-accepting
capabilities of CQDs will make it easier to separate electron–hole pairs created by solar
light radiation, increasing the life of electrons and holes generated by light [189]. These
characteristics help CQDs to enhance photocatalytic activity of semiconductors and use
solar light. During the process of photocatalysis in nanocomposites of ferrites with CQDs,
the electrons agitate from the valence band to the conduction band of ferrites on irradiation
of visible light and create holes on the valence band. When CQDs are absent, recombination
of electron–hole pairs occurs quickly and O.−

2 radicals are formed by trapping of electrons
by O2 or by Fe3+. Due to their strong electronic conductivity, electrons on the conduction
band of ferrites generated by light can be transported to CQDs. These electrons are collected
on the CQDs and are absorbed by adsorbed O2 on the ferrite surface, which results in
superoxide radicals (O.−

2 ). These radicals play an important role during photocatalysis [128]
(Figure 13).
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CQDs’ inhibitory effect on microorganisms is mediated by three molecular mecha-
nisms (Figure 14):

(1) Cell membranes and cell walls are destroyed.
(2) The release of reactive oxygen species (ROS) in order to kill the cells.
(3) Inhibiting cell proliferation by interacting with nucleic material (DNA/RNA).

Magnetochemistry 2023, 9, x FOR PEER REVIEW 22 of 37 
 

 

CQDs to overcome hematite’s short hole diffusion length and low hole mobility limit. As 

a result, a large number of holes can drift towards the nanocomposite surface, generating 

a huge number of ROS at the surface. As a result, antibacterial activity improves [191]. 

 

Figure 14. The inhibitory action of CQDs on microbial organisms mainly takes place via three mo-

lecular mechanisms. 

3.1. Photocatalytic Applications for Degradation of Organic Compounds 

Extreme pollution of water bodies is a severe risk to both human beings and other 

life forms. Water contaminated with organic compounds such as pharmaceuticals, dyes, 

heavy-metal ions, and pesticides has received scientific attention because of its dangerous 

constituents, and it is necessary to treat to secure environmental safety [192,193]. Of sev-

eral AOPs, semiconductor-based photocatalysis is a successful and low-cost technique for 

the treatment of water contaminants and microbes. In photocatalysis, clean and inexhaust-

ible solar energy is converted into useful chemical forms, and all photocatalytic reactions 

advances through relatively green conditions [194–198]. In this method, complete degra-

dation of organic compounds to H2O and CO2 occurs, and no secondary pollutants are 

generated. 

The influence of doping of Ni/Co and Eu on Fe3O4/TiO2 magnetic core–shell nano-

composites were investigated by degradation of amlodipine [199] and rhodamine B [200] 

under ultraviolet light irradiation, respectively. It was observed that factors playing a nec-

essary role in decomposition of amlodipine are weight percentage, number of dopants, 

calcination time, calcination temperature and pH of the amlodipine. Jiang et al. [81] re-

ported that the MS value of TiO2-coated Fe3O4 (14 emu/g) is much lower than that of bare 

Fe3O4 (63 emu/g). The decrease in saturation magnetization is mainly due to the non-mag-

netic TiO2 content in the nanocomposites. and has strong photocatalytic activity for pho-

todegradation of rhodamine B solution. Titania-coated magnetite (Fe3O4/TiO2) nanocubes 

showed excellent efficiency for degradation of methylene blue, and this efficiency was 

further promoted by addition of hydrogen peroxide within only 5 min of reaction time in 

the absence of UV irradiation. Even after recycling the sample six times, the introduced 

catalyst was found to retain as much as 90% initial efficiency [201]. Xu et al. [74] studied 

the degradation of methylene blue and methyl orange using visible light-active 

TiO2/ZnFe2O4 photocatalysts. The light-absorbing semiconductor ZnFe2O4 and the wide-

bandgap titanium oxide created a linked semiconductor system in the TiO2/ZnFe2O4 pho-

tocatalyst, resulting in efficient primary charge separation and photocatalytic activity un-

der visible light irradiation. The influence of calcination temperature and ZnFe2O4 quan-

tity on TiO2/ZnFe2O4 photocatalytic activity was also studied. Golshana et al. [202] re-

ported TiO2@CuFe2O4 as photocatalyst for decomposition of 2,4-dichlorophenoxyacetic 
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molecular mechanisms.

CQDs produce a significant number of free electrons and holes due to strong electron
transport. Excessive free radicals, such as hydroxide anions (OH−), superoxide singlet
oxygen (O2−), triplet oxygen, and per-hydroxyl anions, are produced by photoactivated
CQDs. The buildup of reactive oxygen species (ROS) inside the cell hinders respiration
and replication, resulting in microbial cell death [190]. When illuminated by light, CQDs
operate as conductive nanoscaffolds, and they are used in nanocomposites of ferrite with
CQDs to overcome hematite’s short hole diffusion length and low hole mobility limit. As a
result, a large number of holes can drift towards the nanocomposite surface, generating a
huge number of ROS at the surface. As a result, antibacterial activity improves [191].

3.1. Photocatalytic Applications for Degradation of Organic Compounds

Extreme pollution of water bodies is a severe risk to both human beings and other
life forms. Water contaminated with organic compounds such as pharmaceuticals, dyes,
heavy-metal ions, and pesticides has received scientific attention because of its dangerous
constituents, and it is necessary to treat to secure environmental safety [192,193]. Of several
AOPs, semiconductor-based photocatalysis is a successful and low-cost technique for the
treatment of water contaminants and microbes. In photocatalysis, clean and inexhaustible
solar energy is converted into useful chemical forms, and all photocatalytic reactions ad-
vances through relatively green conditions [194–198]. In this method, complete degradation
of organic compounds to H2O and CO2 occurs, and no secondary pollutants are generated.

The influence of doping of Ni/Co and Eu on Fe3O4/TiO2 magnetic core–shell nanocom-
posites were investigated by degradation of amlodipine [199] and rhodamine B [200] under
ultraviolet light irradiation, respectively. It was observed that factors playing a necessary
role in decomposition of amlodipine are weight percentage, number of dopants, calcination
time, calcination temperature and pH of the amlodipine. Jiang et al. [81] reported that
the MS value of TiO2-coated Fe3O4 (14 emu/g) is much lower than that of bare Fe3O4
(63 emu/g). The decrease in saturation magnetization is mainly due to the non-magnetic
TiO2 content in the nanocomposites. and has strong photocatalytic activity for photodegra-
dation of rhodamine B solution. Titania-coated magnetite (Fe3O4/TiO2) nanocubes showed
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excellent efficiency for degradation of methylene blue, and this efficiency was further pro-
moted by addition of hydrogen peroxide within only 5 min of reaction time in the absence
of UV irradiation. Even after recycling the sample six times, the introduced catalyst was
found to retain as much as 90% initial efficiency [201]. Xu et al. [74] studied the degradation
of methylene blue and methyl orange using visible light-active TiO2/ZnFe2O4 photocata-
lysts. The light-absorbing semiconductor ZnFe2O4 and the wide-bandgap titanium oxide
created a linked semiconductor system in the TiO2/ZnFe2O4 photocatalyst, resulting in
efficient primary charge separation and photocatalytic activity under visible light irradia-
tion. The influence of calcination temperature and ZnFe2O4 quantity on TiO2/ZnFe2O4
photocatalytic activity was also studied. Golshana et al. [202] reported TiO2@CuFe2O4 as
photocatalyst for decomposition of 2,4-dichlorophenoxyacetic acid (2,4-D). Over 97.2% of
2,4-D was degraded within 60 min at 0.3 mM PMS and 0.1 g/L. Difference in energy levels
of CuFe2O4 and TiO2 prevents electron–hole recombination, thus improving photocatalytic
activity (Figure 15).
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Figure 15. Mechanism of degradation of 2,4-D by TiO2@CuFe2O4 nanocomposites.

The photocatalytic activity of NiFe2O4@TiO2/Pt nanocomposites was demonstrated
by degradation of methyl orange and acid brown in an aqueous solution under irradiation
with UV light. Maximum wavelengths of methyl orange and acid brown were degraded
about 45% and 65% in 90 min under ultraviolet light and in the presence of magnetic
photocatalyst [203]. Aziz et al. [87] used a nanocomposite of TiO2 with SrFe12O19 as
photocatalyst for degradation of a recalcitrant phenolic compound (2,4-dichlorophenol)
under illumination of daylight. Under stronger sunlight illuminance, 2,4-DCP (50 mg/L)
was degraded completely in 120 min (supported photocatalyst) and 180 min (unsupported
TiO2). Under diffused sunlight, 100% decomposition of 2,4-DCP was accomplished in
240 min for the supported TiO2 and 90% decomposition in 300 min for the unsupported
TiO2.

Haw et al. [85] found that in CoFe2O4/TiO2 nanocatalysts, the presence of Co2+ and
Fe3+ ions in oxide form on the surface of TiO2 led to visible light absorption in the wave-
length range 550–650 nm. The photocatalytic degradation of reactive red 120 was studied
by varying its concentration and amount of nanocatalyst in order to attain maximum degra-



Magnetochemistry 2023, 9, 127 23 of 36

dation. The role of electron acceptors in photocatalytic degradation of RR 120 was studied
in the presence of a magnetic nanocatalyst. In comparison to commercial rutile phase TiO2
and pure urchin-like TiO2 microparticles, the CoFe2O4-3D TiO2 nanocomposites demon-
strated improved photodegradation of methylene blue due to a decreased recombination
rate of photoexcited charge carriers [204]. Bavarsiha et al. [205] and Chen et al. [206] studied
the degradation of methylene blue by SrFe12O19/SiO2/TiO2 and TiO2/SiO2/Ni–Cu–Zn
ferrite composites, respectively. Photodegradation of methylene blue was 80% in the pres-
ence of SrFe12O19/SiO2/TiO2 at irradiation time of 180 min and 83.9% in the presence of
TiO2/SiO2/Ni–Cu–Zn ferrite composite after 6 h Xe arc lamp irradiation. ZnFe2O4/TiO2
heterojunction was used for the removal of bisphenol A. The close heterojunction inter-
face between p-type ZnFe2O4 and n-type TiO2 can promote charge transfer more easily,
resulting in lower e−–h+ pair recombination efficiency and higher visible light-responsive
photocatalytic activity in ZnFe2O4 heterostructure [93]. Figure 16 shows the mechanism of
photodegradation of bisphenol A by ZnFe2O4/TiO2 heterojunction. Path 1 represents the
excitation of e− from the VB of ZnFe2O4 to CB to produce an e−–h+ pair. Path 2 represents
the transfer of excited e− in ZnFe2O4 across the interface of nanocomposites to the CB of
anatase TiO2, and leave holes in the VB of ZnFe2O4. It reduces the recombination rate
of holes and electrons. Path 3 indicates that photogenerated holes in VB of ZnFe2O4 can
decompose bisphenol A under visible light irradiation, and e− in the VB of TiO2 can react
with O2 to generate O.−

2 and ·OOH radicals (Path 4 and 5). The formed radicals can react
with electrons and protons to form ·OH (hydroxyl radicals) (Path 6). Coromelci et al. [207]
developed TiO2/ZnFe2O4 and TiO2/ZnFe1.98La0.02O4 heterostructures for the degradation
of methylene blue. Photocatalytic degradation of 97%, 91% and 70% was achieved using
TiO2/ZnFe1.98La0.02O4 under UV light, sunlight, and visible light.
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Photocatalytic property of CoFe2O4–carbon quantum dot nanocomposites under
ultraviolet irradiation was evaluated by degradation of three azo dyes (acid black 24, acid
brown 14 and acid red 1). It was observed that the degradation of acid brown 14, acid
black 24 and acid red 1 was 90%, 95%, and 60% at 90, 60, and 120 min, respectively [41].



Magnetochemistry 2023, 9, 127 24 of 36

Yakob et al. [108] developed CoFe2O4 and CoFe2O4/SiO2 and evaluated its photocatalytic
activity against methylene blue. The CoFe2O4/SiO2 nanocomposites showed a lower
optical bandgap than bare CoFe2O4 due to a smaller surface defect and greater particle size.
Because of the silica coating on CoFe2O4, CoFe2O4/SiO2 had higher photocatalytic activity
than CoFe2O4. Methylene blue photodegradation rate reached 80.6%.

A novel CQDs/ZnFe2O4 composite showed a strong transient photocurrent response,
which was much higher than ZnFe2O4, thus indicating better transfer and separation effi-
ciency of photogenerated electron–hole pairs. During the photocatalysis process, CQDs
serve as an electron reservoir, a transporter, and a strong energy transfer component. An
ESR study found that reactive species contributing towards removal of NO were O.−

2 and
·OH [128]. The photocatalytic activities of pure BiFeO3, CQDs and CQDs/BiFeO3 com-
posite were investigated against rhodamine B. Due to formation of a heterojunction at
the interface between CQD and BiFeO3 and electron-accepting properties of CQDs, the
pure BiFeO3 had the poorest photocatalytic activit compared to CQDs and CQDs/BiFeO3.
The sample with 3.3 wt % of CQDs in CQDs/BiFeO3 composite had the highest photo-
catalytic activity, and as a content of CQDs exceeded 3.3 wt %, the photocatalytic activity
decreased because too much CQDs covered the surface of BiFeO3 and reduced the ad-
sorption of O2 [129]. Mesoporous silica nanoparticles loaded with different amounts of
Fe2O3 nanoparticles synthesized by the sol–gel method was used for the degradation of
methylene blue and Congo red dye. Best results were obtained with 20% weight loading
of hematite nanoparticles, indicating less agglomeration and availability of more catalytic
sites [208]. Titanium-substituted SrFe2O4 and MgFe2O4 nanoparticles were used for the
removal of nitroaromatic compounds and rhodamine B dye [209,210]. Sr0.4Ti0.6Fe2O4.6 @
SiO2 nanocomposites removed 96% of pendimethalin [211].

The mechanism of rhodamine B degradation by CQDs/BiFeO3 heterojunction is
shown below:

CQDs/BiFeO3 + hν → e− (CQDs) + h+ (BiFeO3)

e−+ O2 → O.−
2

h++ OH− → ·OH

O.−
2 + H2O → ·OOH

·OOH + H2O →→ H2O2 +·OH

H2O2 → 2 ·OH

·OH + RhB → CO2 + H2O2

3.2. Photocatalytic Applications for Degradation of Microbes

Bacterial infectious illnesses have long posed a severe threat to human health, and
treating them has always been a risk for medical personnel. Antimicrobial resistance (AMR)
has emerged as a serious threat to the successful treatment of bacterial illnesses in the
last 70 years or more as a result of widespread antibiotic usage. Misuse of antibiotics
results in increase and spread of resistant pathogens. Antibiotic-resistant illnesses affect
more than 2.8 million individuals in the United States each year, resulting in around
35,000 fatalities [212]. It is projected that by 2050, AMR will cause 10 million deaths per
year, costing $100 trillion [213]. MSNs are ideally suited for targeted drug delivery due to
their flexible and desired features, such as high drug loading capacity, adjustable pore size
and volume, ease of functionalization, and biocompatibility. Silica nanoparticles have a
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lot of silanol groups (Si-OH) on their surfaces, which can be easily controlled as a surface
probe attachment site.

The antibacterial behavior of NiFe2O4@TiO2/Pt nanocomposites was evaluated using
degradation of E. coli bacteria. It was found that nanocomposites had a feasible magnetic
feature for easy separation and effective photocatalytic properties. As time increased,
more bacteria were degraded on the catalyst [203]. Atacan et al. [92] demonstrated the
antibacterial activity of ZnFe2O4/Ag-TiO2 nanocomposite against Gram-positive bacteria
(S. aureus) and Gram-negative bacteria (E. coli). The degradation rate of S. aureus was higher
than E. coli. The inhibition diameter of 15 ± 0.2 mm for ZnFe2O4/Ag-TiO2 nanocomposite
was also measured, since the antibacterial activity increased with nanocomposite formation.

To create photokilling agents, Chen et al. [214] utilized two unique properties of titania:
its photocatalytic activity and its capacity to self-assemble dopamine onto its surface. The
Fe3O4@TiO2 nanocomposites had photocatalytic activity as well as the ability to target bacte-
ria, in addition to their magnetic characteristics. The IgG–Fe3O4@TiO2 nanocomposite was
shown to be efficient at inhibiting the cell development of various harmful bacteria when
exposed to UV radiation. The photokilling capabilities of synthesized nanocomposites were
evaluated using antibiotic-resistant bacterial strains, such as multiantibiotic-resistant S. pyo-
genes, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus saprophyticus, and
Streptococcus pyogenes. The antibacterial activity of γ-Fe2O3@SiO2@TiO2–Ag nanocompos-
ites was investigated by Cui et al. [215]. It was demonstrated that the introduction of silver
nanoparticles into the TiO2 matrix facilitates charge separation by trapping photogenerated
electrons, thereby enhancing biological activity and photoactivity.

The antibacterial effect of NiFe2O4–carbon quantum dots nanocomposite was investi-
gated by degradation of Pseudomonas aeruginosa bacteria. It was found that as time increases,
more bacteria were degraded on nanocomposites [127]. Yang et al. [216] found that CQD
adsorption causes bacterial cell surface destruction, since the CQDs may change the charge
balance of the bacterial surface and can insert into the bacterial surface via the long alkyl
chains, which ultimately leads to the inactivation of Gram-positive bacteria. Moradlou
et al. [217] (Figure 17) grew thin films of CQD-incorporated hematite (CQDs@α-Fe2O3) and
nanostructured hematite (α-Fe2O3) on titanium substrate. Under dark and light circum-
stances, the antibacterial activity of the produced sample was tested against Gram-negative
(E. coli) and Gram-positive (S. aureus) bacteria. It was observed that antimicrobial activity
of the samples was less in the dark than under light illumination. The antimicrobial investi-
gation revealed that α-Fe2O3 and CQDs@α-Fe2O3 were toxic to the chosen microbe, and
that samples (Ti/α-Fe2O3, Ti/CQDs@α-Fe2O3) have higher antibacterial activity against
S. aureus than E. coli, owing to the existence of an additional layer in the outer membrane
of E. coli. The mechanism of bactericidal activity was the entrance of iron cation into the
bacterial cell via its membrane and the formation of reactive oxygen species.
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A silver-deposited silanized cobalt ferrite composite (CoFe2O4/SiO2/Ag) was pro-
duced and impregnated with streptomycin antibiotic by Kooti et al. [218]. Disk diffusion
was used to investigate the antibacterial activity of CoFe2O4/SiO2/Ag alone and in combi-
nation with streptomycin against Gram-positive and Gram-negative bacteria. The bacterici-
dal effect of this compound was found to be increased when combined with streptomycin
based on the diameter of inhibition zones. It was demonstrated that the bactericidal ac-
tivity of CoFe2O4/SiO2/Ag in combination with streptomycin against all test stains was
higher than each of CoFe2O4/SiO2/Ag and streptomycin applied alone. The DIZ values
for streptomycin-impregnated CoFe2O4/SiO2/Ag composite were 19, 17, 15, and 14 mm
for B. subtilis, E. coli, S. aureus, and Pseudomonas aeruginosa, respectively, using a composite
concentration of 10 mg/mL−1. A summary of applications of nanocomposites of ferrites
with TiO2, silica and CQDs for removal of pollutants is given in Tables 3 and 4.

Table 3. List of ferrites and their nanocomposites with TiO2, Silica and CQDs for removal of pollutants.

S.No. Photocatalyst Pollutant Degradation
(%)

Time
(min)

Light
Source References

1. CoFe2O4 -CQD Acid black 24, acid brown 14,
acid red 1 95, 90, 65 60, 90, 120 UV [41]

2. CoFe2O4-TiO2 Reactive red 120 98.89 360 UV [85]

3. TiO2/SrFe12O19
2,4-dichlorophenoxyacetic

acid 100 240 sunlight [87]

4. CoFe2O4/SiO2 Methylene blue 80.6 120 UV [108]

5. CQD/BiFeO3 Rhodamine B - 60 Visible [129]

6.. Ni/Co-Fe3O4/TiO2 Amlodipine drug 92.49 90 UV [198]

7. Fe3O4/TiO2: Eu Rhodamine B 85.3 180 Visible [199]

8. Fe3O4/TiO2 Methylene blue 81 6 UV [201]

9. TiO2@CuFe2O4
2,4-dichlorophenoxyacetic

acid 69.7 60 UV [202]

10. NiFe2O4@TiO2/Pt Methyl orange, acid brown 45, 65 90 UV [203]

11. SrFe12O19/SiO2/TiO2 Methylene blue 80 180 UV [205]

12. TiO2/SiO2/Ni–Cu–Zn ferrite Methylene blue 83.9 360 Visible [206]

13. Fe2O3/SiO2 Methylene blue and congo red 88, 88 180, 240 Visible [208]

14. Sr1−xTixFe2O4+δ
p-nitrophenol, pendimethalin,

martius yellow 91.3, 94.4, 87.2 120 Visible [209]

15. Mg1−xTixFe2O4+δ Rhodamine-B 98 120 Visible [210]

16. Sr0.4Ti0.6Fe2O4.6@SiO2 pendimethalin 96 120 Visible [211]

17. γ-Fe2O3@SiO2@TiO2-Ag Methyl orange 84 60 UV [215]

Table 4. List of various nanocomposites of ferrites with TiO2, silica and CQDs for removal of microbes.

S. No. Photocatalyst Microbes Degradation Light Source References

1. ZnFe2O4/Ag-TiO2 S. aureus, E. coli
Zone of inhibition

15 ± 0.2, 12 ± 0.3 mm
respectively

Dark [92]

2. Ig-G-Fe3O4/TiO2

Staphylococcus
saprophyticus,

Streptococcus pyogenes,
S. aureus

79.15%, 82.87%
82.40% - [214]

3. γ-Fe2O3@SiO2@TiO2-Ag E. coli 75%,
97%

Dark,
visible [215]

4. Ti/CQD@hematite S. aureus, E.coli 70%, 20%
80%, 35%

Dark,
Visible [217]

5. CoFe2O4/SiO2/Ag
S. aureus, Bacillus subtills,

E. coli, Pseudomonas
aeruginosa

Diameter of inhibition zone
20, 21, 17, 18 mm respectively - [218]
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4. Challenges and Opportunities

Exploring synthetic ways for low-cost large-scale production is essential for the wide
use of nanotechnology. The large-scale production of these nanocomposites with uniform
and high quality is still a challenging task. There is still a lot of work to be done for synthesis
and optimizing the materials for a wide range of applications, and it is critical to assess
the toxicity and environmental issues of nanocomposites. Nanocomposites exhibit distinct
qualities, such as a high surface area-to-volume ratio, a significant number of reactive sites
available to enable the dispersal of organic pollutants on the surface and pores, tininess,
and high recovery capacity. High surface area-to-volume ratio property of nanocomposites
controls the interactions with bacteria and pollutants. These characteristics provide new
opportunities for numerous applications in photocatalysis. Comparative studies on change
in the cocatalyst viz. TiO2, SiO2, and CQDs on the photocatalytic activity of ferrites needs
to be addressed.

5. Conclusions

Nanocomposites of ferrites with TiO2, SiO2, and CQDs are presently being used for
environment protection. In this review, methods of preparation, such as coprecipitation,
sol–gel, hydrothermal, solvothermal, and Stöber, structural features and photocatalytic
activity of nanocomposites of ferrites with TiO2, SiO2, and CQDs for removal of various
toxicants such as dyes, heavy-metal ions, pharmaceuticals, and microbes have been dis-
cussed. Mechanisms associated with their applications have also been addressed. Such
nanocomposites have become a subject of great scientific interest due to their physiochemi-
cal properties, such as thermal stability, tunable shape and size, chemical stability, excellent
magnetic characteristics, cost-effectiveness and large surface area. These nanocomposites
possess more photocatalytic activity than individual moieties. Among various nanocom-
posites, nanocomposites of ferrites with CQDs show more photocatalytic activity due
to their excellent sunlight-harvesting ability, up-conversion photoluminescence, tunable
photoluminescence (PL), and effective promotion of electron–hole separation rate.
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